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 Bandit Problems and Adversarial Bandits
e Multi-Armed Bandits
* Bandit Convex Optimization

e BCO with Smooth Functions
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Part 1. Bandits

 Bandit Problems

 Adversarial Bandits

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits



Online Learning

Ateachroundt=1,2,---

(1) the player first picks a model x; from a feasible set X C R¢;

(2) and environments pick an online function f; : X — R;

(3) the player suffers loss f;(x;), observes|some information about f;|and

updates the model.

on the feedback information:

, : , full information partial information
- full information: observe entire f, (or at 2

least gradient V f;(x;))

3 ARt T N T

o . . B |8

- partial information (bandits): observe L ' L | I IO Ox
function value f;(x;) only less information horse racing multi-armed bandits
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Bandits

 Bandit problems
* named after a one-armed bandit
 arm: a colloquial term for a slot machine that is pulled to try to win

* bandit: comes from the idea that the machine is a “thief” that takes
your money without offering a guaranteed return

e Multi-armed bandits

* Context: there are multiple slot machines, each with
its own probability of payout

* Goal: the player (gambler) places her bets on a slot
machine to maximize the total reward

* Exploration-Exploitation tradeoff
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Bandits: history bit

« Bandit problems were introduced for the clinical trial design by William R.
Thompson in an article published in 1933 [Thompson, 1933].

ON THE LIKELIHOOD THAT ONE UNKNOWN
PROBABILITY EXCEEDS ANOTHER IN VIEW
OF THE EVIDENCE OF TWO SAMPLES.

By WILLIAM R. THOMPSON. From the Department of Pathology,
Yale University.

* Thompson Sampling (TS) was originally described in this paper but has
been largely ignored by the artificial intelligence community.

* TS was subsequently rediscovered numerous times independently in the
context of reinforcement learning.
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Bandits: history bit

* Bandit problems were later formally restated in a short but influential paper
Robbins, 1952] and further developed in [Lai and Robbins, 1985].

SOME ASPECTS OF THE SEQUENTIAL DESIGN
OF EXPERIMENTS

HERBERT ROBBINS

1. Introduction. Until recently, statistical theory has been re-
stricted to the design and analysis of sampling experiments in which
the size and composition of the samples are completely determined
before the experimentation begins. The reasons for this are partly
historical, dating back to the time when the statistician was con-
sulted, if at all, only after the experiment was over, and partly in-
trinsic in the mathematical difficulty of working with anything but
a fixed number of independent random variables. A major advance
now appears to be in the making with the creation of a theory of the
sequential design of experiments, in which the size and composition
of the samples are not fixed in advance but are functions of the ob-
servations themselves.
The first important departure from fixed sample size came in
the field of industrial quality control, with the double sampling in-
spection method of Dodge and Romig [1]. Here there is only one
population to be sampled, and the question at issue is whether the
proportion of defectives in a lot exceeds a given level. A preliminary
sample of #; objects is drawn from the lot and the number x of de-
fectives noted. If x is less than a fixed value a the lot is accepted with-
out further sampling, if x is greater than a fixed value b (a <b) the
lot is rejected without further sampling, but if ¢ Sx < then a second
sample, of size #,, is drawn, and the decision to accept or reject the
lot is made on the basis of the number of defectives in the total sample
of m1+mns objects. The total sample size # is thus a random variable
with two values, #; and #:+4#,, and the value of # is stochastically
dependent on the observations. A logical extension of the idea of
double sampling came during World Waxi II with the development, .
chiefly by Wald, of sequential analysis [2],in which the observations H R bb S t f th
are made one by one and the decision to terminate sampling and to ac- . 0 1nS . Ome aSpeC S 0 e
cept or reject the lot (or, more generally, to accept or reject whatever . . .
statistical “null hypothesis” is being tested) can come at any stage. t 1 d f t
The total sample size » now becomes a random variable capable in Sequen 1a e81gn 0 experlmen S'
principle of assuming infinitely many values, although in practice a

finite upper limit on 7 is usually set. The advantage of sequential Bulletin Of the American Mathematical

An address delivered before the Auburn, Alabama, meeting of the Society,

23, 1951, by invitation of the C to Select Hour Speakers for .
Southeastern Sectional Meetings; received by the editors December 10, 1951. SO ci ety 5 8 (5) . 5 2 7_5 35 1 95 2
J . J .
527

Herbert Ellis Robbins (1915 - 2001)
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Bandit Problems

* Also called partial-information online learning.

* There are a variety of bandit problem:s:
 multi-armed bandits (MAB)

L linear bandits/convex bandits

d generalized linear bandits/graph bandits

L contextual bandits

4 partial monitoring

4 ... (even MDP for RL)

Bandit
Algorithms

TOR LATTIMORE
CSABA SZEPESVARI

Bandit Algorithms
Tor Lattimore, Csaba Szepesvari
Cambridge University Press, 2021
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Online Learning

Ateachroundt=1,2,---

(1) the player first picks a model x; from a feasible set X C R¢;

(2) and environments pick an online function f; : X — Ry

4

updates the model.

(3) the player suffers loss f;(x;), observes some information about f; and

on the difficulty of environments:

oblivious adversary

adaptive adversary

- stochastic setting F . - -
less restricted ’ re
- but harder .Y ‘&
- adversarial setting { oblivious hﬁ? / : | L& \
adaptive. . N examination interview
(non-oblivious)
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Bandit Problems

* Also called partial-information online learning.

* According to the environments, it can be roughly classified as
d Stochastic bandits: environment is generated by a stochastic model

d Adversarial bandits: environment can be chosen against the learner

* oblivious adversary: thinking of the final exam

* non-oblivious adversary: thinking of the online games
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Adversarial Bandits

* Continuing the OCO protocol:

Ateachroundt=1,2,---
(1) the player first picks a model x; from a convex set X C R¢;

(2) and environments pick an online convex function f; : X — R;

(3) the player suffers loss f;(x;), observes some information about f; and

updates the model.

:> at round ¢, the learner can only observe the function value f;(x;) information

We focus on the oblivious setting (non-oblivious bandits are usually challenging)

i.e., environments decide online functions of all the rounds before the online game starts.
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Part 2. (Adversarial) Multi-Armed Bandits

e Formulation
e .oss Estimator

* Exp3 and Regret Analysis
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Multi-Armed Bandit

Trial 1

Trial 2

Loss: 0.3

T—e

Arms <

T—e

T—e
—
o
wn
* * e *
o
un
—~—_

=) (D LED [EN

: chosen arm

: unobserved
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Formulation

Ateachroundt=1,2,---
(1) the player first picks an arm a; € [K| from K candidate arms;
(2) and simultaneously environments pick a loss vector £; € [0,1]%;

(3) the player suffers and only observes loss /; ,,, then updates the model.

on the difficulty of environments:

e adversarial setting
- oblivious: {£;}]_, are chosen before the game starts.

- non-oblivious: £y(a1,¢1 4,,--.,0t—1,%—1.4,_,) can depend on the past history.

e stochastic setting: ¢; g D, where D is a fixed unknown distribution.
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Formulation

Ateachroundt=1,2,---
(1) the player first picks an arm a; € K| from K candidate arms;

(2) and simultaneously environments pick a loss vector ¢; € [0, 1]*

(3) the player suffers and only observes loss /; ,,, then updates the model.

Goal: to minimize expected regret

E[Regret,] =

th, t:| - alél[l% th as

where the expectation is taken over the randomness of algomthms.

deterministic algorithms will suffer an Q(T) regret in the
worst case under the bandit setting!
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Comparison

Full-Information Problem

Domain | Loss Functions Feedback
Prediction with Experts” Advice Ay fi(pt) = (be, Pr) fe(pe), £
Online Convex Optimization X fe(+) fr(xe), Vfi(xt),...
Bandit Problem Domain Loss Functions Feedback
Multi-Armed Bandits {e1,...,ex} | fi(eq,) = (bi,eq,) | fi(eq,) =Lia,
Bandit Convex Optimization X fe(+) fe(x¢)

Notation: e; € R¥ is the one-hot vector, with i-th entry being 1.

Caveat: the feasible domain of MAB is actually not convex.

(simplex is the convex hull of {e;,

...,eK})

Advanced Optimization (Fall 2024)
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Comparison

Full-Information Problem

Domain | Loss Functions Feedback
Prediction with Experts” Advice Ay fi(pt) = (Le, Pr) fe(pe), £
Online Convex Optimization X fe(+) fr(xe), Vfi(xt),...
Bandit Problem Domain Loss Functions Feedback
Multi-Armed Bandits {e1,...,ex} | fi(eq,) = (br,eq,) | fi(eq,) =Via,
Bandit Convex Optimization X fe(+) fe(x¢)

Notation: e; € R¥ is the one-hot vector, with i-th entry being 1.

Caveat: the feasible domain of MAB is actually not convex.

(simplex is the convex hull of {e;,

...,eK})
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A Natural Solution for MAB

* MAB bares much similarity with the PEA problem (except for
the amount feedback information).

> Deploying Hedge to MAB problem.

Hedge for PEA
Ateachroundt=1,2,---
(1) compute p, € Ak such that p;; o exp (—nL:—1 ;) fori € [K]
(2) the player submits p,, suffers loss (p,, £;), and observes loss £; € R®
(3) update Ly = L,_; + ¢,
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A Natural Solution for MAB

* However, Hedge does not fit for MAB setting due to limited feedback.

Hedge requires ¢, ; for all i € K|, but only ¢, ,, is available in MAB.

Hedge for PEA
Ateachround ¢t =1,2,---
(1) compute p, € Ak such that p; ; < exp (—nL;—1 ;) forv € [K|
(2) the player submits p,, suffers loss (p,, £;), and observes loss £, € R®
(3) update Ly = L,_; + ¢,
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Reduction of MAB to PEA

* Given the similarity of MAB and PEA, can we realize the reduction?

A ~ Py

p
MAB <: QQQ <:t: Hedge
bl
rroblem :> reduction |:A:> for PEA

gt,at 'et

e p; € Ak denotes the distribution over arms, and sample an arm a; ~ p;

o ; € RE is the estimated loss fed to Hedge

T T

by reduction
> Regret gMAB Y 8 RegretPEA Z pt,Et Z
t=1 t=1
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Reduction of MAB to PEA

at ~ Pt Pt
MAB — Qé? (—— Hedge
bl
froblem :> reduction |:> for PEA

gt,at

* Importance-Weighted (IW) Loss Estimator

Define £, € RX for all a € [K],

( lia,
~ Ut a, Pras if a = ay;
gt,a: ﬂ{CLZCLt}:< ’

Pt,a 0 else.
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[.oss Estimator

~ Ut a ﬁt’at if a = ay;
IW Loss Estimator /¢, , = ——"1{a=a;}=¢ "
Pt.a 0 else.
e Property 1. /{;,, = (pt,ft>
o Property 2. E,,~p, [Zta] = Vi 4, Va € [K] unbiasedness

. b bi.a
Prooﬁ Eatht [Et,a] = Eatht [ptt’ t ]l {CL = at}] = Eatht [pi’ ]l {a — a/t}]
b tra
— t_’Eatht [IL {CL — at}] = — Dt,a = gt,a- L]
t,a

t,a

22
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Exp3: Algorithm

Exp3 (Exponential-weight for Exploration and Exploitation)

Ateachroundt=1,2,---
(1) compute p, € Ak such that p; ; o< exp (_nzt—l,a> for a € K]

(2) chooses a; ~ p,, sutfers and observe loss ¢; ,,, and construct loss
estimator #; € R” as

e .
- Lt.a pi, - ita=ay
YWt g
gt,a: Il{a:at}:<
Pt,a | 0 else.

(3) update IA;t = IA;t_l -+ Zt

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits
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Other Choice

MAB

at ~ Pt

Problem
>

et,at

e Other estimators coming to mind,

AN

Et:[O,...

::> <pt72t> = pt,atft,at +

N——

loss for Hedge

D:
OQQ <: Hedge
for PEA
reduction |$:>
t
—
707 ét,at 707"'70]
N~
at-th entry
gt a cannot apply Hedge
, t PPy &
loss for MAB

Advanced Optimization (Fall 2024)
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Importance-Weighted Loss Estimator

A ~ Py

D: Dt
MAB (—— QQG {—— Hedge
bl
rroblem ::> reduction |:A:> for PEA

gt,at ’et

e Importance weighting estimator,

lt,a
¢, =10,...,0, =2 0,...,0]"
pt,at
N——
at-th entry

:> balancing exploitation ¢; ,, and exploration py g,
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Exp3: Regret Bound

Theorem 1. Suppose that ¥t € [T] and a € [K|,0 </l , <1, then Exp3 with
learning rate n = \/(In K) /(T K) guarantees

E[Regret| =
=1

th, t} — min - Ut q <(9(\/TKlogK>,

where the expectation is taken over the randomness of the algorithm.

Comparision:
Hedge for PEA Exp3 for MAB
full-information feedback bandit feedback
Regret; < O(y/Tlog K) E[Regret;] < O(/TK log K) ai;’,{fj(g:efggsge
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Proof of Exp3 Regret Bound

Proof.

Recall that (Lecture 6, OMD), Hedge under PEA setting guarantees,

T
> (pe b)) — Zemsm—szzpta(zm) Va € [K]
t=1

t=1 a=1

Note that our previous reduction ensures ¢; ,, = (p:, Zt>,

! LR In K
Zlgt’at —Zlgt,a, < — +Uzzpta ( ta,)
t=— t—

t=1 a=1

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits
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Proof of Exp3 Regret Bound
Proof. iﬁt,at—i@aﬁm—KJrnZme(&a)

t=1 a=1

We have the following upper bound for the variance,

7 2 gt a ?
EatNPt [(gt,a) ] — ]Eatht <p; t> ]l{a — at} —

- (Zt’a>2EatNPt [1{a =a;}] = (gt,a)2.

pt,a t,a

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits
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Proof of Exp3 Regret Bound
Proof. iﬁt,at—i@aﬁm—KJrnZme(&a)

t=1 a=1

By the Law of total expectation and the above inequality,

T T R T R T
E[Y tia - Zzt,a} =S BB |t~ la|| = Y EEla] - 4,
t=1 t=1 t=1 t=1

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits
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Proof of Exp3 Regret Bound

T T
Proof. zet,at} S
t=1 t=1
T K
In K N2
< — +UZZE [Et [pt,a : (ft,a) ”
l t=1 a=1
T K 2
In K by a
= — 7 Pt,a - —
IR Ly
T K
In K
==t 2 e
l t=1 a=1
In K
< 22 L TK < O(VTK log K) -
Ui
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Lower Bound for MAB

* As above, we have proved the regret upper bound for Exp3:

E [Regret,] < O (\/TK log K)

* Can we further improve the regret bound?

It turns out that Exp3 doesn’t achieve minimax optimal regret for MAB.

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits
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Lower Bound for MAB

Theorem 2 (Lower Bound for MAB). For any algorithm A, there exists a se-
quence of loss vectors €1, £z, - - - | €1 constituing an MAB problem such that

inf sup E [Regret;] = Q(VTK)

A ‘el )OO0 ,ET
Lower bound of PEA
* As above, we have proved the regret bound for Hedge:
et = 2 MAB Problem Q(vTK)
 Anatural question: can we further improve the bound?
Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that PEA PrOblem Q ( \/T log K)
sup max eeretr o 1
T,}v)el ..... er /TInN ~ 2

Hedge achieves minimax optimal regret (up to a constant of 2v/2) for PEA.

Advance d Optimization (Fall 2024) Lecture 6. Online Mirror Descent 17
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Proof Sketch

Proof (Sketch).

We prove the theorem under stochastic MAB setting, since the stochastic setting
is strictly easier than the adversarial one.

We construct two hard distributions over arms D7, D, and show that,
VA € A, the following holds

max {E[RegretT (A); Dy, E[Regretr(A); Dz]} = Q(VTK) Adversarial
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Upper and Lower Bounds for MAB

Theorem 1 (Upper Bound for Exp3). Suppose that ¥t € [T| and a € K],
0 < 4yo < 1, then Exp3 with learning rate n = \/(In K) /(T K) guarantees

E[Regret,| =
=1

Z€t> t} — min 3 Ut q SO(\/TKlogK)

where the expectation is taken over the randommness of the algorithm.

Theorem 2 (Lower Bound for MAB). For any algorithm A, there exists a se-
quence of loss vectors €1, £z, - - - | €1 constituing an MAB problem such that

1ij sup E[Regret;| = Q(VTK).
1,07
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Advanced Topics

 How to shave off the extra /log K factor?

Using OMD with Tsallis entropy regularizer, also using the IW estimator
& py reg &
1— 25:1 pg

1—p

which is actually a generalization of negative-entropy used in Hedge, as we
have the following fact due to the L'Hopital srule

Y(p) =

1 — B
lim Z p Zpa In(pg)-

Reference: Jean-Yves Audibert and Sebastien Bubeck. Regret bounds and minimax policies
under partial monitoring. Journal of Machine Learning Research, 11(Oct):2785-2836, 2010.
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Advanced Topics

* How to boost from expected guarantee to a high-probability one?

> Using an improved estimator: Implicit eXploration (IX) Loss Estimator

IX Loss Estimator

le.a : _
o A~ gt a Dy L ].f a = at,
IW Loss Estimator bog=221{a=aq;}=¢ "=
Pt.a 0 else.
lt a, o
Dty +7 if A = A,

) gt a
Et,a: el ]l{a:at}:<
Pta T 7 0 else.

\

Reference: Gergely Neu. Explore no more: Improved high-probability
regret bounds for non-stochastic bandits. NIPS 2015.

36
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https://arxiv.org/pdf/1506.03271.pdf

SIAM J. COMPUT. © 2002 Society for Industrial and Applied Mathematics
Vol. 32, No. 1, pp. 48-77

THE NONSTOCHASTIC MULTIARMED BANDIT PROBLEM*

PETER AUER', NICOLO CESA-BIANCHI!, YOAV FREUNDS!, AND
ROBERT E. SCHAPIREY

Abstract. In the multiarmed bandit problem, a gambler must decide which arm of K non-
identical slot machines to play in a sequence of trials so as to maximize his reward. This classical
problem has received much attention because of the simple model it provides of the trade-off between
exploration (trying out each arm to find the best one) and exploitation (playing the arm believed to
give the best payoff). Past solutions for the bandit problem have almost always relied on assumptions
about the statistics of the slot machines.

In this work, we make no statistical assumptions whatsoever about the nature of the process
generating the payoffs of the slot machines. We give a solution to the bandit problem in which an
adversary, rather than a well-behaved stochastic process, has complete control over the payoffs. In
a sequence of T' plays, we prove that the per-round payoff of our algorithm approaches that of the
best arm at the rate O(T~1/2). We show by a matching lower bound that this is the best possible.

‘We also prove that our algorithm approaches the per-round payoff of any set of strategies at a
similar rate: if the best strategy is chosen from a pool of N strategies, then our algorithm approaches
the per-round payoff of the strategy at the rate O((log N)1/2T~1/2). Finally, we apply our results to
the problem of playing an unknown repeated matrix game. We show that our algorithm approaches
the minimax payoff of the unknown game at the rate O(T~1/2).

Key words. adversarial bandit problem, unknown matrix games
AMS subject classifications. 68Q32, 68T05, 91A20

PII. S0097539701398375

1. Introduction. In the multiarmed bandit problem. originally proposed by
Robbins [17], a gambler must choose which of A~ slot machines to play. At each time
step, he pulls the arm of one of the machines and receives a reward or payoff (possibly
zero or negative). The gambler’s purpose is to maximize his return, i.e.. the sum of
the rewards he receives over a sequence of pulls. In this model, each arm is assumed to
deliver rewards that are independently drawn from a fixed and unknown distribution.
As reward distributions differ from arm to arm. the goal is to find the arm with the
highest expected payoff as early as possible and then to keep gambling using that best
arm.

The problem is a paradigmatic example of the trade-off between exploration and
exploitation. On the one hand, if the gambler plays exclusively on the machine that
he thinks is best (“exploitation”), he may fail to discover that one of the other arms
actually has a higher expected payoff. On the other hand, if he spends too much time

*Received by the editors November 18, 2001; accepted for publication (in revised form) July 7,
2002; published electronically November 19, 2002. An early extended abstract of this paper appeared
in Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995, IEEE
Computer Society, pp. 322 331.

http://www.siam.org/journals/sicomp/32-1/39837.html

TInstitute for Theoretical Computer Science, Graz University of Technology, A-8010 Graz, Austria
(pauer@igi.tu-graz.ac.at). This author gratefully acknowledges the support of ESPRIT Working
Group EP 27150, Neural and Computational Learning IT (NeuroCOLT II).

#Department of Information Technology, University of Milan, [-26013 Crema, Italy (cesa-bianchi@
dti.unimi.it). This author gratefully acknowledges the support of ESPRIT Working Group EP 27150,
Neural and Computational Learning IT (NeuroCOLT II).

SBanter Inc. and Hebrew University, Jerusalem, Israel (yoavf@cs.huji.ac.il).

JAT&T Labs - Research, Shannon Laboratory, Florham Park, NJ 07932-0071 (schapire@research.
att.com).

48

The non-stochastic multi-armed bandit problem*

Peter Auer
Institute for Theoretical Computer Science
Graz University of Technology
A-8010 Graz (Austria)
pauer@igi.tu-graz.ac.at

Nicolo Cesa-Bianchi Yoav Freund Robert E. Schapire
Department of Computer Science AT&T Labs
Universita di Milano 180 Park Avenue
[-20135 Milano (Italy) Florham Park, NJ 07932-0971
cesabian @dsi.unimi.it {yoav, schapire } @research.att.com

November 18, 2001

Finite-time analysis of the multiarmed bandit problem 8565 2002
P Auer, N Cesa-Bianchi, P Fischer
Machine learning 47 (2), 235-256

The nonstochastic multiarmed bandit problem 3179 2003
P Auer, N Cesa-Bianchi, Y Freund, RE Schapire
SIAM Journal on Computing 32 (1), 48-77

Using confidence bounds for exploitation-exploration trade-offs 2420 2002
P Auer
Journal of Machine Learning Research 3 (Nov), 397-422

*
Near-optimal regret bounds for reinforcement learning 1606 2010
T Jaksch, R Ortner, P Auer
The Journal of Machine Learning Research 11, 1563-1600
Gambling in a rigged casino: The adversarial multi-armed bandit problem 1209 1995

P Auer, N Cesa-Bianchi, Y Freund, RE Schapire
Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium ...

The Nonstochastic Multiarmed Bandit Problem.
SIAM Journal on Computing (SICOMP). 2002.

Advanced Optimization (Fall 2024)

Lecture 10. Adversarial Bandits

37



https://epubs.siam.org/doi/10.1137/S0097539701398375

Part 3. Bandit Convex Optimization

* Problem Formulation
 Gradient Estimator
 Bandit Gradient Descent

* Regret Analysis

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits
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Bandit Convex Optimization

* One of the most general forms for bandits, hence very fundamental.

Full-Information Problem Domain | Loss Functions Feedback
Prediction with Experts” Advice Ay fi(pt) = (be, Pr) fe(pe), £
Online Convex Optimization X fe(+) fr(xe), Vfi(xt),...
Bandit Problem Domain Loss Functions Feedback
Multi-Armed Bandits {e1,...,ex} | fi(eq,) = (bi,eq,) | fi(eq,) =Lia,
Bandit Convex Optimization X fe(+) fe(x¢)
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Formulation

Ateachroundt=1,2,---
(1) the player first picks a model x; from a convex set X C R¢;

(2) and environments pick an online convex function f; : X — R;

(3) the player suffers loss f;(x;), observes loss value only to update the model.

Goal: to optimize expected regret,

E[Regret,| =

th Xt:| —mlﬂth

where the expectation is taken over the randomness of algorithms.
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A Natural Solution for BCO

* BCO bares much similarity with the OCO problem.

> Deploying OGD to BCO problem.

Online Gradient Descent
Ateachroundt=1,2,---

Xi+1 = Iy [x¢ =V fi(xe)],

where Iy [-] denotes the projection onto the feasible domain X'

However, we don’t have the gradient information due to the limited feedback.

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits
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Gradient Estimator

* Construct the final decision via the perturbation technique.

X; = yi + 08y

where s; is sampled from unit sphere S = {x € R¢ | ||x|]2 = 1}.

Definition 1 (Gradient Estimator). The gradient estimator is defined as

N d
gt = gft(}’t + 0s¢) - 8¢

with s; sampled from the unit sphere S = {x € R? | ||x]||2 = 1}.
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Gradient Estimator

Lemma 1 For any convex (but not necessarily differentiable) function f : X — R,
define its smoothed version f°(x) = Eycp[f(x + 6v)]. Then for any § > 0, we have

d

Eses [gf(XJr 0s) - S] =V (x),

where B = {x € R¢ | ||x||s < 1} is the unit ball and S = {x € R¢ | ||x]||2 = 1} is the
unit sphere.

e Consider the 1-dim case (d = 1).
E d 0 _E 0 ! 0 \
s€S gf(X+ S) s —2—5f($+ )—2—5f($— ) _—
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Gradient Estimator

Lemma 1 For any convex (but not necessarily differentiable) function f : X — R,
define its smoothed version f°(x) = Eycp[f(x + 6v)]. Then for any § > 0, we have

d

Eses [gf(XJr 0s) - S] =V (x),

where B = {x € R¢ | ||x||s < 1} is the unit ball and S = {x € R¢ | ||x]||2 = 1} is the
unit sphere.

e General d-dim case.

Non-trivial, can be proved by Stokes equation.

See [Flaxman et al., SODA’05; Proof of Lemma 2.1].
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Bandit Gradient Descent

* BGD: deploying OGD to BCO problem using the gradient estimator.

Ateachroundt=1,2,---
(1) sample a unit vector s; € S;
(2) submit x; = y; + dsy;
(3) receive feedback f;(x;);
(4) construct gradient estimator g; = % fe(ye + 0s¢) - s¢;
) yi+1 = Ha—_a)xly: — 18-
where (1 —a)X = {x e R¢ | L-x € X}.

1l—«

Note that the gradient estimator satisfies E|g;| = fo(yt), with f2(x) = Even|fi(x + 6v)].
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Bandit Gradient Descent

Theorem 3 Suppose the online function f, : X — Ris G-Lipschitz, maxxex | fi(x)] <
C,andr-B C X C R - B. For the oblivious adversary setting, BGD enjoys

T
R ndQC’QT L
E th(m)—gg(lz]% <ot o +3GST + aGRT = O(d=T7),

the last step holds by setting the step size n = O((R?/T)3/*), the pertubation param-
eter 6 = n'/3 and the shrink parameter oo = 6 /7.
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Proof of BGD Vet = _axlye — 18], E&] = V(v

smoothed function ff(x) = Even|fi(x + 0V)]

)

Proof. For a fixed comparator u € X (i.e., it depends on fi,--- , fr but won’t depend
on the algorithmic outputs), we can decompose the regret as follows:

+E

th Xt) — [t }’t]

\ . 4

TERM (A) TERM (B)

u) | +E

S A1 = a)u) - ft(u)]

A\ 7 \ . 7 \ . 7

TERM (C) TERM (D) TERM (E)
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Proof of BGD

Lemma 2 (smoothing error) Suppose f : R? — R is G-Lipschitz, and its smoothed
version f°(x) = Eyep|f(x + dv)] satisfies that for any x € RY,

o(x)— f(x)| <G-6.

Proof. |f°(x) — f(x)| =Eyes

TERM(C) - K th }’t Yt
| t=1

Mé

TERM(D) : E

| =1

<TG

1—04 — fi((1 = @)u)

— f(x)] < Ever [GloV]]2] < GS. O

<TG

Note: the feasile domain of f? needs to
be within (1 — a)X for a proper a.
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Proof of BGD

Proof. Further exploiting the G-Lipschitzness of f;, we can bound term (B) and
term (E) as follows.

T T
TERM(B th X¢) = fr(ye)| < E ZGHXt —yil2| <E ZG(sHStHQ < GoT
t=1 t=1
T T T
TERM(E) : E [) fi((1—a)u) — fi(u)| <E|Y Gl(1-a)u—ulz| <E|) Galul| < GRaT
t=1 t=1 t=1
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Proof of BGD

Proof. Therefore, it suffices to further bound TERM(A).

T T T
E[) ft(xt)] = few) SE Y F(ye) = F((1 - a)u) |[+3GT + GRaT
t=1 t=1 < t=1 |
TERT\Z(A)
Define h;(x) £ f2(x) + & x, & =& — VI (yt) o
E[h(x)]=E | f? +E[¢& x
e [t is obvious that Vht (Yt) = gt [ t( )] ¢ ): '€t ]
. —FE|f° E [E[¢] .
o for any fixed x € X, we have E[h;(x)] = E[f? (x)] K ): FE[RE xy1- oyl
=E | (x) +E:E[£t|Y1a---7Yt]TX]
~E [0
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Proof of BGD

Proof. Therefore, it suffices to further bound TERM(A).

T
E > R ye) = F((1 = a)u) | +3GOT + GRaT

th(xt)] - fi(w) <|E

TERM(A)

Define hy(x) 2 f3(x) + &/ x, & =8 — VI3 (y:)
e It is obvious that Vht (Yt) = gt by ].’lOti].’lg that E[ﬁt | Yt] — 0
e for any fixed x € X, we have E[h;(x)] = E[f? (x)] thus E[¢]y, | vi] = 0

e moreover, we have E[h,(y:)] = E[f? (y:)] so we have E[¢," y,] = 0
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Proof of BGD

Proof.  Term(A): E |> [ (y) — 7 ((1 - a)u)

th yt) ((1 —a)u)]

Since Vh;(y:) = 8, {y:}{_, can be regarded as performing OGD on {h;}{_; over (1 — a)X.

Theorem 4 (Regret of OGD) Suppose {h;}1_, are convex func- |::> |Vhe(x¢) ]2 = ||8¢|2
tions, the feasible set X is closed and convex, Vx,y € X, ||x — d

V2 < R and Vx € X,||Vhi(x)|| < G. The OGD algorithm = Hgft()% + 08¢) - 8y
with fixed step size 1 satisfies that foranyu € X, t € [T :

2

_dC
T T T
R2 G?
th(yt Z (1 — ) — + —nT 2 d202T
=1 =1 277 2 > TERM(A < nd’C

2n 262
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Proof of BGD

Proof. To summarize, we have the following expected regret upper bound:

E|> filx)| =) fi(w)

= TERM(A) 4+ TERM(B) + TERM(C) + TERM(D) + TERM(E)

2 d2 2T
< O T v oGRT
277 252 » _%
n— (dCG)
— 2 262

r

gO( RdCéT%) WithééSG—F%. [] 0= (
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Part 4. BCO with Smooth Functions

* Problem Formulation
 Gradient Estimator
e Self-concordant Barrier

* Regret Analysis
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BCO with Smooth Functions

Definition 2 (Smooth). Let f be an L-smooth function over a given convex set
X. Then for any x,y € X

F(¥) < 700+ VI Ty = %) + 5 ly —x]”

f(x) +(Vf(x),y —x) + 5lx —yl3

f(y)

\
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Exploration

isotropy exploration strategy anisotropy exploration strategy

Xt =yt + 0S¢ Xt =Yyt + 05:s¢
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An Anisotropy Exploration

* We use several key tools in convex geometry and analysis, including
the self-concordant barrier (formally defined later), Dikin ellipsoid

Fact 1. Let R be a self-concordant barrier on the closed convex set X C R<.

For every x € int(X), the unit Dikin ellipsoid defined as

E1(x) £ {€ eR?| [|€ — x|lver) < 1},

is completely contained in X.
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An Anisotropy Exploration

* Exploration using local norm with Dikin ellipsoid.

Xt =Yyt + 058

Bf = [V*R(y.)]™

Analys is: Anisotropy exploration strategy
T 5 §: magnitude, B;: direction
|x¢ — YtHV2R(yt) — 5\/St BiV?R(yt)Bisy < 1,

and recall in Lemma 2, we know & (x) = {€ € R? | [|€ — x||verx) < 1} C X,

so it has guaranteed the feasibility of x; within X’
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FTRL with Self-Concordant Barrier

Input: a v-self-concordant barrier R associated with the feasible domain X

Ateachroundt=1,2,---
(1) define B? = V °R(y;)
(2) sample a unit vector s; € S;
(3) submit x; = y; + 08;sy;
(4) receive feedback f;(x:);
(5) construct gradient estimator g; = ¢ f,(y; + 6B;s¢) - B, 'sy;
(6) FTRL update
t
yi+1 = arg min {Z@t, X) + ;R(X)} .

xeX

s=1
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Invent the algorithm from the analysis

* We focus on the FTRL framework (OMD can be similarly obtained).

Theorem 4 (FTRL Regret) Consider the FTRL update x; = arg min, . 5 F;(x)
with Fy(x) £ (x) + 13" (g,, x). Then, forany u € X

T T T

u) — X
E gtaxt E <gt7 E gtaxt_Xt+1 _|_¢( ) nw( 1)-
t=1 t=1 =1

(g _y N ' _y
V V

stability term range term

We will choose the regularizer ¢/(x) as a self-concordant barrier R : X — R.
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Invent the algorithm from the analysis

FTRL update: y; = arg min, .y {R(x) + 7 22;11 (g5, %) }

Z<gt’Yt> B Z<gtvu> < Z<gt7Yt — Yit1) —I—w(u) — vy

stability term range term

When using barrier functions as the regularizer

e Stability term: need suitable local norm

[—> Newton decrement, suitable gradient estimator

e Range term: ¢)(u) could be infinite
I:> shifting comparators, controlling the shifting cost
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Stability Term and Newton Decrement

FIRL update: y; = arg min, .y {R(X) +7n 22;11 (gs, X>}
T T T
Z<gt7Yt> — Z<gt,u> < Z<gt7Yt _ Yt+1> +¢(u) - ¢(Y1)

stability term range term

Fact 2. Let R be a self-concordant function on X and x* be its minimizer. For
every x € X, if its Newton decrement Ag(x) = |VR(X)||v-2rx) < 1/2, then

we have ||x — x*||verx) < 2AR(X).

Netwon decrement vanishes exactly at the (unique, if any) minimizer x* of f onint(X),
and this function can be considered as an “observable” measure of proximity of x to x*.
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Stability Term and Newton Decrement

Fact 2. Let R be a self-concordant function on X and x* be its minimizer. For
every x € X, if its Newton decrement Ag(x) = |VR(X)||v-2rx) < 1/2, then

we have ||x — x*||verx) < 2AR(X).

FTRL update: y; = arg min, .y F;(x) = {R(x) + 17 Zz;ll (gs,%) }

Analysis: Mg, ., (y:) = HVR(yt) +7n Zizl g = N8t v-—2Rr(y,)

V72R(y¢)

If )\Ft—f—l (Yt) < %/ we have HYt_Yt—l—luszt(yt) < 2)\Ft+1 (Yt) — 277HgtHV_2R(y2t)'

:> (86, ¥t — ¥Yig1) < Hgtuv—27€(yt)HYt - Yt+1HV2R(Yt) < 277Hg’5H2V‘273(yt)
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Range Term and Shifting Cost

FTRL update: y; = arg min, .y {R(x) + 7 22;11 (g5, %) }

T T T
Z<gt’xt> o Z<gt7 Z g, Xt — Xt—1—1 —|—w(u) _ w(xl)
t=1 t—=1 —1

U

(g _y N ' _/
V v

stability term range term

Fact 3. If R is a v-self-concordant barrier on X, then for any x,y € int(X'), we
have R(y)—R(x) < vlog 1_77126(},), where my(y) = inf{t > 0| x+t71(y—x) €
X'} is called the Minkowski function of X with respect to x, which is always in
0, 1]. Moreover, as 'y approaches to 0X, mx(y) — 0.
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Range Term and Shifting Cost

Analysis: For comparator u € X, we shift itas u = 1%reu + 1;

x1 for some € > 0.

Then, Fact 3 ensures R(1) — R(x1) <vln (L +1).

R(y) —R(x) < vlog 1_7T1X(y),with m(y) =inf{t >0 | x+t71(y—x) e X}

Lete = —, then R(0) — R(x1) <vInT and |ju— 1|z < % R(x)

T T T T T
Z(gu}’t> - Z<gt, u) = Z<gta}’t> - Z<gt7 u) + Z<gt7 u-—u)
t=1 t=1 t=1 t=1 t=1
d vlogT
<2 gy 2rx) + +o0(1) L
; VOREO ju= e <
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FTRL with Self-Concordant Barrier

* Putting above components together yields the following results.

Theorem 5 (Regret Bound for FIRL). Assume R is a v-self-concordant barrier on X, if
we run FTRL algorithm over the online functions { f1, ..., fr} and obtains

y: = arg min {R(X) + nz<gt,x>}

xeX

with gradient estimates E|g;] = Vh.(y:), then it holds that for any u € X,

vlogT

T
< T 2 ) [levan | + OO
t=1
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Gradient Estimator

Definition 4 (Gradient Estimator). The gradient estimator is defined as
= é 5 —1 2 —2
8t = 5ft(}’t + 0Byst) - By sy, By = V7"R(yt),

where s; is sampled from unit sphere S = {x € R? | ||x||> = 1}.

Eycpa|fi(x + 0Byv)]. Then for any § > 0, we have

- d
Elg:] = Eges gft(xt + 0 Bysy) - Bt St Vft (x¢),

where B = {x € R? | ||x||2 < 1} is the unit ball and S is the unit sphere.

Lemma 3 For any convex function f, : X — R, define its smoothed version ﬁ(x) —
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Gradient Estimator

Definition 4 (Gradient Estimator). The gradient estimator is defined as
5, = 0Bysy) - By Bf =V°R
8t — 5ft(Yt =+ tst) "Dy S, t — (Yt)a

where s; is sampled from unit sphere S = {x € R? | ||x||> = 1}.

Lemma 4 (Gradient Local Norm) The elliptical graident estimator satisfies

2 d2C?
< .

- d _
Hgt‘|2v—27z(yt) — Hgft(Yt + 0B;st) - By tsy
V2R(y+)

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits

68



FTRL with Self-Concordant Barrier

Input: a v-self-concordant barrier R associated with the feasible domain X

Ateachroundt=1,2,---
(1) define B? = V™ ?R(y;)
(2) sample a unit vector s; € S;
(3) submit x; = y; + 0 B;sy;
(4) receive feedback f;(x:);
(5) construct gradient estimator g; = ¢ f(y; + 6B:st) - By 'sy;
(6) FTRL update
t
yi+1 = arg min {Z@t, X) + ;R(X)} .

xeX

s=1
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FTRL with Self-Concordant Barrier

Theorem 6 Suppose the online function f; : X +— R is L-smooth, maxxcx | ft(x)| <
C, and for any x1,x2 € X, ||x1 —X3||2 < D. Then, FTRL with a self-concordant barrier
algorithm satisfies

T
E th(xt:| th <0 (VIOgT-I-gZ—I—CSQ)
t=1

Ui
:O(T (1ogT)%)

where the last step holds by setting the step size n = O((log T/T)?/3) and the perturba-
tion parameter 6 = n*/4,

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits 70



Proof Sketch

" T T
E ) filx)| =) fi(u)
L t=1 t=1
C T 1 C T
=k th(xt)_ft(ﬁ) + k th(ﬁ)_ft(u)]
| t=1 ] =1
T T T R T
<|E t(yt) = fe(@) | |[HE t&ﬂ—ﬁWO*ﬁlz:Am—ﬁﬁi
L=t ] Li=1 =il
« -~ VN y
o vlogll | 5% < LD&2T
== 52
Regret of FTRL with Smoothness introduces an additional

Self-concordant barrier

L |16 B;s¢||?, which improves 4 to 62

T
+0+E | ) fi(u) - ft(u)]
t=1
N Y
<L

Comparator shifting causes

additional constant
T A (C LD
L=(5+%)
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Self-Concordant Functions/Barriers

Fact 1. Let R be a self-concordant barrier on the closed convex set X C RY. For every
x € int(X), the unit Dikin ellipsoid defined as £, (x) = {&€ € R? | [|€ — x||verx) < 1}
is completely contained in X.

Fact 2. Let R be a self-concordant function on X and x* be its minimizer. For every
x € X, if its Newton decrement Ag(x) = |[VR(X)|v-2rx) < 1/2, then we have

Ix = x*|[verx) < 2Ar(X).

Fact 3. If R is a v-self-concordant barrier on X, then for any x,y € int(X’), we have
R(y) — R(x) < vlog 1_7T1X(y), where mx(y) = inf{t >0 | x+t" 1y —x) € X}
is called the Minkowski function of X with respect to x, which is always in [0, 1].
Moreover, as y approaches to 0X, mx(y) — 0.
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Self-Concordant Functions

Definition 3 (Self-Concordant Functions). Let X C R be a closed convex domain
with a nonempty interior int(&Xx’). A function R : int(X’) — R is called self-concordant
on X if

(i) R is a three times continuously differentiable convex function, and approaches
infinity along any sequence of points approaching 0X’; and

(ii) R satisfies the differential inequality: for every h € R? and x € int(X),

(V] [dV)

|D*R(x)[h, h,h]| < 2(D*R(x)[h, h])?,

where the third-order differential is defined as

83

D3 h.h.,h] £
R(x)[h, b, b] £ = R

X —|— tlh —|— tQh —|— tgh)

t1=to—=t5=0
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Self-Concordant Barrier

Definition 4 (v-Self-Concordant Barrier). Given a real v > 1, R is called a v-self-
concordant barrier (v-SCB) for X if R is self-concordant on X and, in addition, for
every h € R? and x € int(X),

IDR(x)[h]| < v (D*R(x)[h, h])Z.

The notion of self-concordant barrier is defined based on the notion of self-concordant
function. Thus, a self-concordant function is not necessarily a self-concordant barrier.

The self-concordant barrier is associated with the (convex) feasible domain.

Example 1. The function f(x) = constant is a 0-self-concordant barrier for R<.

Example 2. The function f(x) = —Inx is a 1-self-concordant barrier for the
non-negative half-axis.

Advanced Optimization (Fall 2024) Lecture 10. Adversarial Bandits 74



Self-Concordant Barrier

Definition 4 (v-Self-Concordant Barrier). Given a real v > 1, R is called a v-self-
concordant barrier (v-SCB) for X if R is self-concordant on X and, in addition, for

every h € R? and x € int(X),

IDR(x)[h]| < v (D*R(x)[h, h])Z.

2.5 Universal barrier

In this section, we demonstrate that an arbitrary n-dimensional closed convex
domain admits an O(n)-self-concordant barrier. This barrier is given by cer-
tain universal construction and, for this reason, will be called universal. In
fact, the universal barrier usually is too complicated to be used in interior-
point algorithms, so that what follows should be regarded as nothing but an
existence theorem. At the same time, this existence theorem is very important
theoretically, since it means that the approach we are developing in principle
can be applied to any convex problem.
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History bits: Self-Concordant Barrier

Definition 3 (Self-Concordant Functions). Let X C R¢ be a closed convex do-
main with a nonempty interior int(&x’). A function R : int(X) — R is called
self-concordant on X’ if

(i) R is a three times continuously differentiable convex function, and ap-
proaches infinity along any sequence of points approaching 0.X’;

(ii) R satisfies the differential inequality: for every h € R? and x € int(X),

Interior-Point Polynomial
Algorithms in Convex
Programming

|D*R(x)[h, h, h]| < 2 (D*R(x)[h,h])? ,

where the third-order differential is defined as

83 Yurii Nesterov

D3R(x h,h,h L& R (x+tih+th+tsh . Arkadii Nemirovskii
(x)] ] 01, 06,00 (x +t1h + t2h + ¢3h) e

At the same time, Nesterov and Nemirovski were investigating the new
methods from a more fundamental viewpoint: what are the basic proper-
ties that lead to polynomial-time complexity? It turned out that the key
property is that the barrier function should be self-concordant. This seemed
to provide a clear, complexity-based criterion to delineate the class of opti-
mization problems that could be solved in a provably efficient way using the
new methods. The culmination of this work was the book (Nesterov and
Nemirovski 1994), whose complexity emphasis contrasted with the classic
text on barrier methods by Fiacco and McCormick (1968).

Arkadi S. Nemirovski and Michael J. Todd, Interior-point Yurii Nesterov and Arkadi S. Nemirovski, Interior Point
methods for optimization, Acta Numerica, 2008 Polynomial Methods in Convex Programming, SIAM, 1994.
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Beyond

e Can we further improve the dependence on 77

> If loss function is linear, then using FTRL with self-concordant barrier on X

E ift(xt)} — mmet ) < O (T1/2)

> If loss function is strongly convex and smooth, then using FTRL with self-
concordant barrier on X
o(r)

| /\

T
E g ft(xt)} — mm g fe(x
t=1
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Online convex optimization in the bandit setting:

eradient descent without a gradient

Abraham D. Flaxman * Adam Tauman Kalai f H. Brendan McMahan *

November 30, 2004

Abstract

We study a general online convex optimization problem.
‘We have a convex set S and an unknown sequence of cost
functions e1, ¢z, . .., and in each period, we choose a feasible
point z; in S, and learn the cost ¢ (a¢). If the function ¢, is
also revealed after each period then, as Zinkevich shows in
[25], gradient descent can be used on these functions to get
regret bounds of O(y/n). That is, after n rounds, the total
cost_incurred will be O(y/n) more than the cost of the best
single feasible decision chosen with the benefit of hindsight,
ming Y- ().

‘We extend this to the “bandit” setting, where, in each
period, only the cost ci(z¢) is revealed, and bound the
expected regret as O(n*/1).

Our approach uses a simple approximation of the gradi-
ent that is computed from evaluating ¢; at a single (random)
point. We show that this biased estimate is sufficient to ap-
proximate gradient descent on the sequence of functions. In
other words, it is possible to use gradient descent without
seeing anything more than the value of the functions at a
single point. The guarantees hold even in the most general
case: online against an adaptive adversary.

For the online linear optimization problem [15], algo-
rithms with low regrets in the bandit setting have recently
been given against oblivious [1] and adaptive adversaries
[19]. In contrast to these algorithms, which distinguish be-

tween explicit ezplore and exploit periods, our algorithm can
be interpreted as doing a small amount of exploration in
each period.

1 Introduction

Consider three optimization settings where one would
like to minimize a convex function (equivalently maxi-
mize a concave function). In all three settings, gradient
descent is one of the most popular methods.

1. Offline: Minimize a fixed convex cost function
c: R — R. In this case, gradient descent is
Tep1 =z —Ve(ae).

" "http://www.math.cmu.edu/~adf, Department of Mathemati-
cal Sciences, Carnegie Mellon University.
Thttp://people.cs.uchicago.edu/ kalai, Toyota Technical Insti-
tute at Chicago.
*http://www.cs.cmu.edu/ memahan, Department of Com-
puter Science, Carnegie Mellon University.

2. Stochastic: Minimize a fixed convex cost function
c given only “noisy” access to ¢. For example,
at time T = t, we may only have access to
c(x) = c(x) + e(z), where €(z) is a random
sampling error. Here, stochastic gradient descent
is @41 = @ — nVe(x). (The intuition is that
the expected gradient is correct; E[Ve (z)] =
VEl[ci(z)] = Ve(z).) In non-convex cases, the
additional randomness may actually help avoid
local minima [3], in a manner similar to Simulated
Annealing [13].

Lad

Online: Minimize an adversarially generated se-
quence of convex functions, ci,ca,.... This re-
quires that we choose a sequence x1,x2, where
each z; is selected based only on zq,z2,..., 21
and ¢, ¢9,...,¢,—1. The goals is to have low re-
gret Y- ¢ (x) — minges Y- ¢ (x) for not using the
best single point, chosen with the benefit of hind-
sight. In this setting, Zinkevich analyzes the regret
of gradient descent given by 411 = xy — nVey(z).

We will focus on gradient descent in a “bandit”
version of the online setting. As a motivating example,
consider a company that has to decide, every week,
how much to spend advertising on each of d different
channels, represented as a vector 2; € R?. At the end
of each week, they calculate their total profit py(z:).
In the offline case, one might assume that each week
the function py,po, ... are identical. In the stochastic
case, one might assume that in different weeks the
profit functions p(x) will be noisy realizations of some
underlying “true” profit function, for example p(z) =
p(x) + €(x), where €(x) has mean 0. In the online
case, no assumptions are made about a distribution over
convex profit functions and instead they are modeled as
the malicious choices of an adversary. This allows, for
example, for more complicated time-dependent random
noise or the effects of a bad economy, or even an
environment that responds to the choices we make (an
adaptive adversary).
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Abstract

We introduce an efficient algorithm for the prob-
lem of online linear optimization in the bandit set-
ting which achieves the optimal O*(v/T) regret.
The setting is a natural generalization of the non-
stochastic multi-armed bandit problem, and the ex-
istence of an efficient optimal algorithm has been
posed as an open problem in a number of recent
papers. We show how the difficulties encountered
by previous approaches are overcome by the use of
a self-concordant potential function. Our approach
presents a novel connection between online learn-
ing and interior point methods.

1 Introduction

One’s ability to learn and make decisions rests heavily on the
availability of feedback. Indeed. an agent may only improve
itself when it can reflect on the outcomes of its own taken
actions. In many environments feedback is readily available:
a gambler, for example, can observe entirely the outcome of
a horse race regardless of where he placed his bet. But such
perspective is not always available in hindsight. When the
same gambler chooses his route to travel to the race track,
perhaps at a busy hour, he will likely never learn the outcome
of possible alternatives. When betting on horses, the gambler
has thus the benefit (or perhaps the detriment) to muse “/
should have done...”, yet when betting on traffic he can only
think “rhe result was...”.

This problem of sequential decision making was stated
by Robbins [19] in 1952 and was later termed “the multi-
armed bandit problem”. The name inherits from the model
whereby, on each of a sequence of rounds, a gambler must
pull thé arm on one of several slot machines (“one-armed
bandits™) that each returns a reward chosen stochastically
from a fixed distribution. Of course, an ideal strategy would
simply be to pull the arm of the machine with the greatest
rewards. However, as the gambler does not know the best
arm a priori, his goal is then to maximize the reward of his
strategy relative to reward he would receive had he known
the optimal arm. This problem has gained nuch interest over
the past 20 years in a number of fields, as it presents a very
natural model of an agent seeking to simultaneously explore
the world while exploiting high-reward actions.

rakhlin@cs.berkeley.edu

As early as 1990 [8, 13] the sequential decision problem
was studied under adversarial assumptions, where we as-
sume the environment may even try to hurt the learner. The
multi-armed bandit problem was brought into the adversar-
ial learning model in 2002 by Auer et al [1], who showed
that one may obtain nontrivial guarantees on the gambler’s
performance relative to the best arm even when the arm val-
ues are chosen by adversary! In particular, Auer et al [1]
showed that the gambler’s regrer, i.e. the difference between
the gain of the best arm minus the gain of the gambler, can
be bounded by O(v/NT) where N is the number of bandit
arms, and T is the length of the game. In comparison to the
game where the gambler is given full information about al-
ternative arms (such as the horse racing example mentioned
above). it is possible to obtain O(y/T'log N). which scales
better in N but identically in 7.

One natural and well studied problem which escapes the
Auer et al result, is online shortest path. In this problem the
decision set is exponentially large (i.e. set of all paths in a
given graph), and the straightforward reduction of modeling
cach path as an arm for the multi-armed bandit problem suf-
fers from both efficiency issues as well as exponential regret.
To cope with these issues. several authors [2, 9, 14] have
recently proposed a very natural generalization of the multi-
armed bandit problem to field of Convex Optimization, and
we will call this “bandit linear optimization”. In this setting
we imagine that, on each round ¢, an adversary choo: me
linear function f;(-) which is not revealed to the player. The
player then chooses a point x; within some given convex set!
K c R™. The player then suffers f;(x,) and this quantity is
revealed to him. This process continues for 7" rounds. and at
the end the learner’s payoff is his regrer:

T T
Br=" fi(xe) - min 3" fi(x").
=1 t=1

Online linear optimization has been often considered. yet
primarily in the full-information setting where the learner
sees all of f;(-) rather than just f;(x;). In the full-information
model, it has been known for some time that the optimal re-
eret bound is O(v/T), and it had been conjectured that the
same should hold for the bandit setting as well. Neverthe-
le: veral initially proposed algorithms were shown only

'In the case of online shortest path, the convex set can be rep-
resented as a set of vectors in RI¥/. Hence, the dependence on
number of paths in the graph can be circumvented.
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