Adversarial Bandits: Theory and Algorithms

Haipeng Luo

University of Southern California

Adversarial (a.k.a. Non-Stochastic) Multi-Armed Bandits Proposed by Auer, Cesa-Bianchi, Freund, and Schapire, 2002:

Proposed by Auer, Cesa-Bianchi, Freund, and Schapire, 2002:

For
$$t = 1, \ldots, T$$
,

• learner picks one of K arms: $i_t \in [K] \triangleq \{1, \dots, K\}$

Proposed by Auer, Cesa-Bianchi, Freund, and Schapire, 2002:

For
$$t = 1, \ldots, T$$
,

- learner picks one of K arms: $i_t \in [K] \triangleq \{1, \dots, K\}$
- simultaneously adversary decides a loss vector $\ell_t \in [0, 1]^K$ ($\ell_{t,i}$ denotes the loss for arm i)

Proposed by Auer, Cesa-Bianchi, Freund, and Schapire, 2002:

For
$$t = 1, \ldots, T$$
,

- learner picks one of K arms: $i_t \in [K] \triangleq \{1, \dots, K\}$
- simultaneously adversary decides a loss vector $\ell_t \in [0,1]^K$ $(\ell_{t,i} \text{ denotes the loss for arm } i)$
- learner suffers and only observes loss ℓ_{t,i_t}

Haipeng Luo (USC) 2 / 23

Proposed by Auer, Cesa-Bianchi, Freund, and Schapire, 2002:

For
$$t = 1, \dots, T$$
,

- learner picks one of K arms: $i_t \in [K] \triangleq \{1, \dots, K\}$
- simultaneously adversary decides a loss vector $\ell_t \in [0, 1]^K$ ($\ell_{t,i}$ denotes the loss for arm i)
- ullet learner suffers and only observes loss ℓ_{t,i_t}

Goal: minimize regret

$$\operatorname{Reg} = \max_{i^{\star} \in [K]} \sum_{t=1}^{T} (\ell_{t,i_t} - \ell_{t,i^{\star}})$$

Proposed by Auer, Cesa-Bianchi, Freund, and Schapire, 2002:

For
$$t = 1, \ldots, T$$
,

- learner picks one of K arms: $i_t \in [K] \triangleq \{1, \dots, K\}$
- simultaneously adversary decides a loss vector $\ell_t \in [0, 1]^K$ ($\ell_{t,i}$ denotes the loss for arm i)
- ullet learner suffers and only observes loss ℓ_{t,i_t}

Goal: minimize regret

$$\operatorname{Reg} = \max_{i^{\star} \in [K]} \sum_{t=1}^{T} (\ell_{t,i_t} - \ell_{t,i^{\star}})$$

Stochastic MAB is a special case where ℓ_1,\ldots,ℓ_T are iid generated

Why adversarial?

Why adversarial?

• remove any distributional assumptions ⇒ more robust algorithms

Why adversarial?

- ullet remove any distributional assumptions \Rightarrow more robust algorithms
- useful for playing games against arbitrary opponents

Why adversarial?

- remove any distributional assumptions ⇒ more robust algorithms
- useful for playing games against arbitrary opponents

Why regret?
$$(\text{Reg} = \max_{i^* \in [K]} \sum_{t=1}^T (\ell_{t,i_t} - \ell_{t,i^*}))$$

Why adversarial?

- remove any distributional assumptions ⇒ more robust algorithms
- useful for playing games against arbitrary opponents

Why regret?
$$(\text{Reg} = \max_{i^* \in [K]} \sum_{t=1}^T (\ell_{t,i_t} - \ell_{t,i^*}))$$

• why compare with a fixed arm while losses are changing?

Why adversarial?

- remove any distributional assumptions ⇒ more robust algorithms
- useful for playing games against arbitrary opponents

Why regret?
$$(\text{Reg} = \max_{i^{\star} \in [K]} \sum_{t=1}^{T} (\ell_{t,i_t} - \ell_{t,i^{\star}}))$$

- why compare with a fixed arm while losses are changing?
 - fixes: interval/switching/dynamic regret, internal/swap regret

Why adversarial?

- remove any distributional assumptions ⇒ more robust algorithms
- useful for playing games against arbitrary opponents

Why regret?
$$(\text{Reg} = \max_{i^\star \in [K]} \sum_{t=1}^T (\ell_{t,i_t} - \ell_{t,i^\star}))$$

- why compare with a fixed arm while losses are changing?
 - fixes: interval/switching/dynamic regret, internal/swap regret
- why compare with the same losses while the behavior has changed?

3 / 23

Why adversarial?

- remove any distributional assumptions ⇒ more robust algorithms
- useful for playing games against arbitrary opponents

Why regret?
$$(\text{Reg} = \max_{i^{\star} \in [K]} \sum_{t=1}^{T} (\ell_{t,i_t} - \ell_{t,i^{\star}}))$$

- why compare with a fixed arm while losses are changing?
 - fixes: interval/switching/dynamic regret, internal/swap regret
- why compare with the same losses while the behavior has changed?
 - \blacktriangleright make sense for "oblivious" adversary (ℓ_t independent of $i_{1:t-1}$)

3 / 23

Why adversarial?

- remove any distributional assumptions ⇒ more robust algorithms
- useful for playing games against arbitrary opponents

Why regret?
$$(\text{Reg} = \max_{i^{\star} \in [K]} \sum_{t=1}^{T} (\ell_{t,i_t} - \ell_{t,i^{\star}}))$$

- why compare with a fixed arm while losses are changing?
 - fixes: interval/switching/dynamic regret, internal/swap regret
- why compare with the same losses while the behavior has changed?
 - lacktriangle make sense for "oblivious" adversary (ℓ_t independent of $i_{1:t-1}$)
 - fix for adaptive adversary: policy regret

Why adversarial?

- remove any distributional assumptions ⇒ more robust algorithms
- useful for playing games against arbitrary opponents

Why regret?
$$(\text{Reg} = \max_{i^\star \in [K]} \sum_{t=1}^T (\ell_{t,i_t} - \ell_{t,i^\star}))$$

- why compare with a fixed arm while losses are changing?
 - fixes: interval/switching/dynamic regret, internal/swap regret
- why compare with the same losses while the behavior has changed?
 - lacktriangle make sense for "oblivious" adversary (ℓ_t independent of $i_{1:t-1}$)
 - fix for adaptive adversary: policy regret
- but studying the standard regret is still very meaningful!

Why adversarial?

- remove any distributional assumptions ⇒ more robust algorithms
- useful for playing games against arbitrary opponents

Why regret?
$$(\text{Reg} = \max_{i^\star \in [K]} \sum_{t=1}^T (\ell_{t,i_t} - \ell_{t,i^\star}))$$

- why compare with a fixed arm while losses are changing?
 - fixes: interval/switching/dynamic regret, internal/swap regret
- why compare with the same losses while the behavior has changed?
 - lacktriangle make sense for "oblivious" adversary (ℓ_t independent of $i_{1:t-1}$)
 - fix for adaptive adversary: policy regret
- but studying the standard regret is still very meaningful!
 - foundation for all other regret measures

Why adversarial?

- remove any distributional assumptions ⇒ more robust algorithms
- useful for playing games against arbitrary opponents

Why regret?
$$(\text{Reg} = \max_{i^{\star} \in [K]} \sum_{t=1}^{T} (\ell_{t,i_t} - \ell_{t,i^{\star}}))$$

- why compare with a fixed arm while losses are changing?
 - fixes: interval/switching/dynamic regret, internal/swap regret
- why compare with the same losses while the behavior has changed?
 - lacktriangle make sense for "oblivious" adversary (ℓ_t independent of $i_{1:t-1}$)
 - fix for adaptive adversary: policy regret
- but studying the standard regret is still very meaningful!
 - foundation for all other regret measures
 - ▶ for games, implies convergence to equilibrium/optimal social welfare

Adversarial MAB (and other extensions) combines:

- online learning with adversarial losses
- bandit feedback (i.e. partial information)

Adversarial MAB (and other extensions) combines:

- online learning with adversarial losses
- bandit feedback (i.e. partial information)

Algorithms are all based on the following recipe:

• first come up with an algorithm that works with full-information feedback (i.e., ℓ_t is revealed at the end of round t)

Adversarial MAB (and other extensions) combines:

- online learning with adversarial losses
- bandit feedback (i.e. partial information)

Algorithms are all based on the following recipe:

- first come up with an algorithm that works with full-information feedback (i.e., ℓ_t is revealed at the end of round t)
- then come up with a loss estimator in the bandit setting, to be fed to the full-info algorithm

Adversarial MAB (and other extensions) combines:

- online learning with adversarial losses
- bandit feedback (i.e. partial information)

Algorithms are all based on the following recipe:

- first come up with an algorithm that works with full-information feedback (i.e., ℓ_t is revealed at the end of round t)
- then come up with a loss estimator in the bandit setting, to be fed to the full-info algorithm
- key challenge: "controlling" the variance of estimators

Adversarial MAB (and other extensions) combines:

- online learning with adversarial losses
- bandit feedback (i.e. partial information)

Algorithms are all based on the following recipe:

- first come up with an algorithm that works with full-information feedback (i.e., ℓ_t is revealed at the end of round t)
- then come up with a loss estimator in the bandit setting, to be fed to the full-info algorithm
- key challenge: "controlling" the variance of estimators

For this talk:

start with the full-information case as a warm-up

Adversarial MAB (and other extensions) combines:

- online learning with adversarial losses
- bandit feedback (i.e. partial information)

Algorithms are all based on the following recipe:

- first come up with an algorithm that works with full-information feedback (i.e., ℓ_t is revealed at the end of round t)
- then come up with a loss estimator in the bandit setting, to be fed to the full-info algorithm
- key challenge: "controlling" the variance of estimators

For this talk:

- start with the full-information case as a warm-up
- highlight how to control the variance of estimators

Adversarial MAB (and other extensions) combines:

- online learning with adversarial losses
- bandit feedback (i.e. partial information)

Algorithms are all based on the following recipe:

- first come up with an algorithm that works with full-information feedback (i.e., ℓ_t is revealed at the end of round t)
- then come up with a loss estimator in the bandit setting, to be fed to the full-info algorithm
- key challenge: "controlling" the variance of estimators

For this talk:

- start with the full-information case as a warm-up
- highlight how to control the variance of estimators
- highlight the differences between full-info and bandit

Warm-Up: The Expert Problem

The full-info counterpart of adversarial MAB:

For $t = 1, \ldots, T$,

- learner picks one of K arms: $i_t \in [K] \triangleq \{1, \dots, K\}$
- simultaneously adversary decides a loss vector $\ell_t \in [0, 1]^K$ ($\ell_{t,i}$ denotes the loss for arm i)
- ullet learner suffers loss ℓ_{t,i_t} and observes ℓ_t (instead of only ℓ_{t,i_t})

The full-info counterpart of adversarial MAB:

For $t = 1, \ldots, T$,

- learner picks one of K arms: $i_t \in [K] \triangleq \{1, \dots, K\}$
- simultaneously adversary decides a loss vector $\ell_t \in [0, 1]^K$ ($\ell_{t,i}$ denotes the loss for arm i)
- ullet learner suffers loss ℓ_{t,i_t} and observes ℓ_t (instead of only ℓ_{t,i_t})

Same goal: minimize regret

$$\operatorname{Reg} = \max_{i^{\star} \in [K]} \sum_{t=1}^{T} (\ell_{t,i_t} - \ell_{t,i^{\star}})$$

The full-info counterpart of adversarial MAB:

For $t = 1, \ldots, T$,

- learner picks one of K arms: $i_t \in [K] \triangleq \{1, \dots, K\}$
- simultaneously adversary decides a loss vector $\ell_t \in [0, 1]^K$ $(\ell_{t,i} \text{ denotes the loss for arm } i)$
- ullet learner suffers loss ℓ_{t,i_t} and observes ℓ_t (instead of only ℓ_{t,i_t})

Same goal: minimize regret

$$\operatorname{Reg} = \max_{i^{\star} \in [K]} \sum_{t=1}^{T} (\ell_{t,i_t} - \ell_{t,i^{\star}})$$

Not trivial at all even with full information!

At round t, sample $i_t \sim p_t \in \Delta_K$ s.t. (for some learning rate $\eta > 0$)

$$p_{t,i} \propto \exp\left(-\eta \sum_{\tau < t} \ell_{\tau,i}\right)$$

At round t, sample $i_t \sim p_t \in \Delta_K$ s.t. (for some learning rate $\eta > 0$)

$$p_{t,i} \propto \exp\left(-\eta \sum_{\tau < t} \ell_{\tau,i}\right)$$

called by many names: Hedge, Multiplicative Weights Update (MWU), ...

Define potential
$$\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$$
.

Define potential
$$\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$$
. Then $\Phi_t - \Phi_{t-1} =$

$$\frac{1}{\eta} \ln \left(\frac{\sum_{i=1}^{K} \exp(-\eta \sum_{\tau \le t} \ell_{\tau,i})}{\sum_{i=1}^{K} \exp(-\eta \sum_{\tau < t} \ell_{\tau,i})} \right)$$

Define potential
$$\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$$
. Then $\Phi_t - \Phi_{t-1} =$

$$\frac{1}{\eta} \ln \left(\frac{\sum_{i=1}^{K} \exp(-\eta \sum_{\tau < t} \ell_{\tau,i}) \exp(-\eta \ell_{t,i})}{\sum_{i=1}^{K} \exp(-\eta \sum_{\tau < t} \ell_{\tau,i})} \right)$$

Define potential
$$\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$$
. Then $\Phi_t - \Phi_{t-1} =$

$$\frac{1}{\eta} \ln \left(\sum_{i=1}^{K} \frac{p_{t,i}}{p_{t,i}} \exp(-\eta \ell_{t,i}) \right)$$

$$e^{-z} \leq 1 - z + z^2, \ \forall z \geq 0 \ \text{and} \ \underline{\ell_{t,i}} \geq 0$$

Define potential $\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$. Then $\Phi_t - \Phi_{t-1} = 0$

$$\frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \exp(-\eta \ell_{t,i}) \right) \leq \frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \left(1 - \eta \ell_{t,i} + \eta^2 \ell_{t,i}^2 \right) \right)$$

Define potential $\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$. Then $\Phi_t - \Phi_{t-1} =$

$$\frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \exp(-\eta \ell_{t,i}) \right) \leq \frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \left(1 - \eta \ell_{t,i} + \eta^{2} \ell_{t,i}^{2} \right) \right)$$

$$= \frac{1}{\eta} \ln \left(1 - \eta \left\langle p_{t}, \ell_{t} \right\rangle + \eta^{2} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^{2} \right)$$

Define potential $\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$. Then $\Phi_t - \Phi_{t-1} =$

$$\frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \exp(-\eta \ell_{t,i}) \right) \leq \frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \left(1 - \eta \ell_{t,i} + \eta^2 \ell_{t,i}^2 \right) \right)
= \frac{1}{\eta} \ln \left(1 - \eta \left\langle p_t, \ell_t \right\rangle + \eta^2 \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^2 \right) \leq - \left\langle p_t, \ell_t \right\rangle + \eta \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^2
\ln(1+z) \leq z$$

Define potential $\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$. Then $\Phi_t - \Phi_{t-1} =$

$$\frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \exp(-\eta \ell_{t,i}) \right) \leq \frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \left(1 - \eta \ell_{t,i} + \eta^{2} \ell_{t,i}^{2} \right) \right)
= \frac{1}{\eta} \ln \left(1 - \eta \langle p_{t}, \ell_{t} \rangle + \eta^{2} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^{2} \right) \leq -\langle p_{t}, \ell_{t} \rangle + \eta \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^{2}$$

Telescoping and rearranging gives:

$$\sum_{t=1}^{T} \langle p_t, \ell_t \rangle \le \Phi_0 - \Phi_T + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^2$$

Define potential
$$\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$$
. Then $\Phi_t - \Phi_{t-1} =$

$$\begin{split} &\frac{1}{\eta} \ln \left(\sum_{i=1}^K p_{t,i} \exp(-\eta \ell_{t,i}) \right) \leq \frac{1}{\eta} \ln \left(\sum_{i=1}^K p_{t,i} \left(1 - \eta \ell_{t,i} + \eta^2 \ell_{t,i}^2 \right) \right) \\ &= \frac{1}{\eta} \ln \left(1 - \eta \left\langle p_t, \ell_t \right\rangle + \eta^2 \sum_{i=1}^K p_{t,i} \ell_{t,i}^2 \right) \leq - \left\langle p_t, \ell_t \right\rangle + \eta \sum_{i=1}^K p_{t,i} \ell_{t,i}^2 \\ &\text{Telescoping} \quad \text{note } \Phi_T \geq \frac{1}{\eta} \ln \exp \left(- \eta \sum_{\tau \leq T} \ell_{\tau,i^\star} \right) = - \sum_{\tau \leq T} \ell_{\tau,i^\star} \end{split}$$

$$\sum_{t=1}^{T} \langle p_t, \ell_t \rangle \le \Phi_0 - \Phi_T + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^2$$

Define potential
$$\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$$
. Then $\Phi_t - \Phi_{t-1} =$

$$\begin{split} &\frac{1}{\eta} \ln \left(\sum_{i=1}^K p_{t,i} \exp(-\eta \ell_{t,i}) \right) \leq \frac{1}{\eta} \ln \left(\sum_{i=1}^K p_{t,i} \left(1 - \eta \ell_{t,i} + \eta^2 \ell_{t,i}^2 \right) \right) \\ &= \frac{1}{\eta} \ln \left(1 - \eta \left\langle p_t, \ell_t \right\rangle + \eta^2 \sum_{i=1}^K p_{t,i} \ell_{t,i}^2 \right) \leq - \left\langle p_t, \ell_t \right\rangle + \eta \sum_{i=1}^K p_{t,i} \ell_{t,i}^2 \\ &\text{Telescoping} \quad \text{note } \Phi_T \geq \frac{1}{\eta} \ln \exp \left(- \eta \sum_{\tau \leq T} \ell_{\tau,i^\star} \right) = - \sum_{\tau \leq T} \ell_{\tau,i^\star} \end{split}$$

$$\sum_{t=1}^{T} \langle p_t - e_{i^*}, \ell_t \rangle \le \Phi_0 + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^2$$

Define potential $\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$. Then $\Phi_t - \Phi_{t-1} =$

$$\frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \exp(-\eta \ell_{t,i}) \right) \leq \frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \left(1 - \eta \ell_{t,i} + \eta^{2} \ell_{t,i}^{2} \right) \right)
= \frac{1}{\eta} \ln \left(1 - \eta \left\langle p_{t}, \ell_{t} \right\rangle + \eta^{2} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^{2} \right) \leq - \left\langle p_{t}, \ell_{t} \right\rangle + \eta \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^{2}$$

Telescoping and rearranging gives:

$$\sum_{t=1}^{T} \langle p_t - e_{i^*}, \ell_t \rangle \le \Phi_0 + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^2 = \frac{\ln K}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^2$$

Define potential $\Phi_t = \frac{1}{\eta} \ln \left(\sum_{i=1}^K \exp(-\eta \sum_{\tau \leq t} \ell_{\tau,i}) \right)$. Then $\Phi_t - \Phi_{t-1} =$

$$\frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \exp(-\eta \ell_{t,i}) \right) \leq \frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{t,i} \left(1 - \eta \ell_{t,i} + \eta^{2} \ell_{t,i}^{2} \right) \right)
= \frac{1}{\eta} \ln \left(1 - \eta \langle p_{t}, \ell_{t} \rangle + \eta^{2} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^{2} \right) \leq -\langle p_{t}, \ell_{t} \rangle + \eta \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^{2}$$

Telescoping and rearranging gives:

$$\sum_{t=1}^{T} \langle p_t - e_{i^*}, \ell_t \rangle \le \Phi_0 + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^2 = \frac{\ln K}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \ell_{t,i}^2$$

Since $\ell_{t,i}^2 \leq 1$, picking the best η gives $\mathrm{Reg} = \mathcal{O}(\sqrt{T \ln K})$ (optimal)

Hedge is a special case of Follow-the-Regularized-Leader (FTRL):

$$p_t = \underset{p \in \Delta_K}{\operatorname{argmin}} \left\langle p, \sum_{\tau < t} \ell_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

Hedge is a special case of Follow-the-Regularized-Leader (FTRL):

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \sum_{\tau < t} \ell_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

where $\psi(p) = \frac{1}{\eta} \sum_i p_i \ln p_i$ is the (negative) Shannon entropy regularizer.

Hedge is a special case of Follow-the-Regularized-Leader (FTRL):

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \sum_{\tau < t} \ell_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

where $\psi(p) = \frac{1}{\eta} \sum_i p_i \ln p_i$ is the (negative) Shannon entropy regularizer.

Under some conditions, FTRL (with general ψ) ensures for any $p^{\star} \in \Delta_K$:

$$\sum_{t=1}^{T} \left\langle p_t - p^\star, \ell_t \right\rangle \lesssim \frac{\psi(p^\star) - \min_p \psi(p)}{\eta} \ + \ \eta \sum_{t=1}^{T} \|\ell_t\|_{p_t}^2$$
 stability term

Hedge is a special case of Follow-the-Regularized-Leader (FTRL):

$$p_t = \underset{p \in \Delta_K}{\operatorname{argmin}} \left\langle p, \sum_{\tau < t} \ell_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

where $\psi(p) = \frac{1}{\eta} \sum_i p_i \ln p_i$ is the (negative) Shannon entropy regularizer.

Under some conditions, FTRL (with general ψ) ensures for any $p^\star \in \Delta_K$:

$$\sum_{t=1}^{T} \langle p_t - p^*, \ell_t \rangle \lesssim \frac{\psi(p^*) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\ell_t\|_{p_t}^2$$

• $\|\ell_t\|_{p_t}^2 = \ell_t^\top \nabla^{-2} \psi(p_t) \ell_t$ (important local norm)

stability term

penalty term

Hedge is a special case of Follow-the-Regularized-Leader (FTRL):

$$p_t = \underset{p \in \Delta_K}{\operatorname{argmin}} \left\langle p, \sum_{\tau < t} \ell_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

where $\psi(p) = \frac{1}{\eta} \sum_i p_i \ln p_i$ is the (negative) Shannon entropy regularizer.

Under some conditions, FTRL (with general ψ) ensures for any $p^{\star} \in \Delta_K$:

$$\sum_{t=1}^{T} \langle p_t - p^*, \ell_t \rangle \lesssim \frac{\psi(p^*) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\ell_t\|_{p_t}^2$$

- $\|\ell_t\|_{p_t}^2 = \ell_t^\top \nabla^{-2} \psi(p_t) \ell_t$ (important local norm)
- for Shannon entropy: $\|\ell_t\|_{p_t}^2 = \sum_i p_{t,i} \ell_{t,i}^2$

stability term

penalty term

From Full-Info to Bandit

11 / 23

Obvious issue in MAB: only one coordinate of ℓ_t is observed

Solution: construct an importance-weighted estimator $\widehat{\ell}_t$ with

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbf{1} \{ i_t = i \}$$

Solution: construct an importance-weighted estimator $\widehat{\ell}_t$ with

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbf{1} \{ i_t = i \}$$

ullet non-zero only when $i=i_t$ (the selected arm), thus computable

Solution: construct an importance-weighted estimator $\widehat{\ell}_t$ with

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbf{1} \{ i_t = i \}$$

- ullet non-zero only when $i=i_t$ (the selected arm), thus computable
- ullet clearly **unbiased** $(\mathbb{E}[\widehat{\ell}_{t,i}] = \ell_{t,i})$ since $\mathbb{E}[\mathbf{1}\{i_t = i\}] = p_{t,i}$

Solution: construct an importance-weighted estimator $\widehat{\ell}_t$ with

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbf{1} \{ i_t = i \}$$

- ullet non-zero only when $i=i_t$ (the selected arm), thus computable
- clearly **unbiased** $(\mathbb{E}[\widehat{\ell}_{t,i}] = \ell_{t,i})$ since $\mathbb{E}[\mathbf{1}\{i_t = i\}] = p_{t,i}$

Exp3 (Exponential weight for Exploration and Exploitation) = feeding Hedge with loss estimator $\hat{\ell}_t$: $p_{t,i} \propto \exp\left(-\eta \sum_{\tau < t} \hat{\ell}_{\tau,i}\right)$

Solution: construct an importance-weighted estimator $\widehat{\ell}_t$ with

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbf{1} \{ i_t = i \}$$

- ullet non-zero only when $i=i_t$ (the selected arm), thus computable
- clearly **unbiased** $(\mathbb{E}[\widehat{\ell}_{t,i}] = \ell_{t,i})$ since $\mathbb{E}[\mathbf{1}\{i_t = i\}] = p_{t,i}$

Exp3 (Exponential weight for Exploration and Exploitation) = feeding Hedge with loss estimator $\hat{\ell}_t$: $p_{t,i} \propto \exp\left(-\eta \sum_{\tau < t} \hat{\ell}_{\tau,i}\right)$

Where is the exploration?

Solution: construct an importance-weighted estimator $\widehat{\ell}_t$ with

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbf{1} \{ i_t = i \}$$

- ullet non-zero only when $i=i_t$ (the selected arm), thus computable
- clearly **unbiased** $(\mathbb{E}[\widehat{\ell}_{t,i}] = \ell_{t,i})$ since $\mathbb{E}[\mathbf{1}\{i_t = i\}] = p_{t,i}$

Exp3 (Exponential weight for Exploration and Exploitation) = feeding Hedge with loss estimator $\hat{\ell}_t$: $p_{t,i} \propto \exp\left(-\eta \sum_{\tau < t} \hat{\ell}_{\tau,i}\right)$

Where is the exploration?

• every time an arm is selected, its weight gets decreased

Solution: construct an importance-weighted estimator $\widehat{\ell}_t$ with

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i}}{p_{t,i}} \mathbf{1} \{ i_t = i \}$$

- ullet non-zero only when $i=i_t$ (the selected arm), thus computable
- clearly **unbiased** $(\mathbb{E}[\widehat{\ell}_{t,i}] = \ell_{t,i})$ since $\mathbb{E}[\mathbf{1}\{i_t = i\}] = p_{t,i}$

Exp3 (Exponential weight for Exploration and Exploitation) = feeding Hedge with loss estimator $\hat{\ell}_t$: $p_{t,i} \propto \exp\left(-\eta \sum_{\tau < t} \hat{\ell}_{\tau,i}\right)$

Where is the exploration?

- every time an arm is selected, its weight gets decreased
- asymmetry between "losses" and "rewards"

Key challenge: the variance of the estimator can be huge

$$\mathbb{E}[\hat{\ell}_{t,i}^2] = \frac{\ell_{t,i}^2}{p_{t,i}^2} \mathbb{E}[\mathbf{1}\{i_t = i\}] = \frac{\ell_{t,i}^2}{p_{t,i}}$$

Key challenge: the variance of the estimator can be huge

$$\mathbb{E}[\hat{\ell}_{t,i}^2] = \frac{\ell_{t,i}^2}{p_{t,i}^2} \mathbb{E}[\mathbf{1}\{i_t = i\}] = \frac{\ell_{t,i}^2}{p_{t,i}}$$

Can't avoid this, but can control how the variance affects the regret.

Key challenge: the variance of the estimator can be huge

$$\mathbb{E}[\hat{\ell}_{t,i}^2] = \frac{\ell_{t,i}^2}{p_{t,i}^2} \mathbb{E}[\mathbf{1}\{i_t = i\}] = \frac{\ell_{t,i}^2}{p_{t,i}}$$

Can't avoid this, but can control how the variance affects the regret. Recall

$$\sum_{t=1}^{T} \left\langle p_t - e_{i^\star}, \widehat{\ell}_t \right\rangle \leq \frac{\ln K}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \widehat{\ell}_{t,i}^2 \qquad \text{(only need } \widehat{\ell}_{t,i} \geq 0\text{)}$$

Key challenge: the variance of the estimator can be huge

$$\mathbb{E}[\hat{\ell}_{t,i}^2] = \frac{\ell_{t,i}^2}{p_{t,i}^2} \mathbb{E}[\mathbf{1}\{i_t = i\}] = \frac{\ell_{t,i}^2}{p_{t,i}}$$

Can't avoid this, but can control how the variance affects the regret. Recall

$$\sum_{t=1}^{T} \left\langle p_t - e_{i^\star}, \widehat{\ell}_t \right\rangle \le \frac{\ln K}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} \frac{p_{t,i} \widehat{\ell}_{t,i}^2}{p_{t,i} \widehat{\ell}_{t,i}^2} \qquad \text{(only need } \widehat{\ell}_{t,i} \ge 0\text{)}$$

$$\mathbb{E}[\text{Reg}] \leq \frac{\ln K}{\eta} + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \widehat{\ell}_{t,i}^{2}\right]$$

Key challenge: the variance of the estimator can be huge

$$\mathbb{E}[\widehat{\ell}_{t,i}^2] = \frac{\ell_{t,i}^2}{p_{t,i}^2} \mathbb{E}[\mathbf{1}\{i_t = i\}] = \frac{\ell_{t,i}^2}{p_{t,i}}$$

Can't avoid this, but can control how the variance affects the regret. Recall

$$\sum_{t=1}^{T} \left\langle p_t - e_{i^\star}, \widehat{\ell}_t \right\rangle \leq \frac{\ln K}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} \frac{p_{t,i} \widehat{\ell}_{t,i}^2}{p_{t,i} \widehat{\ell}_{t,i}^2} \qquad \text{(only need } \widehat{\ell}_{t,i} \geq 0\text{)}$$

$$\begin{split} \mathbb{E}[\text{Reg}] &\leq \frac{\ln K}{\eta} + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \widehat{\ell}_{t,i}^{2}\right] \\ &= \frac{\ln K}{\eta} + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \cdot \frac{\ell_{t,i}^{2}}{p_{t,i}}\right] \text{ (magical variance cancellation)} \end{split}$$

Key challenge: the variance of the estimator can be huge

$$\mathbb{E}[\widehat{\ell}_{t,i}^2] = \frac{\ell_{t,i}^2}{p_{t,i}^2} \mathbb{E}[\mathbf{1}\{i_t = i\}] = \frac{\ell_{t,i}^2}{p_{t,i}}$$

Can't avoid this, but can control how the variance affects the regret. Recall

$$\sum_{t=1}^{T} \left\langle p_t - e_{i^\star}, \widehat{\ell}_t \right\rangle \leq \frac{\ln K}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} \underbrace{p_{t,i} \widehat{\ell}_{t,i}^2}_{t,i} \qquad \text{(only need } \widehat{\ell}_{t,i} \geq 0\text{)}$$

$$\begin{split} \mathbb{E}[\text{Reg}] &\leq \frac{\ln K}{\eta} + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \widehat{\ell}_{t,i}^{2}\right] \\ &= \frac{\ln K}{\eta} + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \cdot \frac{\ell_{t,i}^{2}}{p_{t,i}}\right] \text{ (magical variance cancellation)} \\ &\leq \frac{\ln K}{\eta} + \eta T K \end{split}$$

Key challenge: the variance of the estimator can be huge

$$\mathbb{E}[\widehat{\ell}_{t,i}^2] = \frac{\ell_{t,i}^2}{p_{t,i}^2} \mathbb{E}[\mathbf{1}\{i_t = i\}] = \frac{\ell_{t,i}^2}{p_{t,i}}$$

Can't avoid this, but can control how the variance affects the regret. Recall

$$\sum_{t=1}^{T} \left\langle p_t - e_{i^\star}, \widehat{\ell}_t \right\rangle \leq \frac{\ln K}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} \underbrace{p_{t,i} \widehat{\ell}_{t,i}^2}_{t,i} \qquad \text{(only need } \widehat{\ell}_{t,i} \geq 0\text{)}$$

$$\begin{split} \mathbb{E}[\text{Reg}] &\leq \frac{\ln K}{\eta} + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \widehat{\ell}_{t,i}^{2}\right] \\ &= \frac{\ln K}{\eta} + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \cdot \frac{\ell_{t,i}^{2}}{p_{t,i}}\right] \text{ (magical variance cancellation)} \\ &\leq \frac{\ln K}{\eta} + \eta T K = \mathcal{O}(\sqrt{TK \ln K}) \end{aligned} \tag{optimal } \eta \text{)} \end{split}$$

Key challenge: the variance of the estimator can be huge

$$\mathbb{E}[\widehat{\ell}_{t,i}^2] = \frac{\ell_{t,i}^2}{p_{t,i}^2} \mathbb{E}[\mathbf{1}\{i_t = i\}] = \frac{\ell_{t,i}^2}{p_{t,i}}$$

Can't avoid this, but can control how the variance affects the regret. Recall

$$\sum_{t=1}^{T} \left\langle p_t - e_{i^\star}, \widehat{\ell}_t \right\rangle \le \frac{\ln K}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{K} \frac{p_{t,i} \widehat{\ell}_{t,i}^2}{p_{t,i} \widehat{\ell}_{t,i}^2} \qquad \text{(only need } \widehat{\ell}_{t,i} \ge 0\text{)}$$

Taking expectation gives (caveat: assuming an oblivious adversary)

$$\begin{split} \mathbb{E}[\text{Reg}] &\leq \frac{\ln K}{\eta} + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \widehat{\ell}_{t,i}^{2}\right] \\ &= \frac{\ln K}{\eta} + \eta \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{K} p_{t,i} \cdot \frac{\ell_{t,i}^{2}}{p_{t,i}}\right] \text{ (magical variance cancellation)} \\ &\leq \frac{\ln K}{\eta} + \eta T K = \mathcal{O}(\sqrt{TK \ln K}) \end{aligned} \tag{optimal } \eta) \end{split}$$

An informal argument:

ullet first consider $\ell_{t,i} \sim \mathsf{Ber}(1/2)$ for all i

- first consider $\ell_{t,i} \sim \mathsf{Ber}(1/2)$ for all i
- \bullet for any algorithm, must exist $j \in [K]$ not selected more than $\frac{T}{K}$ times

- first consider $\ell_{t,i} \sim \mathsf{Ber}(1/2)$ for all i
- \bullet for any algorithm, must exist $j \in [K]$ not selected more than $\frac{T}{K}$ times
- ullet now secretly change the loss of arm j to $\ell_{t,j} \sim \mathsf{Ber}(1/2 \sqrt{K/T})$

- first consider $\ell_{t,i} \sim \mathsf{Ber}(1/2)$ for all i
- \bullet for any algorithm, must exist $j \in [K]$ not selected more than $\frac{T}{K}$ times
- ullet now secretly change the loss of arm j to $\ell_{t,j}\sim {\sf Ber}(1/2-\sqrt{K/T})$
- the same algorithm won't realize the change (information theoretically),

- first consider $\ell_{t,i} \sim \mathsf{Ber}(1/2)$ for all i
- \bullet for any algorithm, must exist $j \in [K]$ not selected more than $\frac{T}{K}$ times
- ullet now secretly change the loss of arm j to $\ell_{t,j} \sim \mathsf{Ber}(1/2 \sqrt{K/T})$
- the same algorithm won't realize the change (information theoretically), so still picks arm j not often enough (e.g. $\leq \frac{T}{2}$ times)

$\Omega(\sqrt{TK})$ Lower Bound

An informal argument:

- ullet first consider $\ell_{t,i} \sim \mathsf{Ber}(1/2)$ for all i
- \bullet for any algorithm, must exist $j \in [K]$ not selected more than $\frac{T}{K}$ times
- ullet now secretly change the loss of arm j to $\ell_{t,j} \sim \mathsf{Ber}(1/2 \sqrt{K/T})$
- the same algorithm won't realize the change (information theoretically), so still picks arm j not often enough (e.g. $\leq \frac{T}{2}$ times)
- every time not picking arm j , incur $\sqrt{^K\!/T}$ regret, thus in total, $\mathbb{E}[\mathrm{Reg}] = \Omega(\sqrt{TK})$

$\Omega(\sqrt{TK})$ Lower Bound

An informal argument:

- first consider $\ell_{t,i} \sim \mathsf{Ber}(1/2)$ for all i
- \bullet for any algorithm, must exist $j \in [K]$ not selected more than $\frac{T}{K}$ times
- ullet now secretly change the loss of arm j to $\ell_{t,j} \sim \mathsf{Ber}(1/2 \sqrt{K/T})$
- the same algorithm won't realize the change (information theoretically), so still picks arm j not often enough (e.g. $\leq \frac{T}{2}$ times)
- every time not picking arm j, incur $\sqrt{^K\!/T}$ regret, thus in total, $\mathbb{E}[\mathrm{Reg}] = \Omega(\sqrt{TK})$

Note the gap between this and Exp3's regret bound $\mathcal{O}(\sqrt{TK\ln K})$

Audibert-Bubeck'09, Abernethy-Lee-Tewari'15

$$p_t = \underset{p \in \Delta_K}{\operatorname{argmin}} \left\langle p, \sum_{\tau < t} \widehat{\ell}_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

Audibert-Bubeck'09, Abernethy-Lee-Tewari'15

$$p_t = \underset{p \in \Delta_K}{\operatorname{argmin}} \left\langle p, \sum_{\tau < t} \widehat{\ell}_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\text{Recall: } \textstyle \sum_{t=1}^{T} \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p^\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

Audibert-Bubeck'09, Abernethy-Lee-Tewari'15

Consider FTRL with the $^{1/2}$ -Tsallis entropy $\psi(p) = -\sum_{i=1}^{K} \sqrt{p_i}$,

$$p_t = \underset{p \in \Delta_K}{\operatorname{argmin}} \left\langle p, \sum_{\tau < t} \widehat{\ell}_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\text{Recall: } \textstyle \sum_{t=1}^{T} \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p^\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

• $\psi(p^*) - \min_p \psi(p) \le \sqrt{K}$

Audibert-Bubeck'09, Abernethy-Lee-Tewari'15

$$p_t = \underset{p \in \Delta_K}{\operatorname{argmin}} \left\langle p, \sum_{\tau < t} \widehat{\ell}_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\text{Recall: } \textstyle \sum_{t=1}^{T} \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p^\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

- $\psi(p^*) \min_p \psi(p) \le \sqrt{K}$
- $\bullet \ \|\widehat{\ell_t}\|_{p_t}^2 = \widehat{\ell}_t^\top \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \textstyle \sum_i p_{t,i}^{3/2} \widehat{\ell}_{t,i}^2$

Audibert-Bubeck'09, Abernethy-Lee-Tewari'15

$$p_t = \underset{p \in \Delta_K}{\operatorname{argmin}} \left\langle p, \sum_{\tau < t} \widehat{\ell}_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\text{Recall: } \sum_{t=1}^{T} \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p^\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

$$\bullet \ \psi(p^\star) - \min_p \psi(p) \leq \sqrt{K} \qquad \text{recall: } \mathbb{E}[\widehat{\ell}_{t,i}^2] = \frac{\ell_{t,i}^2}{p_{t,i}^2} \mathbb{E}[\mathbf{1}\{i_t = i\}] = \frac{\ell_{t,i}^2}{p_{t,i}}$$

•
$$\|\widehat{\ell}_t\|_{p_t}^2 = \widehat{\ell}_t^\top \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \sum_i p_{t,i}^{3/2} \widehat{\ell}_{t,i}^2 \xrightarrow{\mathbb{E}} \sum_i \sqrt{p_{t,i}} \ell_{t,i}^2$$

Audibert-Bubeck'09, Abernethy-Lee-Tewari'15

$$p_t = \underset{p \in \Delta_K}{\operatorname{argmin}} \left\langle p, \sum_{\tau < t} \widehat{\ell}_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\text{Recall: } \textstyle \sum_{t=1}^{T} \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p^\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

- $\psi(p^*) \min_p \psi(p) \le \sqrt{K}$
- $\bullet \ \| \widehat{\ell_t} \|_{p_t}^2 = \widehat{\ell_t}^\top \nabla^{-2} \psi(p_t) \widehat{\ell_t} = \textstyle \sum_i p_{t,i}^{3/2} \widehat{\ell_{t,i}^2} \overset{\mathbb{E}}{\to} \ \textstyle \sum_i \sqrt{p_{t,i}} \ell_{t,i}^2 \leq \sqrt{K}$

Audibert-Bubeck'09, Abernethy-Lee-Tewari'15

		Shannon	1/2-Tsallis)
T	penalty	$\ln K$	\sqrt{K}	<i>T</i> . • • •
Recall: $\sum_{t=1}^{T}$	stability	K	\sqrt{K}	$\eta \sum_{t=1}^{T} \ \widehat{\ell}_t\ _{p_t}^2$

- $\bullet \ \psi(p^*) \min_p \overline{\psi(p)} \le \sqrt{K}$
- $\|\widehat{\ell}_t\|_{p_t}^2 = \widehat{\ell}_t^\top \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \sum_i p_{t,i}^{3/2} \widehat{\ell}_{t,i}^2 \stackrel{\mathbb{E}}{\to} \sum_i \sqrt{p_{t,i}} \ell_{t,i}^2 \le \sqrt{K}$

Audibert-Bubeck'09, Abernethy-Lee-Tewari'15

		Shannon	1/2-Tsallis	
	penalty	$\ln K$	\sqrt{K}	<i>T</i> . • • •
Recall: $\sum_{t=1}^{T}$	stability	K	\sqrt{K}	$\eta \sum_{t=1}^{T} \ \widehat{\ell}_t\ _{p_t}^2$

- $\psi(p^*) \min_p \overline{\psi(p)} \le \sqrt{K}$
- $\|\widehat{\ell}_t\|_{p_t}^2 = \widehat{\ell}_t^{\top} \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \sum_i p_{t,i}^{3/2} \widehat{\ell}_{t,i}^2 \xrightarrow{\mathbb{E}} \sum_i \sqrt{p_{t,i}} \ell_{t,i}^2 \le \sqrt{K}$
- $\mathbb{E}[\text{Reg}] \lesssim \sqrt{K} \left(\frac{1}{\eta} + \eta T\right)$

Audibert-Bubeck'09, Abernethy-Lee-Tewari'15

Γ		, I	1	
		Shannon	1/2-Tsallis)
	penalty	$\ln K$	\sqrt{K}	<i>m</i>
Recall: $\sum_{t=1}^{T}$	stability	K	\sqrt{K}	$\eta \sum_{t=1}^{T} \ \widehat{\ell}_t\ _{p_t}^2$

- $\psi(p^*) \min_p \overline{\psi(p)} \le \sqrt{K}$
- $\bullet \ \| \widehat{\ell}_t \|_{p_t}^2 = \widehat{\ell}_t^\top \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \textstyle \sum_i p_{t,i}^{3/2} \widehat{\ell}_{t,i}^2 \xrightarrow{\mathbb{E}} \ \textstyle \sum_i \sqrt{p_{t,i}} \ell_{t,i}^2 \leq \sqrt{K}$
- $\mathbb{E}[\text{Reg}] \lesssim \sqrt{K} \left(\frac{1}{\eta} + \eta T\right) = \mathcal{O}(\sqrt{TK})$ (optimal η)

Consider FTRL with the $^{1/2}$ -Tsallis entropy $\psi(p) = -\sum_{i=1}^{K} \sqrt{p_i}$,

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \sum_{\tau < t} \widehat{\ell}_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\text{Recall: } \textstyle \sum_{t=1}^{T} \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p^\star) - \min_p \psi(p)}{\eta} + \eta \textstyle \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

- $\psi(p^*) \min_p \psi(p) \le \sqrt{K}$
- $\bullet \ \| \widehat{\ell}_t \|_{p_t}^2 = \widehat{\ell}_t^\top \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \textstyle \sum_i p_{t,i}^{3/2} \widehat{\ell}_{t,i}^2 \xrightarrow{\mathbb{E}} \ \textstyle \sum_i \sqrt{p_{t,i}} \ell_{t,i}^2 \leq \sqrt{K}$
- $\mathbb{E}[\text{Reg}] \lesssim \sqrt{K} \left(\frac{1}{\eta} + \eta T\right) = \mathcal{O}(\sqrt{TK})$ (optimal η)

Magical bonus: not only minimax optimal for adversarial losses, but (surprisingly) also *instance-optimal* for stochastic losses! (Zimmert-Seldin'19)

Beyond Minimax Optimality: Adaptive and Problem-Dependent Regret Bounds

Measures of "easiness"	Regret bounds	References
loss of the best arm $L^\star = \sum_t \ell_{t,i^\star}$	$\widetilde{\mathcal{O}}(\sqrt{L^{\star}K})$	Allenberg-Auer-Györfi-Ottucsák'06 Foster-Li-Lykouris-Sridharan-Tardos'16

Measures of "easiness"	Regret bounds	References
loss of the best arm $L^\star = \sum_t \ell_{t,i^\star}$	$\widetilde{\mathcal{O}}(\sqrt{L^{\star}K})$	Allenberg-Auer-Györfi-Ottucsák'06 Foster-Li-Lykouris-Sridharan-Tardos'16
variance of losses $Q = \frac{1}{K} \sum_{t,i} (\ell_{t,i} - \frac{1}{T} L_i)$	$\widetilde{\mathcal{O}}(\sqrt{QK})$	Hazan-Kale'11, Bubeck-Cohen-Li'17

Measures of "easiness"	Regret bounds	References
loss of the best arm $L^\star = \sum_t \ell_{t,i^\star}$	$\widetilde{\mathcal{O}}(\sqrt{L^{\star}K})$	Allenberg-Auer-Györfi-Ottucsák'06 Foster-Li-Lykouris-Sridharan-Tardos'16
variance of losses $Q = \frac{1}{K} \sum_{t,i} (\ell_{t,i} - \frac{1}{T} L_i)$ $Q^* = \sum_{t} (\ell_{t,i^*} - \frac{1}{T} L^*)$		Hazan-Kale'11, Bubeck-Cohen-Li'17 Wei-Luo'18

Measures of "easiness"	Regret bounds	References
loss of the best arm $L^\star = \sum_t \ell_{t,i^\star}$	$\widetilde{\mathcal{O}}(\sqrt{L^{\star}K})$	Allenberg-Auer-Györfi-Ottucsák'06 Foster-Li-Lykouris-Sridharan-Tardos'16
variance of losses $Q = \frac{1}{K} \sum_{t,i} (\ell_{t,i} - \frac{1}{T} L_i)$ $Q^* = \sum_{t} (\ell_{t,i^*} - \frac{1}{T} L^*)$		Hazan-Kale'11, Bubeck-Cohen-Li'17 Wei-Luo'18
path-length of losses $V = \sum_t \ \ell_t - \ell_{t-1}\ _{\infty}$	$\widetilde{\mathcal{O}}(\sqrt{VK})$	Bubeck-Li-Luo-Wei'19

Measures of "easiness"	Regret bounds	References
loss of the best arm $L^\star = \sum_t \ell_{t,i^\star}$	$\widetilde{\mathcal{O}}(\sqrt{L^{\star}K})$	Allenberg-Auer-Györfi-Ottucsák'06 Foster-Li-Lykouris-Sridharan-Tardos'16
variance of losses $Q = \frac{1}{K} \sum_{t,i} (\ell_{t,i} - \frac{1}{T} L_i)$ $Q^* = \sum_{t} (\ell_{t,i^*} - \frac{1}{T} L^*)$		Hazan-Kale'11, Bubeck-Cohen-Li'17 Wei-Luo'18
path-length of losses $V = \sum_{t} \ \ell_{t} - \ell_{t-1}\ _{\infty}$ $V^{\star} = \sum_{t} (\ell_{t,i^{\star}} - \ell_{t-1,i^{\star}})$		Bubeck-Li-Luo-Wei'19 Wei-Luo'18

Measures of "easiness"	Regret bounds	References	
loss of the best arm $L^\star = \sum_t \ell_{t,i^\star}$	$\widetilde{\mathcal{O}}(\sqrt{L^{\star}K})$	Allenberg-Auer-Györfi-Ottucsák'06 Foster-Li-Lykouris-Sridharan-Tardos'16	
variance of losses $Q = \frac{1}{K} \sum_{t,i} (\ell_{t,i} - \frac{1}{T} L_i)$ $Q^* = \sum_{t} (\ell_{t,i^*} - \frac{1}{T} L^*)$		Hazan-Kale'11, Bubeck-Cohen-Li'17 Wei-Luo'18	
path-length of losses $V = \sum_t \ \ell_t - \ell_{t-1}\ _{\infty}$ $V^{\star} = \sum_t (\ell_{t,i^{\star}} - \ell_{t-1,i^{\star}})$		Bubeck-Li-Luo-Wei'19 Wei-Luo'18	
sparsity of rewards $s = \max_t \ 1 - \ell_t\ _0$	\sqrt{Ts}	Bubeck-Cohen-Li'17	

Measures of "easiness"	Regret bounds	References
loss of the best arm $L^\star = \sum_t \ell_{t,i^\star}$	$\widetilde{\mathcal{O}}(\sqrt{L^{\star}K})$	Allenberg-Auer-Györfi-Ottucsák'06 Foster-Li-Lykouris-Sridharan-Tardos'16
variance of losses $Q = \frac{1}{K} \sum_{t,i} (\ell_{t,i} - \frac{1}{T} L_i)$ $Q^* = \sum_{t} (\ell_{t,i^*} - \frac{1}{T} L^*)$	$ \begin{array}{c c} \widetilde{\mathcal{O}}(\sqrt{QK}) \\ \widetilde{\mathcal{O}}(\sqrt{Q^{\star}K}) \end{array} $	Hazan-Kale'11, Bubeck-Cohen-Li'17 Wei-Luo'18
path-length of losses $V = \sum_{t} \ \ell_{t} - \ell_{t-1}\ _{\infty}$ $V^{\star} = \sum_{t} (\ell_{t,i^{\star}} - \ell_{t-1,i^{\star}})$	$\widetilde{\mathcal{O}}(\sqrt{VK})$ $\widetilde{\mathcal{O}}(\sqrt{V^*K^3})$	Bubeck-Li-Luo-Wei'19 Wei-Luo'18
sparsity of rewards $s = \max_t \ 1 - \ell_t\ _0$	$\sqrt{T_s}$ imply faste	Rubock Cobon Li'17 er convergence in games

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \sum_{\tau < t} \widehat{\ell}_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

$$p_t = \underset{p \in \Delta_K}{\operatorname{argmin}} \left\langle p, \sum_{\tau < t} \widehat{\ell}_{\tau} \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\text{Recall: } \textstyle \sum_{t=1}^{T} \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

Recall:
$$\sum_{t=1}^{T} \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

• $\psi(p^*) - \min_p \psi(p) \le K \ln T$ (picking $p^* = (1 - \frac{1}{T})e_{i^*} + \frac{1}{TK}\mathbf{1}$)

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

Recall:
$$\sum_{t=1}^{T} \left\langle p_t - p^*, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_*) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \frac{\|\widehat{\ell}_t\|_{p_t}^2}{\|\widehat{\ell}_t\|_{p_t}^2}$$

- $\psi(p^*) \min_p \psi(p) \le K \ln T$ (picking $p^* = (1 \frac{1}{T})e_{i^*} + \frac{1}{TK}\mathbf{1}$)
- $\|\widehat{\ell}_t\|_{p_t}^2 = \widehat{\ell}_t^{\top} \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \sum_i p_{t,i}^2 \widehat{\ell}_{t,i}^2$

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\text{Recall: } \textstyle \sum_{t=1}^{T} \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

- $\psi(p^{\star}) \min_{p} \psi(p) \le K \ln T$ (picking $p^{\star} = (1 \frac{1}{T})e_{i^{\star}} + \frac{1}{TK}\mathbf{1}$)
- $\|\widehat{\ell}_t\|_{p_t}^2 = \widehat{\ell}_t^{\top} \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \sum_i p_{t,i}^2 \widehat{\ell}_{t,i}^2 \stackrel{\mathbb{E}}{\to} \langle p_t, \ell_t \rangle$

		Shannon	1/2-Tsallis	log-barrier	
	penalty	$\ln K$	\sqrt{K}	$K \ln T$	
Recal	stability	K	\sqrt{K}	1	$\ \widehat{\ell}_t\ _{p_t}^2$

- $\bullet \ \psi(p^*) \min_p \psi(p) \le K \ln T$
- (picking $p^* = (1 \frac{1}{T})e_{i^*} + \frac{1}{TK}\mathbf{1}$)
- $\|\widehat{\ell}_t\|_{p_t}^2 = \widehat{\ell}_t^\top \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \sum_i p_{t,i}^2 \widehat{\ell}_{t,i}^2 \xrightarrow{\mathbb{E}} \langle p_t, \ell_t \rangle$

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

Recall:
$$\sum_{t=1}^{T} \left\langle p_t - p^*, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_*) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

- $\psi(p^{\star}) \min_{p} \psi(p) \le K \ln T$ (picking $p^{\star} = (1 \frac{1}{T})e_{i^{\star}} + \frac{1}{TK}\mathbf{1}$)
- $\|\widehat{\ell}_t\|_{p_t}^2 = \widehat{\ell}_t^\top \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \sum_i p_{t,i}^2 \widehat{\ell}_{t,i}^2 \stackrel{\mathbb{E}}{\to} \langle p_t, \ell_t \rangle$
- $\mathbb{E}[\text{Reg}] = \widetilde{\mathcal{O}}(\sqrt{K\mathbb{E}[\sum_t \langle p_t, \ell_t \rangle]})$

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

Recall:
$$\sum_{t=1}^{T} \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t\|_{p_t}^2$$

- $\psi(p^{\star}) \min_{p} \psi(p) \le K \ln T$ (picking $p^{\star} = (1 \frac{1}{T})e_{i^{\star}} + \frac{1}{TK}\mathbf{1}$)
- $\|\widehat{\ell}_t\|_{p_t}^2 = \widehat{\ell}_t^\top \nabla^{-2} \psi(p_t) \widehat{\ell}_t = \sum_i p_{t,i}^2 \widehat{\ell}_{t,i}^2 \stackrel{\mathbb{E}}{\to} \langle p_t, \ell_t \rangle$
- $\mathbb{E}[\text{Reg}] = \widetilde{\mathcal{O}}(\sqrt{K\mathbb{E}[\sum_t \langle p_t, \ell_t \rangle]}) \Rightarrow \mathbb{E}[\text{Reg}] = \widetilde{\mathcal{O}}(\sqrt{KL^*})$

Wei-Luo'18

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, m_t + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, m_t + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\sum_{t=1}^{T} \left\langle p_t - p^{\star}, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_{\star}) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t - m_t\|_{p_t}^2$$

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, m_t + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\textstyle \sum_{t=1}^T \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^T \|\widehat{\ell}_t - m_t\|_{p_t}^2$$

 $\bullet \ \psi(p^\star) - \min_p \psi(p) \leq K \ln T$ as before

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, m_t + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\textstyle \sum_{t=1}^T \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^T \|\widehat{\ell}_t - m_t\|_{p_t}^2$$

- \bullet $\psi(p^{\star}) \min_{p} \psi(p) \leq K \ln T$ as before
- use variance-reduced estimators $\widehat{\ell}_{t,i} = \frac{\ell_{t,i} m_{t,i}}{p_{t,i}} \mathbf{1}\{i_t = i\} + m_{t,i}$

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \textcolor{red}{m_t} + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\textstyle \sum_{t=1}^T \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^T \|\widehat{\ell}_t - m_t\|_{p_t}^2$$

- $\psi(p^{\star}) \min_{p} \psi(p) \leq K \ln T$ as before
- use variance-reduced estimators $\widehat{\ell}_{t,i} = rac{\ell_{t,i} m_{t,i}}{p_{t,i}} \mathbf{1}\{i_t = i\} + m_{t,i}$
- $\|\widehat{\ell}_t m_t\|_{p_t}^2 = \sum_i p_{t,i}^2 (\widehat{\ell}_{t,i} m_{t,i})^2$

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \textcolor{red}{m_t} + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\textstyle \sum_{t=1}^T \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^T \|\widehat{\ell}_t - m_t\|_{p_t}^2$$

- $\psi(p^*) \min_p \psi(p) \le K \ln T$ as before
- ullet use variance-reduced estimators $\widehat{\ell}_{t,i} = rac{\ell_{t,i} m_{t,i}}{p_{t,i}} \mathbf{1}\{i_t = i\} + m_{t,i}$
- $\|\widehat{\ell}_t m_t\|_{p_t}^2 = \sum_i p_{t,i}^2 (\widehat{\ell}_{t,i} m_{t,i})^2 = (\ell_{t,i_t} m_{t,i_t})^2$

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \textcolor{red}{m_t} + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\textstyle \sum_{t=1}^T \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^T \frac{\|\widehat{\ell}_t - m_t\|_{p_t}^2}{\|\widehat{\ell}_t - m_t\|_{p_t}^2}$$

- $\psi(p^*) \min_p \psi(p) \le K \ln T$ as before
- use variance-reduced estimators $\widehat{\ell}_{t,i} = rac{\ell_{t,i} m_{t,i}}{p_{t,i}} \mathbf{1}\{i_t = i\} + m_{t,i}$
- $\|\widehat{\ell}_t m_t\|_{p_t}^2 = \sum_i p_{t,i}^2 (\widehat{\ell}_{t,i} m_{t,i})^2 = (\ell_{t,i_t} m_{t,i_t})^2 \le |\ell_{t,i_t} m_{t,i_t}|$

Optimistic FTRL with the log-barrier regularizer $\psi(p) = -\sum_{i=1}^K \ln p_i$,

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \textcolor{red}{m_t} + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\textstyle \sum_{t=1}^T \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^T \|\widehat{\ell}_t - m_t\|_{p_t}^2$$

- $\psi(p^*) \min_p \psi(p) \le K \ln T$ as before
- ullet use variance-reduced estimators $\widehat{\ell}_{t,i} = rac{\ell_{t,i} m_{t,i}}{p_{t,i}} \mathbf{1}\{i_t = i\} + m_{t,i}$
- $\|\widehat{\ell}_t m_t\|_{p_t}^2 = \sum_i p_{t,i}^2 (\widehat{\ell}_{t,i} m_{t,i})^2 = (\ell_{t,i_t} m_{t,i_t})^2 \le |\ell_{t,i_t} m_{t,i_t}|$
- let $m_{t,i}$ be the most recently observed loss for arm i,

Optimistic FTRL with the log-barrier regularizer $\psi(p) = -\sum_{i=1}^{K} \ln p_i$,

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \textcolor{red}{m_t} + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\textstyle \sum_{t=1}^T \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^T \|\widehat{\ell}_t - m_t\|_{p_t}^2$$

- $\psi(p^*) \min_p \psi(p) \le K \ln T$ as before
- use variance-reduced estimators $\widehat{\ell}_{t,i} = rac{\ell_{t,i} m_{t,i}}{p_{t,i}} \mathbf{1}\{i_t = i\} + m_{t,i}$
- $\|\widehat{\ell}_t m_t\|_{p_t}^2 = \sum_i p_{t,i}^2 (\widehat{\ell}_{t,i} m_{t,i})^2 = (\ell_{t,i_t} m_{t,i_t})^2 \le |\ell_{t,i_t} m_{t,i_t}|$
- let $m_{t,i}$ be the **most recently observed loss** for arm i, then $\sum_t |\ell_{t,i_t} m_{t,i_t}| = \sum_i \sum_{t:i_t=i} |\ell_{t,i} m_{t,i}|$

Optimistic FTRL with the log-barrier regularizer $\psi(p) = -\sum_{i=1}^{K} \ln p_i$,

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \textcolor{red}{m_t} + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\textstyle \sum_{t=1}^T \left\langle p_t - p^\star, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_\star) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^T \|\widehat{\ell}_t - m_t\|_{p_t}^2$$

- $\psi(p^*) \min_p \psi(p) \le K \ln T$ as before
- use variance-reduced estimators $\widehat{\ell}_{t,i} = rac{\ell_{t,i} m_{t,i}}{p_{t,i}} \mathbf{1}\{i_t = i\} + m_{t,i}$
- $\|\widehat{\ell}_t m_t\|_{p_t}^2 = \sum_i p_{t,i}^2 (\widehat{\ell}_{t,i} m_{t,i})^2 = (\ell_{t,i_t} m_{t,i_t})^2 \le |\ell_{t,i_t} m_{t,i_t}|$
- let $m_{t,i}$ be the most recently observed loss for arm i, then $\sum_{t} |\ell_{t,i_t} m_{t,i_t}| = \sum_{i} \sum_{t:i_t=i} |\ell_{t,i} m_{t,i}| \leq \sum_{t,i} |\ell_{t,i} \ell_{t-1,i}|$

Optimistic FTRL with the log-barrier regularizer $\psi(p) = -\sum_{i=1}^{K} \ln p_i$,

$$p_t = \operatorname*{argmin}_{p \in \Delta_K} \left\langle p, \textcolor{red}{m_t} + \sum_{\tau < t} \widehat{\ell}_\tau \right\rangle + \frac{1}{\eta} \psi(p)$$

$$\sum_{t=1}^{T} \left\langle p_t - p^*, \widehat{\ell}_t \right\rangle \lesssim \frac{\psi(p_*) - \min_p \psi(p)}{\eta} + \eta \sum_{t=1}^{T} \|\widehat{\ell}_t - m_t\|_{p_t}^2$$

- $\psi(p^*) \min_p \psi(p) \le K \ln T$ as before
- ullet use variance-reduced estimators $\widehat{\ell}_{t,i} = rac{\ell_{t,i} m_{t,i}}{p_{t,i}} \mathbf{1}\{i_t = i\} + m_{t,i}$
- $\|\widehat{\ell}_t m_t\|_{p_t}^2 = \sum_i p_{t,i}^2 (\widehat{\ell}_{t,i} m_{t,i})^2 = (\ell_{t,i_t} m_{t,i_t})^2 \le |\ell_{t,i_t} m_{t,i_t}|$
- let $m_{t,i}$ be the most recently observed loss for arm i, then $\sum_{t} |\ell_{t,i_t} m_{t,i_t}| = \sum_{i} \sum_{t:i_t=i} |\ell_{t,i} m_{t,i}| \leq \sum_{t,i} |\ell_{t,i} \ell_{t-1,i}|$
- $\mathbb{E}[\text{Reg}] = \widetilde{\mathcal{O}}\left(\sqrt{K\sum_{t,i}|\ell_{t,i} \ell_{t-1,i}|}\right)$

Surprisingly powerful for MAB and beyond:

• near-optimal behavior for stochastic losses

(Wei-Luo'18, Ito'21)

Surprisingly powerful for MAB and beyond:

near-optimal behavior for stochastic losses

- (Wei-Luo'18, Ito'21)
- a tool to stabilize algorithm when combined with other regularizers

- near-optimal behavior for stochastic losses (Wei-Luo'18, Ito'21)
- a tool to stabilize algorithm when combined with other regularizers
 - ► log-barrier + Shannon entropy (Bubeck-Cohen-Li'18, Bubeck-Li-Luo-Wei'19, Lee-Luo-Zhang'20, Ito-Tsuchiya-Honda'22)
 - ▶ log-barrier + quadratic regularizer (Luo-Wei-Zheng'18)
 - ▶ log-barrier + Tsallis entropy (Pogodin-Lattimore'20, Jin-Huang-Luo'21)
 - ► log-barrier + Tsallis-Shannon entropy (Erez-Koren'21)

- near-optimal behavior for stochastic losses (Wei-Luo'18, Ito'21)
- a tool to stabilize algorithm when combined with other regularizers
 - ► log-barrier + Shannon entropy (Bubeck-Cohen-Li'18, Bubeck-Li-Luo-Wei'19, Lee-Luo-Zhang'20, Ito-Tsuchiya-Honda'22)
 - ▶ log-barrier + quadratic regularizer (Luo-Wei-Zheng'18)
 - ▶ log-barrier + Tsallis entropy (Pogodin-Lattimore'20, Jin-Huang-Luo'21)
 - ► log-barrier + Tsallis-Shannon entropy (Erez-Koren'21)
- \bullet if increase η occasionally, obtain negative regret term $-\frac{1}{\eta \min_t p_{t,i^\star}}$

- near-optimal behavior for stochastic losses (Wei-Luo'18, Ito'21)
- a tool to stabilize algorithm when combined with other regularizers
 - ► log-barrier + Shannon entropy (Bubeck-Cohen-Li'18, Bubeck-Li-Luo-Wei'19, Lee-Luo-Zhang'20, Ito-Tsuchiya-Honda'22)
 - ► log-barrier + quadratic regularizer (Luo-Wei-Zheng'18)
 - ▶ log-barrier + Tsallis entropy (Pogodin-Lattimore'20, Jin-Huang-Luo'21)
 - ► log-barrier + Tsallis-Shannon entropy (Erez-Koren'21)
- \bullet if increase η occasionally, obtain $\frac{1}{\mathrm{negative\ regret\ term}} \frac{1}{\eta \min_t p_{t,i^\star}}$
 - useful for combining bandit algorithms (notoriously difficult)
 (Agarwal-Luo-Neyshabur-Schapire'17)

- near-optimal behavior for stochastic losses (Wei-Luo'18, Ito'21)
- a tool to stabilize algorithm when combined with other regularizers
 - ► log-barrier + Shannon entropy (Bubeck-Cohen-Li'18, Bubeck-Li-Luo-Wei'19, Lee-Luo-Zhang'20, Ito-Tsuchiya-Honda'22)
 - ► log-barrier + quadratic regularizer (Luo-Wei-Zheng'18)
 - ▶ log-barrier + Tsallis entropy (Pogodin-Lattimore'20, Jin-Huang-Luo'21)
 - ► log-barrier + Tsallis-Shannon entropy (Erez-Koren'21)
- \bullet if increase η occasionally, obtain $\frac{}{\text{negative regret term}} \frac{1}{\eta \min_t p_{t,i^\star}}$
 - useful for combining bandit algorithms (notoriously difficult)
 (Agarwal-Luo-Neyshabur-Schapire'17)
 - useful for obtaining high prob. regret bounds (first efficient and optimal way for linear bandits) (Lee-Luo-Wei-Zhang'20)

Is $\mathcal{O}(\sqrt{L^{\star}K})$ achievable (without any logarithmic factors)?

Is $\mathcal{O}(\sqrt{L^{\star}K})$ achievable (without any logarithmic factors)?

Is $\mathcal{O}(\sqrt{L^{\star}K})$ achievable (without any logarithmic factors)?

Is second-order path-length bound achievable?

• existing bounds are first-order, e.g. $\widetilde{\mathcal{O}}(\sqrt{K\sum_t \|\ell_t - \ell_{t-1}\|_{\infty}})$

Is $\mathcal{O}(\sqrt{L^{\star}K})$ achievable (without any logarithmic factors)?

- existing bounds are first-order, e.g. $\widetilde{\mathcal{O}}(\sqrt{K\sum_t \|\ell_t \ell_{t-1}\|_{\infty}})$
- is $\widetilde{\mathcal{O}}(\mathsf{poly}(K)\sqrt{\sum_t \|\ell_t \ell_{t-1}\|_\infty^2})$ achievable?

Is $\mathcal{O}(\sqrt{L^{\star}K})$ achievable (without any logarithmic factors)?

- ullet existing bounds are first-order, e.g. $\widetilde{\mathcal{O}}(\sqrt{K\sum_t \|\ell_t \ell_{t-1}\|_{\infty}})$
- is $\widetilde{\mathcal{O}}(\mathsf{poly}(K)\sqrt{\sum_t \|\ell_t \ell_{t-1}\|_\infty^2})$ achievable? (yes for full-info)

Is $\mathcal{O}(\sqrt{L^{\star}K})$ achievable (without any logarithmic factors)?

- ullet existing bounds are first-order, e.g. $\widetilde{\mathcal{O}}(\sqrt{K\sum_t \|\ell_t \ell_{t-1}\|_{\infty}})$
- is $\widetilde{\mathcal{O}}(\mathsf{poly}(K)\sqrt{\sum_t \|\ell_t \ell_{t-1}\|_\infty^2})$ achievable? (yes for full-info)
- \bullet for games, first-order means $\frac{1}{T^{3/4}}$ convergence, second order means $\frac{1}{T}$

Is $\mathcal{O}(\sqrt{L^{\star}K})$ achievable (without any logarithmic factors)?

- ullet existing bounds are first-order, e.g. $\widetilde{\mathcal{O}}(\sqrt{K\sum_t \|\ell_t \ell_{t-1}\|_{\infty}})$
- is $\widetilde{\mathcal{O}}(\mathsf{poly}(K)\sqrt{\sum_t \|\ell_t \ell_{t-1}\|_\infty^2})$ achievable? (yes for full-info)
- ullet for games, first-order means $\frac{1}{T^{3/4}}$ convergence, second order means $\frac{1}{T}$
- unknown even for K=2 and $\sum_t \|\ell_t \ell_{t-1}\|_\infty^2 = \mathcal{O}(1)$

Conclusions

Full-info	Bandit

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$
Adaptive regret	small-loss, variance, path-length (second-order)	small-loss, variance, path-length (first-order)

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$
Adaptive regret	small-loss, variance, path-length (second-order)	small-loss, variance, path-length (first-order)
Switching costs		

• switching costs: Reg + $\sum_t \mathbf{1}\{i_t \neq i_{t-1}\}$

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$
Adaptive regret	small-loss, variance, path-length (second-order)	small-loss, variance, path-length (first-order)
Switching costs	$\Theta(\sqrt{T \ln K})$ Kalai-Vempala'05, Geulen-Vöcking-Winkler'10	

• switching costs: Reg + $\sum_t \mathbf{1}\{i_t \neq i_{t-1}\}$

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$
Adaptive regret	small-loss, variance, path-length (second-order)	small-loss, variance, path-length (first-order)
Switching costs	$\Theta(\sqrt{T \ln K})$ Kalai-Vempala'05, Geulen-Vöcking-Winkler'10	$\Theta(T^{2/3}K^{1/3})$ Dekel-Ding-Koren-Peres'14

• switching costs: $\operatorname{Reg} + \sum_t \mathbf{1}\{i_t \neq i_{t-1}\}$

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$
Adaptive regret	small-loss, variance, path-length (second-order)	small-loss, variance, path-length (first-order)
Switching costs	$\Theta(\sqrt{T \ln K})$ Kalai-Vempala'05, Geulen-Vöcking-Winkler'10	$\Theta(T^{2/3}K^{1/3})$ Dekel-Ding-Koren-Peres'14
Interval regret		

- switching costs: Reg + $\sum_{t} \mathbf{1}\{i_t \neq i_{t-1}\}$
- interval regret: $\max_{i^*} \sum_{\tau=s}^t (\ell_{\tau,i_\tau} \ell_{\tau,i^*})$ (for unknown $s \leq t$)

22 / 23

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$
Adaptive regret	small-loss, variance, path-length (second-order)	small-loss, variance, path-length (first-order)
Switching costs	$\Theta(\sqrt{T \ln K})$ Kalai-Vempala'05, Geulen-Vöcking-Winkler'10	$\Theta(T^{2/3}K^{1/3})$ Dekel-Ding-Koren-Peres'14
Interval regret	$\sqrt{(t-s)\ln K}, \ \forall s \leq t$ Luo-Schapire'15, Daniely-Gonen-ShalevShwartz'15	

- switching costs: Reg + $\sum_{t} \mathbf{1}\{i_t \neq i_{t-1}\}$
- interval regret: $\max_{i^*} \sum_{\tau=s}^t (\ell_{\tau,i_\tau} \ell_{\tau,i^*})$ (for unknown $s \leq t$)

22 / 23

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$
Adaptive regret	small-loss, variance, path-length (second-order)	small-loss, variance, path-length (first-order)
Switching costs	$\Theta(\sqrt{T \ln K})$ Kalai-Vempala'05, Geulen-Vöcking-Winkler'10	$\Theta(T^{2/3}K^{1/3})$ Dekel-Ding-Koren-Peres'14
Interval regret	$\sqrt{(t-s)\ln K}, \ \forall s \leq t$ Luo-Schapire'15, Daniely-Gonen-ShalevShwartz'15	$\sqrt{(t-s)K}$ $\stackrel{\checkmark}{\hspace{-0.1cm}{\cal N}}$ \sqrt{TK} $\stackrel{\checkmark}{\hspace{-0.1cm}{\cal V}}$ Daniely-Gonen-ShalevShwartz'15

- switching costs: Reg + $\sum_{t} \mathbf{1}\{i_t \neq i_{t-1}\}$
- interval regret: $\max_{i^*} \sum_{\tau=s}^t (\ell_{\tau,i_\tau} \ell_{\tau,i^*})$ (for unknown $s \leq t$)

22 / 23

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$
Adaptive regret	small-loss, variance, path-length (second-order)	small-loss, variance, path-length (first-order)
Switching costs	$\Theta(\sqrt{T \ln K})$ Kalai-Vempala'05, Geulen-Vöcking-Winkler'10	$\Theta(T^{2/3}K^{1/3})$ Dekel-Ding-Koren-Peres'14
Interval regret	$\sqrt{(t-s)\ln K}, \ \forall s \leq t$ Luo-Schapire'15, Daniely-Gonen-ShalevShwartz'15	$\sqrt{(t-s)K}$ $\stackrel{\checkmark}{\hspace{-0.1cm}{\cal N}}$ \sqrt{TK} $\stackrel{\checkmark}{\hspace{-0.1cm}{\cal V}}$ Daniely-Gonen-ShalevShwartz'15
Switching regret		

- switching costs: Reg + $\sum_{t} \mathbf{1} \{ i_t \neq i_{t-1} \}$
- interval regret: $\max_{i^\star} \sum_{\tau=s}^t (\ell_{\tau,i_\tau} \ell_{\tau,i^\star})$ (for unknown $s \leq t$)
- switching regret: $\max_{i_{t:T}^\star: \sum_t \mathbf{1}\{i_t^\star \neq i_{t-1}^\star\} < S} \sum_{t=1}^T (\ell_{t,i_t} \ell_{t,i_t^\star}) \text{ (for unknown } S)$

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$
Adaptive regret	small-loss, variance, path-length (second-order)	small-loss, variance, path-length (first-order)
Switching costs	$\Theta(\sqrt{T \ln K})$ Kalai-Vempala'05, Geulen-Vöcking-Winkler' 10	$\Theta(T^{2/3}K^{1/3})$ Dekel-Ding-Koren-Peres'14
Interval regret	$\sqrt{(t-s)\ln K}, \ \forall s \leq t$ Luo-Schapire'15, Daniely-Gonen-ShalevShwartz'15	$\sqrt{(t-s)K}$ $\stackrel{\checkmark}{\hspace{-0.1cm}{\cal N}}$ \sqrt{TK} $\stackrel{\checkmark}{\hspace{-0.1cm}{\cal V}}$ Daniely-Gonen-ShalevShwartz'15
Switching regret	$\frac{\sqrt{ST \ln K}, \ \forall S}{\text{implication of interval regret}}$	

- switching costs: Reg + $\sum_t \mathbf{1}\{i_t \neq i_{t-1}\}$
- interval regret: $\max_{i^\star} \sum_{\tau=s}^t (\ell_{\tau,i_\tau} \ell_{\tau,i^\star})$ (for unknown $s \leq t$)
- switching regret: $\max_{i_{t:T}^\star: \sum_t \mathbf{1}\{i_t^\star \neq i_{t-1}^\star\} < S} \sum_{t=1}^T (\ell_{t,i_t} \ell_{t,i_t^\star}) \text{ (for unknown } S)$

	Full-info	Bandit
Minimax regret	$\Theta(\sqrt{T \ln K})$	$\Theta(\sqrt{TK})$
Adaptive regret	small-loss, variance, path-length (second-order)	small-loss, variance, path-length (first-order)
Switching costs	$\Theta(\sqrt{T \ln K})$ Kalai-Vempala'05, Geulen-Vöcking-Winkler'10	$\Theta(T^{2/3}K^{1/3})$ Dekel-Ding-Koren-Peres'14
Interval regret	$\sqrt{(t-s)\ln K}, \ \forall s \leq t$ Luo-Schapire'15, Daniely-Gonen-ShalevShwartz'15	$\sqrt{(t-s)K}$ $\stackrel{\checkmark}{\nearrow}$ \sqrt{TK} $\stackrel{\checkmark}{\checkmark}$ Daniely-Gonen-ShalevShwartz'15
Switching regret	$\frac{\sqrt{ST \ln K}, \ \forall S}{\text{implication of interval regret}}$	

- switching costs: Reg + $\sum_{t} \mathbf{1}\{i_t \neq i_{t-1}\}$
- interval regret: $\max_{i^\star} \sum_{\tau=s}^t (\ell_{\tau,i_\tau} \ell_{\tau,i^\star})$ (for unknown $s \leq t$)
- switching regret: $\max_{i_{t:T}^\star: \sum_t \mathbf{1}\{i_t^\star \neq i_{t-1}^\star\} < S} \sum_{t=1}^T (\ell_{t,i_t} \ell_{t,i_t^\star}) \text{ (for unknown } S)$

Central techniques for adversarial MAB:

Central techniques for adversarial MAB:

 design algorithms for the full-info case first (using classical framework e.g. FTRL, Online Mirror Descent, or Follow-the-Perturbed-Leader)

Central techniques for adversarial MAB:

- design algorithms for the full-info case first (using classical framework e.g. FTRL, Online Mirror Descent, or Follow-the-Perturbed-Leader)
- design loss estimators for the bandit case

Central techniques for adversarial MAB:

- design algorithms for the full-info case first (using classical framework e.g. FTRL, Online Mirror Descent, or Follow-the-Perturbed-Leader)
- design loss estimators for the bandit case
- find the right combination of estimator and regularizer to control variance (using the local norm in the stability term)

Central techniques for adversarial MAB:

- design algorithms for the full-info case first (using classical framework e.g. FTRL, Online Mirror Descent, or Follow-the-Perturbed-Leader)
- design loss estimators for the bandit case
- find the right combination of estimator and regularizer to control variance (using the local norm in the stability term)

Applicable to many other online learning problems with partial info:

Central techniques for adversarial MAB:

- design algorithms for the full-info case first (using classical framework e.g. FTRL, Online Mirror Descent, or Follow-the-Perturbed-Leader)
- design loss estimators for the bandit case
- find the right combination of estimator and regularizer to control variance (using the local norm in the stability term)

Applicable to many other online learning problems with partial info:

 <u>bandits with structures</u>: combinatorial bandits, linear bandits, graph bandits, contextual bandits, convex bandits

Central techniques for adversarial MAB:

- design algorithms for the full-info case first (using classical framework e.g. FTRL, Online Mirror Descent, or Follow-the-Perturbed-Leader)
- design loss estimators for the bandit case
- find the right combination of estimator and regularizer to control variance (using the local norm in the stability term)

Applicable to many other online learning problems with partial info:

- <u>bandits with structures</u>: combinatorial bandits, linear bandits, graph bandits, contextual bandits, convex bandits
- partial monitoring (e.g. apple tasting, dynamic pricing)

Central techniques for adversarial MAB:

- design algorithms for the full-info case first (using classical framework e.g. FTRL, Online Mirror Descent, or Follow-the-Perturbed-Leader)
- design loss estimators for the bandit case
- find the right combination of estimator and regularizer to control variance (using the local norm in the stability term)

Applicable to many other online learning problems with partial info:

- <u>bandits with structures</u>: combinatorial bandits, linear bandits, graph bandits, contextual bandits, convex bandits
- partial monitoring (e.g. apple tasting, dynamic pricing)
- reinforcement learning (Markov decision processes)