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Proposed by Auer, Cesa-Bianchi, Freund, and Schapire, 2002:

Fort=1,...,T,
o learner picks one of K arms: i; € [K] = {1,...,K}

@ simultaneously adversary decides a loss vector ¢; € [0, 1]%
(¢+; denotes the loss for arm 1)

@ learner suffers and only observes loss ¢, ;,

Goal: minimize regret
T
Reg = Inax Z(étﬂ't — Em’*)

Stochastic MAB is a special case where /1, ..., ¢ are iid generated
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Why adversarial?
@ remove any distributional assumptions = more robust algorithms

o useful for playing games against arbitrary opponents

Why regret? (Reg = MaX;x¢|K] ZtT:1(£t,it —{tix))
@ why compare with a fixed arm while losses are changing?

» fixes: interval/switching/dynamic regret, internal /swap regret

@ why compare with the same losses while the behavior has changed?
» make sense for “oblivious” adversary (¢; independent of i1.;—1)
» fix for adaptive adversary: policy regret

o but studying the standard regret is still very meaningful!

» foundation for all other regret measures
» for games, implies convergence to equilibrium/optimal social welfare
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Algorithms are all based on the following recipe:

o first come up with an algorithm that works with full-information
feedback (i.e., ¢; is revealed at the end of round t)

@ then come up with a loss estimator in the bandit setting, to be fed to
the full-info algorithm

@ key challenge: “controlling” the variance of estimators

For this talk:

@ start with the full-information case as a warm-up
@ highlight how to control the variance of estimators

@ highlight the differences between full-info and bandit
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The Expert Problem

Freund-Schapire'97
The full-info counterpart of adversarial MAB
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The Expert Problem

The full-info counterpart of adversarial MAB:

r

Freund-Schapire'97

Fort=1,...,T,
o learner picks one of K arms: i; € [K] £ {1,..., K}

e simultaneously adversary decides a loss vector £; € [0, 1]%
(£+,i denotes the loss for arm 1)

@ learner suffers loss ¢;;, and observes ¢; (instead of only /¢ ;,)

Same goal: minimize regret

Not trivial at all even with full information!
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The Classical Algorithm Littlestone-Warmuth'94, Freund-Schapire'97

At round ¢, sample i; ~ p; € Ak s.t. (for some learning rate n > 0)

Pt,i X exp (—77 > «%)

T<t
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The Classical Algorithm

At round ¢, sample i; ~ p; € Ak s.t. (for some learning rate n > 0)

Pt,i X exp (—77 o s
T<t

)

Littlestone-Warmuth'94, Freund-Schapire'97

called by many names: Hedge, Multiplicative Weights Update (MWU), ...
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A Simple Analysis

Define potential ®; = %ln (Zfil exp(—1> < ET’i)).
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A Simple Analysis

e ?<1—z+2% Y2>0and l; >0

Define potential ®; = %ln (Zfil exp(—n 7<t Em’))- Then &; — ®;_; =

K K
1
ﬁln (Z Pti eXP(-ﬁ@,D) < Eln (Z pei (1 —nlei + 77253,1'))

i=1
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1. (& 1 (&
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=1 =1

K K
1
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T T K
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=1

t=1 i=1
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—In (Z Pti eXP(-U@,D) <-In (Z pei (1 —nlei + 77253,1‘))

T\i= O
K
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Telescoping and rearranging gives:
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Since £7; <1, picking the best 7 gives Reg = O(VT In K) (optimal )
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A More Modern View
Hedge is a special case of Follow-the-Regularized-Leader (FTRL):

p; = argmin <p, Zf7> + %T/)(p)

PEAK <t
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where 1(p) = %ZZ p; Inp; is the (negative) Shannon entropy regularizer.
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PEAK <t

where 1(p) = %ZZ p; Inp; is the (negative) Shannon entropy regularizer.
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where 1(p) = %ZZ pi Inp; is the (negative) Shannon entropy regularizer.

Under some conditions, FTRL (with general ) ensures for any p* € Ak:

S (o —pr ) S LRI v S 112,
K R

o |[6;|12, = ¢ V~2(p)ls (important local nor stability term

@ for Shannon entropy: ||4;]|2 = S py 02,
Py H t”pt Zzpt,l t,0 penalty term
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The EXp3 Algorlthm Auer-CesaBianchi-Freund-Schapire’'02
Obvious issue in MAB: only one coordinate of ¢, is observed

Solution: construct an importance-weighted estimator ¢, with
gtz = 71{215 = 2}

@ non-zero only when ¢ = 4; (the selected arm), thus computable
@ clearly unbiased (IE[ZH] = {;;) since E[1{i; = i}] = pi;

Exp3 (Exponential weight for Exploration and Exploitatlo) =
feeding Hedge with loss estimator /;:  p;; o< exp (—77 D e )

Where is the exploration?
@ every time an arm is selected, its weight gets decreased

@ asymmetry between “losses” and “rewards”
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Regret Analysis for Exp3

Key challenge: the variance of the estimator can be huge

= _ L
Ell; ;] = =5 E[1{i; =i} = —
B = Bl =] =

Haipeng Luo (USC) From Full-Info to Bandit 12 /23



Regret Analysis for Exp3

Key challenge: the variance of the estimator can be huge

- 2, 2,
E[¢?] = 2LE[1{i, =i} = =
72 = i = i) = %

Can't avoid this, but can control how the variance affects the regret.
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Key challenge: the variance of the estimator can be huge
2 2.

Etz
Bl = g Bl =] =

Can't avoid this, but can control how the variance affects the regret. Recall

Z<pt ei*, €t> < — +7722p“ ti (only need Z“ >0)

t=1 i=1
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2 2.

Etl
Bl = g Bl =] =

Can't avoid this, but can control how the variance affects the regret. Recall

Z<pt ei*, €t> < — +7722p“ ti (only need Zf, >0)

t=1 i=1
Taking expectation gives

T K
zzpt,@,i]

t=1 i=1

E[Reg] < — + nk
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2 2.
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Can't avoid this, but can control how the variance affects the regret. Recall

Z <pt e, €t> < — —l— ZZp“ ti (only need /;; > 0)

t=1 i=1
Taklng expectation gives

t=1 =1
T K 2
In K g : . :
=—+nE E E Dt - 42| (magical variance cancellation)
K t=1 i=1 P
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Regret Analysis for Exp3

Key challenge: the variance of the estimator can be huge

~ K 2,
E[¢;.] = 1{1i; =
[ t,z] pt ; [ {Zt Z}] pt ;

Can't avoid this, but can control how the variance affects the regret. Recall

T
Z<pt—€z‘*,?t><%+7722pmm (only need Zt,iZO)

t=1 t=1 i=1
Taking expectation gives (caveat: assuming an oblivious adversary)

zzpnem]

t=1 i=1

E[Reg] < — + nE

l K
- + nE ZZIJM ] (magical variance cancellation)
t=1 i=1 Pt
In K
< - +nTK =O(VTKInhK) (optimal n)
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Q(vTK) Lower Bound

An informal argument:
o first consider ¢; ; ~ Ber(1/2) for all i

e for any algorithm, must exist j € [K] not selected more than % times

@ now secretly change the loss of arm j to ¢, ; ~ Ber(1/2 — \/&/7)

@ the same algorithm won’t realize the change (information
theoretically), so still picks arm j not often enough (e.g. < % times)

@ every time not picking arm j, incur /K/T regret, thus in total,

E[Reg] = Q(VTK)

Note the gap between this and Exp3'’s regret bound O(VTK In K)
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Minimax Algorithm Audibert-Bubeck'09, Abernethy-Lee-Tewari'15
Consider FTRL with the 1/2-Tsallis entropy ¥ (p) = — Zfil Dbi,

p = argmin <p, Z@> + %Mp)

PEAK T<t

Haipeng Luo (USC) From Full-Info to Bandit



Minimax Algorithm Audibert-Bubeck'09, Abernethy-Lee-Tewari'15
Consider FTRL with the 1/2-Tsallis entropy ¥ (p) = — Zfil Di,

p¢ = argmin <p, ZZT> + %1&(]))

PEAK T<t

Recall: L, (e — p*, ) § =Rt 4 5L (142

Haipeng Luo (USC) From Full-Info to Bandit 14 /23



Minimax Algorithm Audibert-Bubeck'09, Abernethy-Lee-Tewari'15
Consider FTRL with the 1/2-Tsallis entropy ¥ (p) = — Zfil Di,

p¢ = argmin <p, ZZT> + %1&(]))

PEAK T<t

Recall: L, (e — p*, ) § =Rt 4 5L (142

® ¢ (p*) — min, 9 (p) < VK

Haipeng Luo (USC) From Full-Info to Bandit 14 /23



Minimax Algorithm Audibert-Bubeck'09, Abernethy-Lee-Tewari'15
Consider FTRL with the 1/2-Tsallis entropy ¥ (p) = — Zfil Di,

p¢ = argmin <p, ZE > + %1&(]))

PEAK T<t

Recall: L, (e — p*, ) § =Rt 4 5L (142

® ¢ (p*) — min, 9 (p) < VK

o |02, = 8TV 20l = X, p iR,

Haipeng Luo (USC) From Full-Info to Bandit 14 /23



Minimax Algorithm Audibert-Bubeck'09, Abernethy-Lee-Tewari'15
Consider FTRL with the 1/2-Tsallis entropy ¥ (p) = — Zfil Di,

p¢ = argmin <p, ZE > + %zb(p)

PEAK T<t

Recall: 3.7, <pt P €t> S w‘“?Zt 1 Wtht

recall: E[@?Z] = ]E[l{zt =i} = p“

® ¢ (p*) — min, 9 (p) < VK

"¢
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p¢ = argmin <p, ZE > + %1&(]))

PEAK T<t
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Minimax Algorithm Audibert-Bubeck'09, Abernethy-Lee-Tewari'15
Consider FTRL with the 1/2-Tsallis entropy ¥ (p) = — Zfil Di,

L A

Shannon | 1/2-Tsallis

penalty In K VK

7] T 7
Recall: 37 1241 I14ll5,

stability K VK
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Recall: 37 1241 I14ll5,

stability K VK

o ¢(p*) — min, ¥(p) < VK
o |62, =0V ()l = X p i B B X et < VK
o E[Reg] S VK (% +77T)

Haipeng Luo (USC) From Full-Info to Bandit 14 /23



Minimax Algorithm Audibert-Bubeck'09, Abernethy-Lee-Tewari'15
Consider FTRL with the 1/2-Tsallis entropy ¥ (p) = — ZZK1

bi,
Shannon | 1/2-Tsallis
penalty In K VK
Recall: $°7] T 172
20 stability K VK n2 = | tht

® (p*) — min, ¢(p) < VK

o |62, =0V ()l = X p i B B X et < VK

o E[Reg] < VK (% + nT) = O(VTK) (optimal n)
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Minimax Algorithm Audibert-Bubeck'09, Abernethy-Lee-Tewari'15
Consider FTRL with the 1/2-Tsallis entropy ¥ (p) = — Zfil Di,

p¢ = argmin <p, ZE > + %zb(p)

PEAK T<t

Recall: -7 (pe — p*, ) S LD b 5T 7312,

o 9 (p*) — miny P(p) < VK
o 162, = BTV 20(pl = Xipi s = Xi yPrilh; < VE
o E[Reg] < VK (% —i—nT) = O(VTK) (optimal 7)

Magical bonus: not only minimax optimal for adversarial losses, but
(surprisingly) also instance-optimal for stochastic losses! (Zimmert-Seldin'19)
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Beyond Minimax Optimality:
Adaptive and Problem-Dependent Regret Bounds

Haipeng Luo (USC) Adaptive Regret Bounds



Robustness versus Adaptivity

Worst-case robustness (v T K-regret) might be overly pessimistic. Can we
adapt to easier instances with smaller regret?
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Robustness versus Adaptivity

Worst-case robustness (v T K-regret) might be overly pessimistic. Can we
adapt to easier instances with smaller regret?
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Worst-case robustness (v T K-regret) might be overly pessimistic. Can we
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Robustness versus Adaptivity

Worst-case robustness (v T K-regret) might be overly pessimistic. Can we
adapt to easier instances with smaller regret?

Measures of “easiness”

loss of the best arm

variance of losses
Q= % Zt,i(gtﬂ? - %LZ)
Q* =3, (byi» — - L*)

path-length of losses
V=22 1l — bl
Vx =3l — li14v)

sparsity of rewards
s =max; |1 — £llo

Regret bounds References
~ Allenberg-Auer-Gyorfi-Ottucsdk'06
O(VL*K) e
x Foster-Li-Lykouris-Sridharan-Tardos'16
0(\/QK) Hazan-Kale'll, Bubeck-Cohen-Li'17
O(VQ*K) Wei-Luo'18
O(WVK) Bubeck-Li-Luo-Wei'19
6( /V*K Wei-Luo'18
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Achieving Small-Loss Bounds Foster-Li-Lykouris-Sridharan-Tardos'16

Consider FTRL with the log-barrier regularizer ¢)(p) = — Zfil In p;,

p¢ = argmin <p, ZZT> + %1&(]))

pEAK T<t
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Achieving Small-Loss Bounds

Foster-Li-Lykouris-Sridharan-Tardos'16

K
— i1

Reca

Consider FTRL with the log-barrier regularizer ¢)(p) =
Shannon | 1/2>-Tsallis | log-barrier
penalty InK VK KInT
stability K VK 1

e Y(p*) —
o |[Lt]2, = 6] V2 (p )l =

Inp;,

p (14115,

min, ¢(p) < KInT
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Consider FTRL with the log-barrier regularizer ¢)(p) = — Zfil In p;,

p¢ = argmin <p, ZE > + %zb(p)
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Consider FTRL with the log-barrier regularizer ¢)(p) = — Zfil In p;,

p¢ = argmin <p, ZE > + %zb(p)
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Recall: 3/, <pt ol €t> < weeoming ve) oy ST 1122,

e (p*) —min,p(p) < KInT (picking p* = (1 — L)ej + 7=1)
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Achieving Path-Length Bounds Wei-Luo'18
Optimistic FTRL with the log-barrier regularizer ¥ (p) = — Zfil In p;,

. ~ 1
p; = argmin <p, me + Z€T> + ;w(p)

PEAK T<t
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Optimistic FTRL with the log-barrier regularizer ¥ (p) = — Zfil In p;,
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> log-barrier + Tsallis entropy (Pogodin-Lattimore'20, Jin-Huang-Luo'21)
» log-barrier + Tsallis-Shannon entropy (Erez-Koren'21)

1

o ifi . : ; L
if increase 1) occasionally, obtain negative regret term T

» useful for combining bandit algorithms (notoriously difficult)
(Agarwal-Luo-Neyshabur-Schapire'17)

» useful for obtaining high prob. regret bounds (first efficient and
optimal way for linear bandits) (Lee-Luo-Wei-Zhang'20)
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@ existing bounds are first-order, e.g. (5(\/K Do —i—1loo)

o is O(poly(K)\/>, /¢ — £;-1]|%,) achievable? (yes for full-info)
o for games, first-order means ﬁ convergence, second order means %

e unknown even for K =2 and Y, |4 — 4_1]|2, = O(1)
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e.g. FTRL, Online Mirror Descent, or Follow-the-Perturbed-Leader)

@ design loss estimators for the bandit case
o find the right combination of estimator and regularizer to control
variance (using the local norm in the stability term)
Applicable to many other online learning problems with partial info:

@ bandits with structures: combinatorial bandits, linear bandits, graph
bandits, contextual bandits, convex bandits

@ partial monitoring (e.g. apple tasting, dynamic pricing)

e reinforcement learning (Markov decision processes)
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