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Part 1. Multi-Armed Bandits

 Problem Formulation
* Explore-Then-Exploit

* Upper Confidence Bound
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Bandits

 Bandit problems
* named after a one-armed bandit
 arm: a colloquial term for a slot machine that is pulled to try to win

* bandit: comes from the idea that the machine is a “thief” that takes
your money without offering a guaranteed return

* Multi-armed bandits
* Context: there are multiple slot machines, each with
its own probability of payout
* Goal: the player (gambler) places her bets on a slot
machine to maximize the total reward

* Exploration-Exploitation tradeoff
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Stochastic Multi-Armed Bandit (MAB)

e MAB: A player is facing K arms. At each time ¢, the player pulls one arm
a € [K] and then receives a reward r;(a) € [0, 1]:

Arm1 | (1) ro(1) 0.6 re(1)  r5(1)
Arm 2 1 r2(2) r3(2) 0.2 r5(2)
Arm3 | 71(3) 0.7 rs(3)  ra(3) 0.3

e Stochastic:
Each arm a € [K| has an unknown distribution D, with mean p(a),

such that rewards 1 (a), r2(a), ..., 77 (a) are i.i.d samples from D,

For conventional issue, we will use the “reward language” in stochastic bandits.
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Formulation

Ateachround¢=1,2,---
(1) the player first chooses an arm a; € [K]|;

(2) and then environment reveals a reward r;(a;) € |0, 1];

(3) the player updates the model by the pair (a;, r:(a:)).

* The goal is to minimize the pseudo regret:
T

T
Ry £ C{gﬁ%E Z )= rilar) | =Tula*) = plar)
t=1

t=1 t=1

where a* € arg max, ¢ p(a) is the best arm in the sense of expectation.

* Caveat: note the difference between pseudo regret and the (expected) regret.
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Deploying Exp3 to Stochastic MAB

* Stochastic MAB is a special case of Adversarial MAB

|:> Deploying Exp3 achieves the expected regret (though having gap to pseudo regret).

Theorem 1 (Upper Bound for Exp3). Suppose that ¥t € [T| and a € K],
0 < 4o < 1, then Exp3 with learning rate n = /(In K) /(T K ) guarantees

Zﬁt at} —arél[lﬁ]z&a <0 <\/TKlogK)

where the expectation is taken over the randomness of the algorithm.

E[Regret,| =

|::> Not yet to exploit benign stochastic modeling....  instance-dependent analysis
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Regret Decomposition

* For stochastic MAB, a natural characterization of the arms:
(i) Suboptimality gap: A, = p(a*) — p(a);

(ii) Number of times arm « is pulled in ¢ rounds: n,(a) = 3.'_, 1{as = a}.

* Regret can be reformulated as

T T
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A Natural Solution

* Explore-then-Exploit (ETE):
(1) Do explore for the first Ty round by pulling each arm for 7y / K times;
(2) Do exploit for the rest T'— T round by always pulling @ = arg max, ¢ tir, (@)-

Theorem 1. Suppose that ¥t € [T and a € [K],0 < ri(a) <1, then ETE with
exploration period Ty guarantees

_ T, ToA?
Rr < Z (%—kQTeXp (— SKG)>AG.

a€[K]
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Proof of ETE Regret Bound

Proof. Note the regret decomposition: E[Regret | = Z Ay -nr(a
Below we estimate the random variable nr(a) for each a € K.

pulling strategy a = arg max,¢ g fir, (@)

nr(a) =Ty /K + (T —Ty) Pr{a = a}
< To/K + (T —To) Prijiry(a) > jir, (a”) ;
Note that when pr, (a) > pr, (a*) happens, it implies the one of the following two

rare events must happen:

tir, (a) > (p(a) + p(a*))/2, and piz, (a*) < (p(a) + p(a®))/2.
Otherwise, i1, (a) < (u(a) + p(a®))/2 < pir, (o).
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Proof of ETE Regret Bound

Proof. Note the regret decomposition: E[Regret | = Z Ay -nr(a
Below we estimate the random variable nr(a) for each a € K.

pulling strategy a = arg max,¢ g fir, (@)

nr(a) =Ty /K + (T —Ty) Pr{a = a}

< To/K + (T - TO) Pr {ﬁTo (CL) > :aTo (a*)}
) 1)

< To/K + (T — T) (Pr {ﬁTO<a> > mlal* pla’) } Py {ﬁTo<a*> < et pter) })

Union bound Pr{X UY} < Pr{X} + Pr{Y}

< To/K + (7~ To) Pr { in, a) >
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Proof of ETE Regret Bound

Proof. nr(a) < To/K + (T — Tp) (Pr {ﬁTo(a) > p(a) +M(a*)} +Pr{ﬁT0(a*) < p(a) + p(a®) })

2

2

Hoeffding’s inequality. for independent X; € [0,1],7 € [m], X

1

T m

> X;, wehave

= P { i 0) < L b @) < o) + 52
I:> Rr = Z Agnr(a) < Z <— + 2T exp (—T;)[A{Z>>
a€[K] a€[K]

Advanced Optimization (Fall 2024) Lecture 12. Stochastic Bandits



Issue of ETE

Theorem 1. Suppose that Vt € |T| and a € [K|,0 < ri(a) <1, then ETE with
exploration period Ty guarantees

_ T Ty A2
Rr < Z (%—I—QTGXP (— ;Ka)>Aa.

a€[K]

* Need to tune 1y

~

Tune T, with prior of suboptimality gap A,: E[Regret;] = O(V/T)

Tune T, without prior of suboptimality gap A,: E[Regret ] = O (T2/3)

> Solution: do explore and exploit adaptively.
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Explore-then-Exploit (ETE)

* ETE

Relying on the estimate of the previous 1rounds.

There is no way to revise the estimate!
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Upper Contidence Bound

« UCB
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Upper Contidence Bound

« UCB
With high probability u(a) < UCB,(a) = ji:(a) + 5:(a)
OB UCB, (3)

UCB, (1) . 5i(3)

8,(1) o) @ 2(2) Hilo) @

(1) o 1 e

: pie(2) @
p(l) e

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Contidence Bound

« UCB
With high probability u(a) < UCB,(a) = ji:(a) + 5:(a)

UCB,(2)
UCB,(1) UCB,(3) 5(3)
Bu(1) u(2) @ e
n:(l) @ pis) e
pr 1(2) @
pu(l) @

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Contidence Bound

« UCB
With high probability u(a) < UCB,(a) = ji:(a) + 5:(a)

UCB,(2)
UCB,(1) UCB,(3) 5(3)
Bu(1) u(2) @ e
n:(l) @ pis) e
pr 1(2) @
pu(l) @

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Contidence Bound

« UCB
With high probability u(a) < UCB,(a) = ji:(a) + 5:(a)

UCB(1) UCB,(2) UCB.(3) T 4,3)
Be(1) 2) ® 1:(3) @
. Au() B:(2) %33‘
re(l) @ [:(2) ®
pu(l) @

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Contidence Bound

« UCB
With high probability u(a) < UCB,(a) = ji:(a) + 5:(a)

UCB(1) UCB,(2) UCB.(3) T 4,3)
Be(1) 2) ® 1:(3) @
. Au() B:(2) %33‘
re(l) @ [:(2) ®
(1) ®

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Contidence Bound

« UCB
With high probability u(a) < UCB,(a) = ji:(a) + 5:(a)

UCB,(2) UCB.(3) 7 5,(3)
UCB, (1 K(2) ® 5 3]s
t( > &(1) ! (2) '5 (2) /3233 [ )
(1) e "
u(l) e

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Contidence Bound

« UCB
With high probability u(a) < UCB,(a) = ji:(a) + 5:(a)

UCB;(2) UCB:(3) % 3,(3)
UCB, 285, 3
GO G
fie(1) @
u(l) e

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)

A large UCB means uncertainty or good arm.
Choosing the largest UCB means either exploring or exploiting.
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UCB Algorithm: Formulation

UCB Algorithm
Ateachroundt=1,2,---
(1) Choose arm a; = arg max, ;] UCB;_1(a)
(2) Observe reward r, and update the estimation 7,

(3) Update upper confidence bounds UCB,(a) by new estimation

* Estimation: empirical average

t
te(a) = ! Z 1{as = a}rs(a), where n;(a) is the pulled times of arm «

Tt (CL) s=1

* UCB construction: Hoettding’s inequality
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Construct UCB

Lemma 1 (Estimation error). With probability at least 1 — 2K /T, we have

InT

ne(a)

Va € [K],t € [T], |u(a) — fie(a)] <

Therefore, it suggests UCBy(a) = [is(a) + ( 7, ENSUring pu(a) < UCB(a).

Proof. For each arm a, by Hoeffding inequality, we have

Pr{m<a>—m<a>|s 1““/5)}21_25 PriX —EX] = {i p (~2me?)

2n¢(a) Pr{X - E[X] < - p (—2me’)

Furthermore, by the union bound over all arms and all rounds and letting § = 1/77,

Pr{\me[m,tem,u(a)—@(a)< 1”T}>1—2§ =

ni(a)
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UCB: Distribution-Dependent Bound

Theorem 2 (Distribution-dependent). Suppose that for all t € [T] and a € K],
0 < r(a) < 1, then with probability at least 1 — 2K /T, UCB satisfies

Rr< Y 4ET+AQC’)< 3 l(fT)

a:A\g,>0 a:A\g,>0 a

Proof. With probability at least 1 — 2K /T
Aq, = p(a®) — pla) < UCBy_1(a”) — p(ar) Vo €[] pla) < UCB(a)
< UCB,_1(a;) — pu(az) ar = arg maxX, (g UCB;_1(a)

~ In )
. InT ju(a) — p(a)| < 1/))
T\ meea(a) UCB:(a) 2 fi(a) + /2L
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Proof of UCB Regret Bound

Proof. A,, < 2\/ i

nt—l(at)

Let ¢ be the last time a is selected, then with probability at least 1 — 2K /T,

InT InT
A, <2 = 2
\/ntl(a) \/nT(a) —1
InT

I:> Ry = Z Agnr(a) < A, (4123 + 1) = Z 4 A
a:A\, >0 a

a:A\,>0

Inl’

a

+ A,.
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UCB: Distribution-Dependent Bound

Theorem 2 (Distribution-dependent). Suppose that for all t € [T] and a € K],
0 < r(a) < 1, then with probability at least 1 — 2K /T, UCB satisfies

Rr< Y 4ET+AGC’)< 3 I(ZgT>.

a:A\g,>0 a:A\g,>0 a

e Smaller the A,, larger the regret. Its harder to distinguish the optimal
arm from the suboptimal one.

e However, tiny A, should not lead to larger regret. Always pick arm a
should just lead to Ry = A,T.

::; _ , 4InT distribution-dependent
for < min {52?%] AlT, AZ A, T Aa} also called gap/instance-dependent
a:Ag>0
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Upper Bound and Lower Bound

Theorem 2 (Distribution-dependent). Suppose that for all t € [T] and a € K],
0 < r(a) < 1, then with probability at least 1 — 2K /T, UCB satisfies

Rr< Y 4ET+AGC’)< 3 l(fT)

a:A\g,>0 a:A\g,>0 a

Theorem 4 (Lower Bound for MAB). For any bandit algorithm A, there exists a
sequence of stochastic loss vectors such that

irjf sup E|[Regret;] = Q(VTK)
£lq,..., Lt

Is there any contradiction between the upper bound and lower bound?
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UCB: Distribution-Free Bound

Theorem 3 (Distribution-free). Suppose that for all t € |[T] and a € K],
0 < ri(a) <1, then UCB satisfies

Rr<2VTKWT+ Y A, =0 (\/TKlogT> .

a€[K]
Proof. ~
Rr = Z Agnr(a Z Agnr(a) + Z Agnr(a)
a:A, <A a:Ag,>A

<TA+ Y Aa<4lnT )gTA+4KZnT+ZAa

A2
a:Ag>A a ac[K]

<2VTKInT+ Y A, Choosing A = 2,/K(InT)/T =
a€[K]
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Part 2. Linear Bandits

* Formulation

e Estimator and UCB construction

e LinUCB and Extensions

Advanced Optimization (Fall 2024)
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Stochastic Linear Bandits

* A ubiquitous problem in real life:

NOMNLINEAR
PROGRAMMING

Dynamic Programming
and Dptimal Control

Reinforcement Learning
and Optimal Control

Dynamic Programming Reinforcement Learning Monlinear Programming:  Rollout, Policy Iteration,
and Optimal Control (2 and Optimal Control 3rd Edition and Distributed

Vol Set) Dimitri Bertsekas Dimitri Bertsekas Reinforcement Learning
» Dimitri P. Bertsekas ook Aol 33 ok #ole 26 Dimitri Bertsekas
i A Ay 31 Hardcaver Hardcaver Y 12
Hardcaver $89.00 $89.00 Hardcover

$134.50 $13.13 shipping $16.03 shipping $89.00

$19.02 shipping $13.03 shipping

Dynamic Programming
and Optimal Control

Dynamic Programming
and Optimal Control,
Vol. |, 4th Edition
Dimitri Bertsekas
Wi 16
Hardcover

$89.00

$14.19 shipping

Only 16 left in stock (more...

* Each arm represent a book and has side information;

* Arm set could be very large or even infinite.

Reinforcement \

Learning
"/’

”

Reinforcement Learning,

second edition: An
Introduction (Adaptive
Computation and...

» Richard S. Sutton

o A e oy 478

Hardcover

$80.00
$15.37 shipping

Advanced Optimization (Fall 2024)
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Stochastic LB: Formulation

Stochastic Linear Bandits

Each arm is associated with a feature vector x € X = {x € R?| ||x||s < L}

Ateachroundt=1,2,---

(1) the player first chooses an arm X, from arm set X’;

(2) and then environment reveals a reward r; € R.

* Linear modeling assumption: r,(z) = z ' 0. + n;

— for some unknown parameter 6, € © = {6 | ||0||, < S};

— for some unknown noise: 17, is R-sub-Gaussian random noise;
T

D, A T T
. ; =T « =y X, 0,
Regret measure: Rr max X 0 ; . 0
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Stochastic LB: Formulation

Each arm is associated with a feature vector x € X = {x € R?| ||x||s < L}

Ateachroundt=1,2,---

(1) the player first chooses an arm X, from arm set X’;

(2) and then environment reveals a reward r; € R.

Multi-Armed Bandits Linear Bandits
Arm set | finite arm set [K] infinite arm set X = {||x||» < L}
Moder | Frt@] = p(a) = X0, +n, p(x) =x"0,
Vt € [T],a € [K],r(a) € [0,1] n¢: sub-Gaussian noise
T ] T
Regret Rr=T max ; u(a Rr = Trjia% x'0, — Z XtTH*

Advanced Optimization (Fall 2024)
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Deploying UCB to Linear Bandits

* Linear Bandits is a special case of MAB with infinite arm:

> Why not directly deploy UCB to address Linear Bandits?

Theorem 3 (Distribution-free). Suppose that for all t € [T] and a € [K]|,
0 < ri(a) <1, then UCB satisfies

Rr<2VTKWT+ Y A,=0 (\/TKlogT) .

a€[K]

Infinite arm set (K — 00) leads to meaningless regret guarantee!

:> Haven't exploited the additional contextual feature information !
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LinUCB Algorithm: Formulation

LinUCB Algorithm

Ateachroundt=1,2,---
(1) Select X; = arg max, ., UCB;_;(x)
(2) Observe reward r; and update the estimation

(3) update upper confidence bounds UCB,(x) by new estimation

* Estimation: regularized least square (ridge regression)

t—1
9, = argmin \|0]2 + 3 (X7 0 —r,)
fcRd

s=1

Closed form: @ = Vtill <ZZ;11 rSXS>, Viey = A + Zi;ll X, X

Advanced Optimization (Fall 2024) Lecture 12. Stochastic Bandits
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LinUCB Algorithm

Closed form: 0, = V. 11<ZZ 11 SXS>,V; 1 —>\I—|—Zt 1XXT

 This LS estimator can be updated incrementally.

* Even accelerated by using rank-1 update (Sherman-Morrison-Woodbury
formula), which reduces the computational complexity from O(d?) to O(d?)

Py _1.Xy
1+ X P X,

t:

AN . AN —|—/\
0r =01+ Ky [Tt — X, et—l} known as the Recursive Least Square (RLS) estimator

_ T
Py =P — KXy Py, provably equivalent to the standard LS estimator
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LinUCB Algorithm

Key question: how to construct a proper UCB?

Construct UCB;(x) to ensure that
pn(x) =x'0, < UCB;(x)
2 (%) + B [xly

i

—

-

o

Regularized Least Square Estimator

fie(x) = x "0,

~

0, = argmingepa AJ0]2 + 021 (XT0 - r,)”

Xi11 = argmax, .y UCB,(x)

4

Submit Xt_|_1,
observe ;11 € R

U

)

re = X, 0s + {
|
(

Learning History
X17 Tl)a e (Xt7 Tt)

Advanced Optimization (Fall 2024)
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LinUCB Algorithm

« UCB for stochastic MAB

(1) estimate u(a) by average estimation;
(2) construct upper confidence bound for p(a) by concentration inequalities.

» UCB for stochastic LB (LinUCB)

* More information can be used to estimate expected reward.

UCB estimation LinUCB estimation
t t—1
1 N . 2 T 2
~ N Zl C—alr, 0, = argmin \||0]|5 + g X 0—rs
Mt(a) nt(a) £~ {CL CL}T (CL) PcRd 2 — ( )
i (x) =x'6,
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Construct UCB

Lemma 2 (Estimation error). For any x € X,0 € (0,1), with probability at least
1 — 6, the following holds for all t € |T]

|XT(@ —0,)

Therefore, it suggests UCB;(x) = x 0,451 ||X||Vt—_11, ensuring p(x) < UCB(x).

1 (t—1)L?
< Be-allxlly-1,  where Sy = Ry/2log 5]t dlog [ 1+ N +VAS.

t—1
Proof. 0, — 0, = | (Z erXS> — 0, 0, = | (Zz;ll TSX5>

s=1

t—1 t—1
A (Z (X 0. +ns) X) -Vt (Afd +> XX/ ) 0.

s=1 s=1

t—1 t—1 T
1 =M XX,
— Vvt:ll (Z nsXs — )\6*> V; 1 A + Zs:l §<*s
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Proof of Estimation Error Bound

Proof. ~ _ -
f 4 o — vt (Z s Xs — )\0*> Viog =M+ 302 X X[

s=1

|XT <§t — 9*) < %[y, 6; — 0. Cauchy-Schwarz inequality: |a ' b| < ||al|||0]|
t—1
< Il (IS 10
s=1 Vilh

Core difficulty: The actions { X;}s—1....+ are neither fixed nor independent but
are intricately correlated via the rewards {rs}s—1 . :
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Self-Normalized Concentration

Theorem 4 (Self-normalized concentration for Vector-Valued Martingales). Let {F}}{2, be a filtration. Let
{ne}$2, be a real-valued stochastic process such that n, is Fy-measurable and n, is conditionally R-sub-Gaussian
for some R > O i.e.,

A\ R?
VA ER, Elexp(Ane) | Xi:t, miie—1] < exp ( 9 > :

Let {X;}%°, be an R¥*-valued stochastic process such that X, is F;_,-measurable. Assume that Visa d x d
positive definite matrix. For any t > 0, define

t t
Vi=Vo+ ) XX,  Si=) n.X..
s=1

s=1

Then, for any 0 > 0, with probability at least 1 — 9, forallt > 0,

N

det(V;)z det (V)™
IS¢ 115, - §2R210g( U 56( " >
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Proof of Estimation Error Bound

< 1y Ay

Proof. |XT (@ — 9*)

Theorem 4 (Self-normalized concentration). For any ¢ € (0, 1), with probability
at least 1 — ¢, forallt > 0,

t
> ns X,
s=1

2

N[

det(V;)z det(Vp)

<2R?1 : _ :
Rog( 5 )

t
Tr (V) = Tr(AM) + Tt <Z X, x) ) < Ad + tL? Vi=A+Y" . X, X[

s=1
d d d d
H )\ T d 4 tL2

det(Vp) = det(\) = X4 Vj = Al

‘/t—l
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Proof of Estimation Error Bound

Proof.

(0 -0.) > .
s=1

< ey (

t—1
> X,
s=1

1 L2
= R\/210g (5) + dlog (1 + t)\—d)

1

VA

[AG]y -1 < N, < VAS

1
S ) 12|, <

1 + )‘9*th1>
Vil

< (50

1 tL?
S HXHVt_—11 (R\/Q log <g> —+ dlog (1 -+ V) -+ \/XS>

det (Vt)% det (Vo)_% 1 (Ad+ (t—1)L?
< 2 < 2 _
- < JZR log < 5 <\l 2R?log 5 d

))

L2
det (V;) < </\d+dt
det (V) = \°

O]

;
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LinUCB: Regret Bound

Theorem 5. Let \ = d, the regret of LinUCB is bounded with probability at least 1 — 1/T, by

_ TL L2T ~
Rr <2 Ry/2logT + dlog 1+v + VS T'dlog 1+v :O(dﬁ)

Proof. Let X, = arg maxycx X' 0,, each of the following holds with probability at least 1 — 4,

Vi€ [T], X, 0. < X0y + B || Xully
vt € [T], X, 0. > X0, — By 1 Xelly -2
With probability at least 1 — 24,
vi € [T),X] 0, = X[ 0. < X0 = X700+ By (IXullyr + 11Xl )

<281 1 Xelly=2 s X0, + By | Xl = < X, 00 + Boy | X
t—1 t—1
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LinUCB: Regret Bound

Proof. With probability at least 1 — 26, Vt € [T, X6, -X,0, <28, ||XtHV;_11 :

T T T
Ry =Y (X0, - X]0.) <280 > [IXelly—1 <280 |T D IXe]l 7
t=1

Lemma 4 (Elliptical Potential Lemma). For any sequence {X1,...,Xr} € REXT
suppose Vo = N, V, = V,_1 + Xi X', and || Xy||, < L, then

X% <dlog (1 + ==
;H t”Vt = (108 Ad) proved in Lecture 5

a2 ( L2T

_ L ) L2T
<2 T Xil|ly-1 <2 Tdl 14+ ——
Ry < 207 ;” tlly-1 <287 og( T )
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LinUCB: Regret Bound

Proof. With probability at least 1 — 25, Ry < 207 \/ T'dlog (1 Ty )

_ 12T B 1
RT§25T\/leog (1+)\—d) 5tR\/210g (5>+dlog <1+ﬁ>+\f§*

2
<2 (R\/Qlog (%) + dlog <1+ jj\—d) +\FS> \/leog (1—1— %)

Let § = 1/2T, then with probability at least 1 — 1/7,

_ T T L2T
< — - I
RT_2<R\/210g(2>—|—dlog<1—l— )\d)+\/_5>\/leog<1-l- )\d)

= O(dVT) O
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Improved Algorithms for Linear Stochastic Bandits

Yasin Abbasi-Yadkori Dévid Pil Csaba Szepesvari
abbasiya@ualberta.ca dpal@google.com szepesvalBualberta.ca
Dept. of Computing Science  Dept. of Computing Science ~ Dept. of Computing Science
University of Alberta University of Alberta University of Alberta
Abstract

We improve the theoretical analysis and empirical performance of algorithms for
the stochastic multi-armed bandit problem and the linear stochastic multi-armed
bandit problem. 1In particular, we show that a simple modification of Auer’s
UCB algorithm (Auer, 2002) achieves with high probability constant regret.
More importantly, we modify and, consequently, improve the analysis of the
algorithm for the for linear stochastic bandit problem studied by Auer (2002),
Dani et al. (2008), Rusmevichientong and Tsitsiklis (2010), Li et al. (2010).
Our modification improves the regret bound by a logarithmic factor, though
experiments show a vast improvement. In both cases, the improvement stems
from the construction of smaller confidence sets. For their construction we use a
novel tail inequality for vector-valued martingales.

1 Introduction

Linear stochastic bandit problem is a sequential decision-making problem where in each time step
we have to choose an action, and as a response we receive a stochastic reward, expected value of
which is an unknown linear function of the action. The goal is to collect as much reward as possible
over the course of n time steps. The precise model is described in Section 1.2.

Several variants and special cases of the problem exist differing on what the set of available
actions is in each round. For example, the standard stochastic d-armed bandit problem, introduced
by Robbins (1952) and then studied by Lai and Robbins (1985), is a special case of linear stochastic
bandit problem where the set of available actions in each round is the standard orthonormal basis of
R, Another variant, studied by Auer (2002) under the name “linear reinforcement learning”, and
later in the context of web advertisement by Li et al. (2010), Chu et al. (2011), is a variant when the
set of available actions changes from time step to time step, but has the same finite cardinality in
each step. Another variant dubbed “sleeping bandits”, studied by Kleinberg et al. (2008), is the case
when the set of available actions changes from time step to time step, but it is always a subset of the
standard orthonormal basis of R?. Another variant, studied by Dani et al. (2008), Abbasi-Yadkori
et al. (2009), Rusmevichientong and Tsitsiklis (2010), is the case when the set of available actions
does not change between time steps but the set can be an almost arbitrary, even infinite, bounded
subset of a finite-dimensional vector space. Related problems were also studied by Abe et al
(2003), Walsh et al. (2009), Dekel et al. (2010).

In all these works, the algorithms are based on the same underlying idea—the oprimism-in-the-
face-of-uncerrainty (OFU) principle. This is not surprising since they are solving almost the same
problem. The OFU principle elegantly solves the exploration-exploitation dilemma inherent in the
problem. The basic idea of the principle is to maintain a confidence set for the vector of coefficients
of the linear function. In every round, the algorithm chooses an estimate from the confidence
set and an action so that the predicted reward is maximized, i.e.. estimate-action pair is chosen
optimistically. We give details of the algorithm in Section 2.

Improved algorithms for linear stochastic bandits
{22  Yasin Abbasi-Yadkori, Csaba Szepesvari, David Pal
RZ=HEE 2011
HT£i63  Advances in Neural Information Processing Systems
TASSEE  2312-2320

&7 We improve the theoretical analysis and empirical performance of algorithms for the
stochastic multi-armed bandit problem and the linear stochastic multi-armed bandit
problem. In particular, we show that a simple modification of Auer’s UCB algorithm (Auer,
2002) achieves with high probability constant regret. More importantly, we modify and,
consequently, improve the analysis of the algorithm for the for linear stochastic bandit
problem studied by Auer (2002), Dani et al.(2008), Rusmevichientong and Tsitsiklis
(2010), Li et al.(2010). Our modification improves the regret bound by a logarithmic
factor, though experiments show a vast improvement. In both cases, the improvement
stems from the construction of smaller confidence sets. For their construction we use a
novel tail inequality for vector-valued martingales.

SIFREL #WEIRRE: 2133

445

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

®  Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari.
Improved algorithms for linear stochastic bandits.

Advanced Optimization (Fall 2024)

Lecture 12. Stochastic Bandits 47



Victor H.de la Pena
Tze Leung Lai
Qi-Man Shao

Self-Normalized
Processes

Limit Theory and Statistical Applications

P(Sn > z‘nlﬂvﬂ)l/" A 5 ‘iVI_lf :
b A

@ Springer

Self-Normalized Processes: Limit
theory and Statistical Applications

Victor H. de la Pena, Tze Leung Lai,
and Qi-Man Shao

Probability and Its Applications
Series. Springer. 2009.

Advanced Optimization (Fall 2024)

Lecture 12. Stochastic Bandits 48



Tze Leung Lai (325E)
1945 - 2023
ﬁﬁ IBBAFAITARBIEREIE
—{i14E A\COPSS @A IIR15E

Statistical Science
1986, Vol. 1, No. 2, 276-284

The Contributions of Herbert Robbins to

Mathematical Statistics

Tze Leung Lai and David Siegmund

Herbert Robbins was born on January 12, 1915, in
New Castle, Pennsylvania. In 1931 he entered Har-
vard College at the age of 16. Although his interests
until then had been predominantly literary, he found
himself i ingly attracted to b ics under
the influence of Marston Morse, who during many
long conversations conveyed a vivid sense of the in-
tellectual challenge of creative work in that field
(cf. Page, 1984, p. 7). He received the A.B. summa
cum laude in 1935, and the Ph.D. in 1938, also from

North Carolina at Chapel Hill. Having read [7] and
[10], and greatly impressed by Robbins’ mathematical
skills, Hotelling offered him the position of associate
professor to teach measure theory and probability to
the graduate students in the new department. Robbins
accepted the position and spent the next six years at
Chapel Hill. During this relatively short period Rob-
bins not only studied and developed an increasingly
deep interest in statistics, but he also made a number
of profound contributions to his new field: complete

Harvard. His thesis, in the field of bi ial
topology and written under the supervision of Hassler
Whitney, was published in 1941 [3]. (Numbers in
brackets refer to Robbins’ bibliography at the end of
this article.)

After graduation, Robbins worked for a year at the
Institute for Advanced Study at Princeton as Marston
Morse’s assistant. He then spent the next three years
at New York University as instructor in mathematics.
He became nationally known in 1941 as the coauthor,
with Richard Courant, of the classic What Is Mathe-
matics? [4]. This important book has influenced gen-
erations of mathematics students here and abroad in
many editions and translations. To date more than
100,000 copies have been sold.

g [12], d decision theory [25], sto-
chastic approximation [26], and the sequential design
of experiments [28] to name a few

Aftera G hy 11 ip at the Insti for
Advanced Study during 1952-1953, Robbms moved
from Chapel Hill to Columbia Uni as

and chairman of the Department of Mathematical
Statistics. Since 1953, with the exception of the three
years 1965-1968 spent at Minnesota, Purdue, Berke-
ley, and Michigan, he has been at Columbia, where he
is Higgins Professor Emeritus of Mathematical Sta-
tistics. During this period he has published over 100
papers on a variety of topics in probability and statis-
tics. His most notable contributions include the crea-
tion of the empirical Bayes methodology, the theory

Bandit strategies [edit

Optimal solutions [edit]

Further information: Gittins index

A major breakthrough was the construction of optimal population selection strategies, or policies (that possess uniformly
maximum convergence rate to the population with highest mean) in the work described below.

In the paperl "Asymptotically efficient adaptive allocation rules", Lai and Robbins[?'] |(fo||owing papers of Robbins and his
co-workers going back to Robbins in the year 1952) constructed convergent population selection policies that possess the
fastest rate of convergence (to the population with highest mean) for the case that the population reward distributions are
the one-parameter exponential family. Then, in Katehakis and Robbins[?2! simplifications of the policy and the main proof
were given for the case of normal populations with known variances. The next notable progress was obtained by Burnetas
and Katehakis in the paper "Optimal adaptive policies for sequential allocation problems",[23] where index based policies
with uniformly maximum convergence rate were constructed, under more general conditions that include the case in which

https://en.wikipedia.org/wiki/Multi-armed bandit

ADVANCES IN APPLIED MATHEMATICS 6, 4-22 (1985)

Asymptotically Efficient Adaptive Allocation Rules*
T. L. LAl AND HERBERT ROBBINS

Department of Statistics, Columbia University, New York, New York 10027

1. INTRODUCTION

Let IT; (j =1,..., k) denote statistical populations (treatments, manu-
facturing processes, etc.) specified respectively by univariate density func-
tions f(x; 6,) with respect to some measure », where f(-; -) is known and
the 6; are unknown parameters belonging to some set ©. Assume that
T2 lx1f(x; 8) dv(x) < oo for all # € 8, How should we sample x,, x,,...
sequentially from the k populations in order to achieve the greatest possible
expected value of the sum S, = x, + --- +x, as n — co? Starting with [3]
there has been a considerable literature on this subject, which is often called
the multi-armed bandit problem. The name derives from an imagined slot
machine with k > 2 arms. (Ordinary slot machines with one arm are
one-armed bandits, since in the long run they are as effective as human
bandits in separating the victim from his money.) When an arm is pulled,
the player wins a random reward. For each arm j there is an unknown
prebability distribution I1; of the reward. The player wants to choose at
each stage one of the k arms, the choice depending in some way on the
record of previous trials, so as to maximize the long-run total expected
reward. A more worthy setting for this problem is in the context of
sequential clinical trials, where there are k treatments of unknown efficacy
to be used in treating a long sequence of patients.

An adaptive allocation rule ¢ is a sequence of random variables @, @,,...
taking values in the set {1,...,k} and such that the event {¢,=j}
(“sample from II; at stage n”’) belongs to the o-field &#,_; generated by
the previous values @, x;,...,¢,_1, X,_;. Let p(8) = f"_"mxf(x, ) dv(x).

*Research supported by the National Science Foundation and the National Institutes of
Health. This paper was delivered at the Statistical Research Conference at Cornell University,
July 6-9, 1983, in memory of Jack Kiefer and Jacob Wolfowitz.

4
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Copyright © 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.
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Generalized Linear Bandits (GLB)

Extension: want to model non-linear reward functions.

e Generalized linear model: 7; = (X, 0,) +
o Link function p : R — R, which is supposed to be k,,-Lipschitz

1

Examples: linear model p(x) = =, logistic model u(z) =

1+exp(—x)
c, = inf ) (HTX) > ( 1s an important constant
p = WMLA6], <S5 xex} ¥ P
« GLM-UCB
- Construct UCB,(x) to ensure that I:> Xi41 = argmax, c y UCBy(x)
Maximum quasi-likelihood estimator ulx) =x10, < UCB(x) !
t—1 2 [ip(x) + Be—allxlly -1
R . A\ 5 Vi1 Submit X1,
Ht — arg min — ZlOgP@ (T3+1 | XS) ain _C,UHHHZ ﬁ T observe r,11 € R
R4 — 2 re = u(X, 0.) +m
- 5= / N [
Models : :
{ Estimator } ]| [(‘;;fff;j% .H(lj;fj{)}
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Generalized Linear Bandits (GLB)

Parametric Bandits:
The Generalized Linear Case

Sarah Filippi Olivier Cappé
Telecom ParlsTech et CNRS Telecom ParhTech et CNRS
Paris, France Paris, France
filippi@telecom-paristech.fr cappe@telecom-paristech. fr
Aurélien Garivier Csaba Szepesvari
RLAI Laboratory
Telecom ParisTech et CNRS University of Alberta
Paris, France Edmonton, Canada
garivier@telecom-paristech.fr szepesva@ualberta.ca
Abstract

We consider structured multi-armed bandit problems based on the Generalized
Linear Model (GLM) framework of statistics. For these bandits, we propose a new
algorithm, called GLM-UCB. We derive finite time, high probability bounds on
the regret of the algorithm, extending previous analyses developed for the linear
bandits to the non-linear case. The analysis highlights a key difficulty in generaliz-
ing linear bandit algorithms to the non-linear case, which is solved in GLM-UCB
by focusing on the reward space rather than on the parameter space. Moreover, as
the actual ef of current ized bandit algorithms is often poor in
practice, we provide a tuning method based on asymptotic arguments, which leads
to significantly better practical performance. We present two numerical experi-
ments on real-world data that illustrate the potential of the GLM-UCB approach.
Keywords: multi-armed bandit, parametric bandits, generalized linear models,
UCB, regret minimization.

1 Introduction

In the classical K-armed bandit problem, an agent selects at each time step one of the K arms and
receives a reward that depends on the chosen action. The aim of the agent is to choose the sequence

of arms to be played so as to maximize the cumulated reward. There is a fundamental trade-off

between gathering experimental data about the reward distribution (exploration) and exploiting the
arm which seems to be the most promising.

In the basic multi-armed bandit problem, also cnllcd the independent bandits problcm the
rewards are assumed to be random and distributed i ding to i
distribution that is specific to each arm —see [1, 2, 3, 4] and references therein. Recently. structured
bandit problems in which the distributions of the rewards pertaining to each arm are connected
by a common unknown parameter have received much attention [5, 6, 7, 8, 9]. This model is
motivated by the many practical applications where the number of arms is large, but the payoffs are
interrelated. Up to know, two different models were studied in the literature along these lines. In
one model, in each times step, a side-information, or context, is given to the agent first. The payoffs
of the arms depend both on this side information and the index of the arm. Thus the optimal arm
changes with the context [5, 6, 9]. In the second, simpler model, that we are also interested in here,
there is no side-information, but the agent is given a model that describes the possible relations

Online (Multinomial) Logistic Bandit:
Improved Regret and Constant Computation Cost

Yu-Jie Zhang! Masashi Sugiyama®'!
! The University of Tokyo, Chiba, Japan
2 RIKEN AIP, Tokyo, Japan

Abstract

This paper investigates the logistic bandit problem, a variant of the generalized
linear bandit model that utilizes a logistic model to depict the feedback from an
action. While most existing research focuses on the binary logistic bandit problem.
the multinomial case, which considers more than two possible feedback values.
offers mucm practical relevance and adaptability for use in complex decision-
making problems such as reinforcement learning.  In this paper, we provide an
d|“0|ll|lm that enjoys both statistical and computational efficiency for the logistic
bandit problem. In the bina se, our method improves the state- “of-the-art blmuy
logistic bandit method by redu ng the per-round computation cost from O(log T)

to O( ) with respect to the time “horizon T, while still preserving the minimax
optimal guarantee up to logarithmic factors. In the multinomial case, with K + 1
potential feedback values, our algorithm achieves an O(K v/T) regret bound with
O(1) computational cost per round. The result not only improves the O(Kv/~T)
bound for the best-known tractable algorithm—where the large constant x increases
exponentially with the diameter of the parameter domai; —hm also reduces the
O(T) computational complexity demanded by the previous method.

1 Introduction

The stochastic linear bandit (SLB) [1L12L3] problem is a natural generalization of the classic stochastic
multi-armed bandit problem [4] by incorporating side information into the decision-making process.
In the SLB problem. a linear model is used to characterize the relationship between the reward
¢ € R and the learner’s action x; € X’ C RY, whereas such an assumption is not always satisfied
in real-world applications. Consequently, various models have been developed to account for the
non-linear reward, including the generalized linear bandit (GLB) model [5] and kernelized bandit
model [6]. The logis hdn(hl is a specific kind of GLB model by connecting the learner’s d-
dimensional action uml the reward with a logistic model. Most existing work focuses on the binary
case [78,9.[10]. The reward r, € {0, 1} exhibits a binary value and the probability is modeled
by Prlry = 1| x;] = o(w] x¢). where o(2) = 1/(1 + exp(—2)) is a non-linear link function and
w, € W C R? s an unknown parameter. Compared to the SLB model, the logistic bandit model
provides a more precise representation for a wide range of real-world application problems, where
feedback exhibits discrete behavior. Moreover, from a theoretical perspective, it also serves as a basic
setting for understanding the impact of non-linearity of the reward on the decision-making process.
In this paper. we investigate a more general multinomial logistic bandit (MLogB) problem [11]. in
which the learner’s action x; results in feedback ; that could have K + 1 possible outcome values.
The probability of each outcome is characterized with a logistic model (the formal definition is
provided in Section 2.1). The MLogB model is of more practical interest compared to the binary
case. For example, in the real-world application such as online advertising, there could be multiple
possible feedback from customers, including “buy now’ dd to cart”, “view related item”, and

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

NIPS"10 Parametric Bandits: NeurIPS’23 Online (Multinomial) Logistic Bandit:
The Generalized Linear Case Improved Regret and Constant Computation Cost
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Part 3. Advanced Topics
* Best of Both Worlds
* Bayesian optimization

* Linear (Mixture) MDPs
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Advanced Topic: Best of Both Worlds
th at] ~ Join Zém <0 (\/7)

E Zrt(a)—Zm(at) <(9< Z IZT)
t=1 t=1 a:Ag>0 ¢

Can one algorithm achieve the best of both worlds, without knowing
whether the world is stochastic or adversarial?

* Best of adversarial MAB: E[Regret;] =

e Best of stochastic MAB: Rr =

« UCB: can get almost linear regret under the adversarial setting.

* Exp3: can’t have adaptive regret bound in the stochastic case.

> | Surprisingly, using OMD with Tsallis entropy regularizer.

Reference: Julian Zimmert, Yevgeny Seldin. An Optimal Algorithm
for Stochastic and Adversarial Bandits. AISTATS 2019.
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Advanced Topic: Bayesian Optimization

Gaussian Process Optimization in the Bandit Setting:
No Regret and Experimental Design

Niranjan Srinivas
Andreas Krause

Sham Kakade
University of Pennsylvania, Philadelphia, PA, USA

Matthias Seeger
Saarland University, Saarbriicken, Germany

Abstract

Many applications require optimizing an un-
known, noisy function that is expensive to
evaluate. We formalize this task as a multi-
armed bandit problem, where the payoff function
is either sampled from a Gaussian process (GP)
or has low RKHS norm. We resolve the impor-
tant open problem of deriving regret bounds for
this setting, which imply novel convergence rates
for GP optimization. We analyze GP-UCB, an
intuitive upper-confidence based algorithm, and
bound its cumulative regret in terms of maximal
information gain, establishing a novel connection
between GP optimization and experimental de-
sign. Moreover, by bounding the latter in terms
of operator spectra, we obtain explicit sublinear
regret bounds for many commonly used covari-
ance functions. In some important cases, our
bounds have surprisingly weak dependence on
the dimensionality. In our experiments on real
sensor data, GP-UCB compares favorably with
other heuristical GP optimization approaches.

1. Introduction

In most stochastic optimization settings, evaluating
the unknown function is expensive, and sampling
is to be minimized. Examples include choosmg
a.dvertlsements in sponsored search to_naxinias
profit in g =
2007) or |
(Lizotte
to this
paradigm

California Institute of Technology, Pasadena, CA, USA

ICML 2020 ten- YZC‘r

NIRANJAN@CALTECH.EDU
KRAUSEA@QCALTECH.EDU

SKAKADE@WHARTON.UPENN.EDU

MSEEGER@MMCI.UNI-SAARLAND.DE

as possible, for example by maximizing information
gain. The challenge in both approaches is twofold: we
have to estimate an unknown function f from noisy
samples, and we must optimize our estimate over some
high-dimensional input space. For the former, much
progress has been made in machine learning through
kernel methods and Gaussian process (GP) models
(Rasmussen & Williams, 2006), where smoothness
assumptions about f are encoded through the choice
of kernel in a flexible nonparametric fashion. Beyond
Euclidean spaces, kernels can be defined on diverse
domains such as spaces of graphs, sets, or lists.

We are concerned with GP optimization in the multi-
armed bandit setting, where f is sampled from a GP
distribution or has low “complexity” measured in
terms of its RKHS norm under some kernel. We pro-
vide the first sublinear regret bounds in this nonpara-
metric setting, which imply convergence rates for GP
optimization. In particular, we analyze the Gaussian
Process Upper Confidence Bound (GP-UCB) algo-
rithm, a simple and intuitive Bayesian method (Auer
et al., 2002; Auer, 2002; Dani et al., 2008). Whlle
obJectlves are dlﬂerent in the multi-arme

Reward function: r; = f(X;) +

f(x) belongs to RKHS with & (x,x") = [ X x'

m= 1907"/ Pm

H|

Rewrite f(z) = Y. Oppm(z) = o(x) ' 6

e = (X T+ 1+  Linear bandits in RKHS
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£ Time Award!

CTicralizes stochastic

is to be e

Appearing in Proceedings of the 27 International Confer-
ence on Machine Learning, Haifa, Tstael, 2010. Copyright
2010 by the author(s) /owner(s).

mear optimization in a ba.ndlt settmg where the un-
known function comes from a finite-dimensional linear
space. GPs are nonlinear random functions, which can
be represented in an infinite-dimensional linear space.
For the standard linear setting, Dani et al. (2008)

ITteration t

Iteration t + 1

Reference: Gaussian Process Optimization in the Bandit Setting:
No Regret and Experimental Design. ICML 2010.
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Advanced Topic: Linear (Mixture) MDPs

Linear MDPs UCB-VI for Linear MDPs

* Exists feature map ¢:S x A — R * In every round:
* Such that: 1. Run Ridge regression for estimating the model
n—1
rh(s,a) =07 - ¢(s,a), Pu(:|s,a) = puré(s,a),Vh i, = argmin,,cgisixa 3 ||B(sh, af) = 8(shyn) 5 + Allull-

1=0
n—1
B = 8(shi1)d(shah) T(AR) !
=0
2. Construct the exploration bonuses

bR (s, 0) = B/ #(s,0) T (A7) ~26(s, ),

3. Run optimistic value iterations, and update greedy
policy

* Implies a low-rank assumption in large-MDP case

(Jin et al., 2020) Provably efficient reinforcement learning with linear function approxirhation 1

Reference: Yu-Xiang Wang’s course CS292F Lecture 10 Exploration IV: Linear MDP

Advanced Optimization (Fall 2024) Lecture 12. Stochastic Bandits 56


https://sites.cs.ucsb.edu/%7Eyuxiangw/classes/RLCourse-2021Spring/Lectures/Exploration_LinearMDP.pdf

Many more results

 Techniques developed in bandit problems have been applied in many
areas, including machine learning, statistics, operational research, and
information theory [Bubeck and Cesa-Bianchi, 2012; Slivkins, 2019;

Lattimore and Szepesvari, 2020].

Bandit
Algorithms

TOR LATTIMORE
CSABA SZEPESVARI

Va
Wil

|
A

—————TTT

Advanced Optimization (Fall 2024) Lecture 12. Stochastic Bandits 57



Summary

Explore-Then-Exploit algorithm

s STOCHASTIC MAB

STOCHASTIC BANDITS

. ADVANCED TOPICS

{ UCB algorithm

LinUCB algorithm

STOCHASTIC LINEAR BANDIT Extension: generalized linear bandits

Best of both worlds

Bayesian optimization

Linear MDPs

Q&A
Thanks!
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