
Lecture 10. Adversarial Bandits

Peng Zhao
zhaop@lamda.nju.edu.cn

Nanjing University

Advanced Optimization (Fall 2024)



Lecture 10. Adversarial BanditsAdvanced Optimization (Fall 2024) 2

Outline
• Bandit Problems and Adversarial Bandits

• Multi-Armed Bandits

• Bandit Convex Optimization

• BCO with Smooth Functions
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Part 1. Bandits
• Bandit Problems

• Adversarial Bandits 
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Online Learning

less information

full information

horse racing

partial information

multi-armed bandits

on the feedback information:
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Bandits
• Bandit problems 

• named after a one-armed bandit
• arm: a colloquial term for a slot machine that is pulled to try to win
• bandit: comes from the idea that the machine is a “thief” that takes 

your money without offering a guaranteed return

• Multi-armed bandits
• Context: there are multiple slot machines, each with 

its own probability of payout
• Goal: the player (gambler) places her bets on a slot 

machine to maximize the total reward 
• Exploration-Exploitation tradeoff
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Bandits: history bit 
• Bandit problems were introduced for the clinical trial design by William R. 

Thompson in an article published in 1933 [Thompson, 1933].

• Thompson Sampling (TS) was originally described in this paper but has 
been largely ignored by the artificial intelligence community.

• TS was subsequently rediscovered numerous times independently in the 
context of reinforcement learning. 
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Bandits: history bit 
• Bandit problems were later formally restated in a short but influential paper 

[Robbins, 1952] and further developed in [Lai and Robbins, 1985].

Herbert Ellis Robbins (1915 - 2001)

H. Robbins. Some aspects of the 
sequential design of experiments. 
Bulletin of the American Mathematical 
Society, 58(5):527–535, 1952.
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Bandit Problems
• Also called partial-information online learning.

Bandit Algorithms
Tor Lattimore, Csaba Szepesvári

Cambridge University Press, 2021

• There are a variety of bandit problems:
multi-armed bandits (MAB)

 linear bandits/convex bandits 

 generalized linear bandits/graph bandits

 contextual bandits

 partial monitoring

… (even MDP for RL)



Lecture 10. Adversarial BanditsAdvanced Optimization (Fall 2024) 9

Online Learning

less restricted 
but harder

oblivious adversary

examination interview

adaptive adversary
on the difficulty of environments:

- stochastic setting

- adversarial setting oblivious

adaptive 
(non-oblivious)
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Bandit Problems
• Also called partial-information online learning.

• According to the environments, it can be roughly classified as
 Stochastic bandits: environment is generated by a stochastic model

 Adversarial bandits: environment can be chosen against the learner

• oblivious adversary: thinking of the final exam

• non-oblivious adversary: thinking of the online games
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Adversarial Bandits
• Continuing the OCO protocol:

We focus on the oblivious setting (non-oblivious bandits are usually challenging)
i.e., environments decide online functions of all the rounds before the online game starts.
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Part 2. (Adversarial) Multi-Armed Bandits
• Formulation

• Loss Estimator

• Exp3 and Regret Analysis
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Multi-Armed Bandit
Trial 1 Trial 2 Trial 3

Loss: 0.3 * Loss: 0.2

* Loss: 0.5 *

* * *

* * *

Arms

: chosen arm

: unobserved



Lecture 10. Adversarial BanditsAdvanced Optimization (Fall 2024) 14

Formulation

on the difficulty of environments:
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Formulation

Goal: to minimize expected regret

where the expectation is taken over the randomness of algorithms.
deterministic algorithms will suffer an Ω 𝑇𝑇 regret in the 

worst case under the bandit setting!
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Comparison
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Comparison
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A Natural Solution for MAB
• MAB bares much similarity with the PEA problem (except for 

the amount feedback information).

Hedge for PEA

Deploying Hedge to MAB problem.
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A Natural Solution for MAB
• However, Hedge does not fit for MAB setting due to limited feedback.

Hedge for PEA
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Reduction of MAB to PEA
• Given the similarity of MAB and PEA, can we realize the reduction?

MAB
Problem 

reduction

Hedge 
for PEA
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Reduction of MAB to PEA

• Importance-Weighted (IW) Loss Estimator

MAB
Problem 

reduction

Hedge 
for PEA
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Loss Estimator

unbiasedness

IW Loss Estimator

Proof.
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Exp3: Algorithm
Exp3 (Exponential-weight for Exploration and Exploitation)
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Other Choice

cannot apply Hedge

MAB
Problem 

reduction

Hedge 
for PEA
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Importance-Weighted Loss Estimator

MAB
Problem 

reduction

Hedge 
for PEA
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Exp3: Regret Bound

Comparision:

Hedge for PEA
full-information feedback

Exp3 for MAB
bandit feedback

suffer a larger 
arm dependence
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Proof of Exp3 Regret Bound
Proof.
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Proof of Exp3 Regret Bound
Proof.
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Proof of Exp3 Regret Bound
Proof.

regret bound
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Proof of Exp3 Regret Bound
Proof.
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Lower Bound for MAB
• As above, we have proved the regret upper bound for Exp3:

• Can we further improve the regret bound?

It turns out that Exp3 doesn’t achieve minimax optimal regret for MAB.
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Lower Bound for MAB
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Proof Sketch

Proof (Sketch).

Adversarial

Stochastic
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Upper and Lower Bounds for MAB
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Advanced Topics
• How to shave off the extra              factor?

Using OMD with Tsallis entropy regularizer, also using the IW estimator 

Reference: Jean-Yves Audibert and Sebastien Bubeck. Regret bounds and minimax policies 
under partial monitoring. Journal of Machine Learning Research, 11(Oct):2785–2836, 2010.

http://sbubeck.com/audibert10a.pdf
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IX Loss Estimator

Advanced Topics
• How to boost from expected guarantee to a high-probability one?

Using an improved estimator: Implicit eXploration (IX) Loss Estimator  

Reference: Gergely Neu. Explore no more: Improved high-probability 
regret bounds for non-stochastic bandits. NIPS 2015.

IW Loss Estimator

https://arxiv.org/pdf/1506.03271.pdf
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The Nonstochastic Multiarmed Bandit Problem. 
SIAM Journal on Computing (SICOMP). 2002.

https://epubs.siam.org/doi/10.1137/S0097539701398375
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Part 3. Bandit Convex Optimization
• Problem Formulation 

• Gradient Estimator

• Bandit Gradient Descent

• Regret Analysis
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Bandit Convex Optimization
• One of the most general forms for bandits, hence very fundamental.
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Formulation

Goal: to optimize expected regret,

where the expectation is taken over the randomness of algorithms.
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A Natural Solution for BCO
• BCO bares much similarity with the OCO problem.

Deploying OGD to BCO problem.

Online Gradient Descent

However, we don’t have the gradient information due to the limited feedback.
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Gradient Estimator
• Construct the final decision via the perturbation technique.
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Gradient Estimator
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Gradient Estimator

Non-trivial, can be proved by Stokes equation. 

See [Flaxman et al., SODA’05; Proof of Lemma 2.1].
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Bandit Gradient Descent
• BGD: deploying OGD to BCO problem using the gradient estimator.
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Bandit Gradient Descent
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Proof of BGD
smoothed function

Proof.
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Proof of BGD

Proof.
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Proof of BGD
Proof.
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Proof of BGD
Proof.
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Proof of BGD
Proof.
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Proof of BGD
Proof.
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Proof of BGD
Proof.
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Part 4. BCO with Smooth Functions
• Problem Formulation 

• Gradient Estimator

• Self-concordant Barrier

• Regret Analysis
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BCO with Smooth Functions
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anisotropy exploration strategy

Exploration

isotropy exploration strategy
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An Anisotropy Exploration
• We use several key tools in convex geometry and analysis, including 

the self-concordant barrier (formally defined later), Dikin ellipsoid
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An Anisotropy Exploration
• Exploration using local norm with Dikin ellipsoid.

Anisotropy exploration strategy
: magnitude, : direction

Analysis: 
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FTRL with Self-Concordant Barrier
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Invent the algorithm from the analysis
• We focus on the FTRL framework (OMD can be similarly obtained).
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Invent the algorithm from the analysis

When using barrier functions as the regularizer

Newton decrement, suitable gradient estimator

shifting comparators, controlling the shifting cost
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Stability Term and Newton Decrement
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Stability Term and Newton Decrement

Analysis: 
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Range Term and Shifting Cost
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Range Term and Shifting Cost
Analysis: 
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FTRL with Self-Concordant Barrier
• Putting above components together yields the following results.
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Gradient Estimator



Lecture 10. Adversarial BanditsAdvanced Optimization (Fall 2024) 68

Gradient Estimator
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FTRL with Self-Concordant Barrier
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FTRL with Self-Concordant Barrier
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Proof Sketch

Regret of FTRL with 
Self-concordant barrier
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Self-Concordant Functions/Barriers
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Self-Concordant Functions
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Self-Concordant Barrier

The notion of self-concordant barrier is defined based on the notion of self-concordant 
function. Thus, a self-concordant function is not necessarily a self-concordant barrier.

The self-concordant barrier is associated with the (convex) feasible domain.
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Self-Concordant Barrier
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History bits: Self-Concordant Barrier

Arkadi S. Nemirovski and Michael J. Todd, Interior-point 
methods for optimization, Acta Numerica, 2008

Yurii Nesterov and Arkadi S. Nemirovski, Interior Point 
Polynomial Methods in Convex Programming, SIAM, 1994.
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Beyond
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Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan 
McMahan. Online convex optimization in the bandit setting: 
gradient descent without a gradient. SODA, 2004.

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. 
Competing in the dark: An efficient algorithm for bandit 
linear optimization. COLT, 2008.

COLT 2008
best paper award
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Summary

Q & A
Thanks!
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