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(Constrained) Optimization Problem

* We adopt a minimization language
min  f(x)
st. xe X
- optimization variable x € R?
- objective function: f : R — R

- feasible domain: X C R¢

Advanced Optimization (Fall 2024) Lecture 2. Convex Optimization Basics



Unconstrained Optimization

« The optimization variable is feasible over the whole R%-space.

min  f(x)

st. x c R

* It is one of the most basic forms of mathematical optimization and
serves as the foundations.

--- “any optimization problem can be regarded as an unconstrained one”

min  f(x) : min  h(x) = f(x) +dx(x)

st. xe X st xE€E RY barrier/indicator function

07 XEX?
0x(x) = {oo x ¢ X
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Convex Optimization

* This lecture focuses on the following simplified setting:
* Language: minimization problem
 Objective function: continuous and convex

* Feasible domain: a convex subset of Euclidean space

e What is a convex set?
e What is a convex function?

 How to minimize?
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Outline

* Convex Set and Convex Function
* Convex Optimization Problem
* Optimality Condition

* Function Properties
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Part 1. Convex Set and Convex Function

* Definition

* Ball and Ellipsoid

* Convex Hull and Projection
* Convex/Concave Function

« Zeroth, First and Second-order Condition
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Convex Set

Definition 1 (Convex Set). A set X is convex if for any x,y € X, all the points
on the line segment connecting x and y also belong to X, i.e.,

Va € 0,1], ax+ (1 —a)y € X.

convex sets?

v X X
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Examples

* A line segment is convex.
e A ray, which has the form {xy + v | § > 0}, where v # 0, is convex.

* Any subspace is convex.
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Convex Set

Definition 2 (Ball). A (Euclidean) ball (or just ball) in R has the form

B (xo,) = {xc + ru | [lufl2 < 1}

Definition 3 (Ellipsoids). A ellipsoid in R? has the form

E(xe, A) = {xc + Au| |lufls < 1},

\
|
/
/

where A is assumed to be symmetric and positive definite. \ \
\\\ /{p/’
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Convex Set

Definition 4 (Convex Hull). The convex hull of a set X', denoted conv X, is the
set of all convex combinations of points in X :

convX ={01x1 + -+ 0pxp | x; € X,0;, >0,i € [k],01+---+ 0, =1}.

Examples:

\
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Projection onto Convex Sets

Definition 5 (Projection). The projection a given point y onto a convex set X is
defined as the closest point inside the convex set. Formally,

x* = Tly[y] 2 argmin, v x — y].

Note: the projected point x* is unique as long as the norm is strictly convex.

Theorem 1 (Pythagoras Theorem). Let X C R? be a convex set, y € R®. Then for
any z € X we have

ly =zl = [[Tx[y] —z|.
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Convex Function

Definition 6 (Convex Function). A function f : X +— R is called convex if for
any x,y € &,

vae [0,1], f((1-a)x+ay) <(1-a)f(x)+af(y)

a convex function
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Convex/Concave Function

Definition 6 (Convex Function). A function f : X +— R is called convex if for
any x,y € &,

vae [0,1], f((1-a)x+ay) < (1-a)f(x)+af(y).

Definition 7 (Concave Function). A function f : X — R is called concave if for
any x,y € &,

Vae[0,1], f(Q-a)x+ay)=>(1—-a)f(x)+af(y).

* Both definitions have already assumed a convex feasible domain.

* We focus on the “convex language”, clearly the negative of concave functions are convex.
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Convex Function

How to check whether a function is convex or not?

Theorem 2. A function f is convex if and only if dom [ is convex and one of the
following properties hold, for all x,y € dom f and o € [0, 1],

(1) Zeroth order condition: f((1 —a)x+ay) < (1 —a)f(x) + af(y).
(ii) First order condition: f(x) + (Vf(x),y —x) < f(y).

(iii) Second order condition: V2 f(x) = 0.
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Convex Function

If fis convex and differentiable, then f(x) + (Vf(x),y — x) < f(y) for all
X,y € dom f.

the first-order Taylor approximation of f near x

A commonly used equivalent form: f(x) — f(y) < (Vf(x),x —y).
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Convex Function

Examples on R:

Negative logarithm: —log x.

Negative entropy: z log z.

Exponential: e**, where a € R.
Powers: ¢, wherea > 1 or a < 0.

Powers of absolute value: |z|?, where p > 1.

Advanced Optimization (Fall 2024)
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Convex Function

Examples on R<:

- norm: f(x) = ||x||.

- maximum: f(x) = max{xi,...,Tn}.

- Log-sum-exp: f(x) = log (™' 4 --- 4 ™).

Advanced Optimization (Fall 2024)
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Jensen’s Inequality

Theorem 3 (Jensen’s Inequality). If X is a random variable such that X € dom f
with probability one, and f is convex, then we have

FEX]) < E[f(X)].

Intuition:

Convexity: f (01x1 4+ -+ 0px) <01 f(x1) + - + O f (xXi)
ElX] ELf(X)]
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Part 2. Convex Optimization Problem

* Setup
* Subgradients

* Why Convexity?

Advanced Optimization (Fall 2024) Lecture 2. Convex Optimization Basics 19



Constrained Optimization Problem

* We adopt a minimization language
min  f(x)
st. xe X
- optimization variable x € R?
- objective function: f : R — R

- feasible domain: X C R¢
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Convex Optimization Problem

* We adopt a minimization language

min  f(x)
st. ¢i(x)<0, i=1,---,m
a,x="b;, i=1,--,n

- optimization variable x € R¢

- convex objective function: f : R% — R

- convex inequality constraints: g1, ..., gm

21
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Convex Optimization Problem

* We adopt a minimization language

Example 1 (SVM).

min  f(x)
st. ¢i(x) <0, i=1,---,m

alx — .
a, x=>b;, 1=1,---,n

. 2
min  ||w||
w,b

s.t. vy, (WTX,,;—H)) >1, +1=1,---,n

Advanced Optimization (Fall 2024)
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Convex Optimization Problem

* We adopt a minimization language

min  f(x)

Example 2 (NMF decomposition).

. 2
min X - UV,

S.t. Ui,j,‘/;',j > 0

Ref: Lee, DD & Seung, HS (1999). Learning the parts of objects by
non-negative matrix factorization. Nature 401,788-791.

Advanced Optimization (Fall 2024) Lecture 2. Convex Optimization Basics 23



Subgradient

Definition 8 (Subgradient). Let f : X — R be a proper function and let x €
X C R% A vector g € R% is called a subgradient of f at x if

f(y) > f(x) + (g, y — x), forall y € R,

Intuition: subgradient g € 0f(x) can g1
be any variable that makes the line

f(x)+ (g,y — x) below the curve f.

[ P !
X1 - X9
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Subdifferential

Definition 8 (Subgradient). Let f : X — R be a proper function and let x €
X C R% A vector g € R% is called a subgradient of f at x if

f(y) > f(x) + (g, y — x), forall y € R,

Definition 9 (Subdifferential). The set of all subgradients of f at x is called the
subdifferential of f at x and is denoted by 0 f(x),

0f(x) 2 {g € R | f(y) > f(x) + (8,y —x), forally € R*}.
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Subgradient and Subditferential

Example 3. The subdifferential of f(x) = ||x|| at x = 0 is the dual norm unit

ball, i.e., 0f(0) = {g]||[gll+ < 1}.

2

an illustration for 1-dim case

flw) = Iaf
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Subgradient and Subditferential

Example 3. The subdifferential of f(x) = ||x|| at x = 0 is the dual norm unit

ball, i.e., 0f(0) = {g]||[gll+ < 1}.

Proof:
By definition, it suffices to prove that g € Jf(0) if and only if

ly|l > (g,y) holds for all y € R<,

@ if ||g||, < 1, then by the Cauchy-Schwarz inequality,
&) < lyllsll. <yl

@ if ||y|| > (g,y) is true, then by the definition of dual norm,

lgll. = sup{(g,y) | lyll <1} < sup{|lyll| Iyl <1} < L. O
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Subgradient and Subditferential

Example 4. For indicator function f(x) = dx(x), its subdifferential at any point
x € Xis Ny(x)=0f(x) ={g| (g, y —x) <0,Vy € X}.

called normal cone

Proof can be found in Example 3.5 of Amir Beck’s book.
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Existence of Subgradient

* Existence of subgradients implies convexity.

Theorem 5. Let f : X — R be a proper function and assume X is convex.
If for any x € X, its subgradients exist, then f is convex.

- A sufficient condition for deciding a convex function.

- The reverse direction is not always correct (example on the next page).
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Existence of Subgradient

* Convexity doesn’t always imply existence of subgradients.

Example 5. Consider function f : R — (—o0, oo] defined by

f(z) = {ﬁ r=0

00, else

it is convex but does not have a subgradient at x = 0.

—

=
—
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Existence of Subgradient

* Nevertheless, if we only care about the interior of feasible domain,
convexity does imply existent subgradients.

Theorem 6. Let f : X — R be a convex function and assume the feasible domain X
is convex. Consider any interior point x € int(X'). Then 0 f(x) is nonempty.
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How to Compute Subgradient

* General principle: unfortunately, hard to give :(
* Ad-hoc calculations: see earlier examples.

* Good news: easy for convex and differential functions.

Theorem 7. Let f : X — R be a proper and convex function and assume X is convex.
1. If f is differentiable at x, then 0 f(x) = {V f(x)}.

2. Conversely, if f has a unique subgradient, then it is differentiable at x and
0f (x) = 1Vf(x)}
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How to Compute Subgradient

Example 6. The subdifferential of /5-norm f(x) = ||x||, is

({m}, x # 0

{glllgll <1}, x=0

df (x) = «

Proof can be found in Example 3.34 of Amir Beck’s book.
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Why Convexity?

e Local to Global Phenomenon

For convex (and differentiable) functions, gradient is highly informative.

Vf(x) € df(x)

- Local: the gradient V f(x) is actually computed locally over the function
f around x;

- Global: the subdifferential Jf(x) gives global information in the form of
a linear lower bound on the enfire function.
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Why Convexity?

e Local to Global Phenomenon

For convex (unconstrained) optimization, local minima are global minima.

Theorem 8. Let f be convex. If x is a local minimum of f then x is a
global minimum of f.

A simple proof:

Assume that x is local minimum of f. Then for v small enough, for any y,

fx) < f(L=y)x+7y) < (1 —=79)f(x)+7f(y),

which implies f(x) < f(y) and thus x is a global minimum of f.

Advanced Optimization (Fall 2024) Lecture 2. Convex Optimization Basics 35



Part 3. Optimality Condition

* Fermat’s Optimality Condition
* First-order Optimality Condition

 Some Corollaries
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Fermat’s Optimality Condition

 Unconstrained case

Theorem 9 (Fermat’s Optimality Condition). Let f : R¢ — (—o0, 0] be a
proper convex function. Then

x* € argmin{ f(x) | x € R%}

if and only if 0 € Of (x*).

A simple proof:
. Fx) = X .
Combining X .. finishes the proof.
f(x) = f(x*) + (g, x —x), g € 0f(x¥)

Advanced Optimization (Fall 2024) Lecture 2. Convex Optimization Basics

37



Example

Example 7 (Median). Suppose that we are given n different and ordered num-
bers a1 < as < --- < an. Denote A = {ay,as,...,a,} C R. The median of A is
a number satistying

Solving the optimization problem:

From an optimization perspective, solving medians equals to solving the
following optimization problem.

median(A) = arg min {f(g;) =S Z |z — ai‘}
i=1

X
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Example

* Proof of median

From an optimization perspective, solving medians equals to solving the
following optimization problem.

median(A) = arg min {f(g;) =S Z |z — ai‘}
i=1

X

Denote f;(z) = |z — a;|, then it hold that f(z) = fi(x) + fo(x) +-- -+ fn(x) and

(

1, T > a
5’fz(a;) — < —1, xr < a;

(-1L1], z=a

Advanced Optimization (Fall 2024) Lecture 2. Convex Optimization Basics



Example

* Proof of median

Denote f;(x) = |z — a;|, then it hold that f(z) = fi(x) + fo(z) + -+ f,(z) and
rl, xr > a;
afl(x) = _17 r < a;
[-1L1], z=a
Of(x) = 0fi(x) + 0fa(x) + - + Ofn(2)
CJ#iras <z} —F#{iia; > ), r ¢ A,
o\ #f{ita<ay—#{ia; >y +[-1,1], ze€A
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Example

* Proof of median

Of(x) =0f1(r) +0f2(x) + -+ Ifn(x)

f#lia<a)—#lia >}, s A
N\ #la<a}—#{ia >+ [-11], z€A

(i —(n—1i)=2i—n, T € (ai, ait1)

1—1)—(n—4)+|—-1,1|=2t—1—n+|-1,1|, z=aqa,
oy - LD =i+ L1 L1

—n, r < aj

U2 T > Qp
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Example

* Proof of median

(i —(n—1i)=2i—n, T € (ai, ait1)

1—1)—(n—4)+|—-1,1|=2t—1—n+|-1,1|, z=aqa,
o) 4 =D = (=) + L1 L1

—n, r < aq

7, T > Gn

@ Suppose z = a;. Then,

0€df(x)=2i—1-n+[-1,1]]&2i-1-n|<1e2<i<2+1ec=|az, a2
@ Suppose = € (a;;a;41). Then,0 € Of (x) =2i—nei=% <z <€ (az,an)

Combining the two cases finishes the proof (by further checkingn is odd or even). [
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First-order Optimality Condition

e Constrained Case

Theorem 10 (First-order Optimality Condition). Let f be convex and X a closed
convex set on which f is differentiable. Then x* € argmin,y f(x) if and only if
there exists g € O f(x*) such that

(g, x —x*) > 0,Vx € X.

A simple proof: derived from the Fermat’s optimality condition.

—> deploying the Fermat’s optimility condition on the unconstrained “surrogate”
objective
h(x) = f(x) + 0x(x)
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First-order Optimality Condition

 Constrained Case

Theorem 10 (First-order Optimality Condition). Let f be convex and X a closed
convex set on which f is differentiable. Then x* € argmin,y f(x) if and only if
there exists g € O f(x*) such that

(g, x —x*) > 0,Vx € X.

Example 4. For indicator function f(x) = dx(x), its subdifferential at any point

x e Xis Ny(x) =0f(x) =1{g| (g,y —x) <0,Vy € X}.

—> 9h(x) = f(x) + Na(x)

Set Addition: elementwise sum
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First-order Optimality Condition

e Constrained Case

Theorem 10 (First-order Optimality Condition). Let f be convex and X a closed
convex set on which f is differentiable. Then x* € argmin,y f(x) if and only if
there exists g € O f(x*) such that

(g, x —x*) > 0,Vx € X.

Fermat’s optimality condition says that x* is optimal if and only if 0 € 0 f (x*).
0 € Oh(x*) = Of(x*) + Ny (x*)
— O (x*) N N (x*) # 0
—> Jge—-0f(x*) st (g,x—x*)<0,VxelX O
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Karush—Kuhn-Tucker (KKT) Conditions

Theorem 11. Consider the minimization problem

min  f(x)

s.t. g'L<X) < Oa NS [m]7

1)

Harold Kuhn Albert Tucker
1925-2014 1905-1995

Published conditions in 1951.

where f, g1, 92, ..., gm are real-valued convex functions.

1. Let x* be an optimal solution of (1), and assume that Slater’s condition is satis-
fied. Then there exist A1, ..., Ay > 0 for which

0€df (x)+ ) _ Ny (x*) 2)
i=1
)\igi (X*) =0, 1€ [m] (3) Willia Karl;sh
1917-1997
2. If x* satisfies conditions (2) and (3) for some A1, A2, ..., Ay, > 0, then it is an Developed (necessary)
optimal solution of problem (1). conditions in 1939 in his

(unpublished) MS thesis.
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Understanding the role of KKT Conditions

* On the one hand, KKT conditions depict properties of the optimization
solution (consider the dual form and interpretation in SVM).

1. Let x* be an optimal solution of (1), and assume that Slater’s condition is satisfied. Then
there exist \1,..., \,, > 0 for which

0€df (x)+ > Ny (x*)
1=1

AiGi (X*> =0, 1€ [m]

* On the other hand, many optimization methods can be thought of as
iterative approximations to solve the KKT conditions.

2. If x* satisfies conditions (2) and (3) for some A1, A2, ..., A, > 0, then it is an optimal solution
of problem (1).
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Part 4. Function Properties

* Smoothness

* Strong Convexity

Advanced Optimization (Fall 2024)
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Lipschitz Continuity

Definition 1 (Continuity). A function f : R® — R™ is continuous at x € dom
f if for all € > 0 there exists a 6 > 0 with y € dom f, such that

ly =xll2 <0 = |If(y) = fx)ll2 <€

Definition 2 (Lipschitz Continuity). A function f : R" — R™ is G-Lipschitz-
continuous if for all x,y € dom f,

If(x) = fNI < Gllx=yll.
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Lipschitzness and Subgradient

* Relationship between Lipschitzness and bounded subgradient

Theorem 1. Let f : X — R be a convex function. Consider the following two
claims:

(i) Lipschitzness: |f(x) — f(y)| < G||x — y|| forany x,y € X.

(ii) Bounded subgradient: ||g||. < G forany g € 0f(x),x € X.
Then

(a) (ii) = (i).

(b) if X is open, then (i) < (ii).
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Smoothness

Definition 3 (Smoothness). A function f is L-smooth with respect to the || - ||
norm if, for any x,y € dom f,

IVF(x) = V)l < Lix =yl

Smoothness is also called gradient Lipschitz in many literature.

Smoothness is defined over the primal-dual norms, which become ¢5-norm
when specialized to Euclidean space (and then, |V f(x) = Vf(y)|l, < L||x —y],)-
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Smoothness (in Optimization theory)

Definition 4. Let X C R% We denote by Cz’b(X ) the class of functions with
the following properties:

(i) any f € C7°(X) is a times continuously differentiable on X'.

(ii) f’s b-th derivative is Lipschitz continuous on & with constant L:

VP f(x) =V f(y)|l, < LlIx—yll, vx,y € X.

- Lipschitz continuous functions belong to C';)*°(X).

- L-smooth functions can be denoted by C'"' ().

Ref: Lectures on Convex Optimization, Yurii Nesterov. Page 23-24.
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Smoothness

Example 1. Linear function f(x) = w ' x + ¢ is 0-smooth.

Example 2. Quadratic function f(x) = ;x' Ax + w'x + cis || A]

w.r.t. || - ||, norm.

op,p

-smooth

Proof. The proof is direct by the definition of smoothness and the operator norm:

IVf(x) = Vi)l = [Ax = Ayl < [[Alloppllx = ¥llp-

Definition 6 (Matrix Operator Norm). The operator norm (or called induced
norm) of a matrix A € R™*" is defined by

Ax
|l émw{"p

PP I,

xERd,X%O}.

Advanced Optimization (Fall 2024)
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Smoothness

Example 3. Log-sum-exp function f(x) = log (e”* + e*2 4 - - - 4+ €"") is 1-smooth

w.r.t. /o-norm and /..-norm.

Example 4. Function f(x) = % HX”?) is (p — 1)-smooth w.r.t. £,-norm.

Example 5. Function f(x) = /1 + ||x]||2 is 1-smooth w.r.t. £5-norm.

Example 6. Function f(x) = 3 ||x — Ly [x] |? is 1-smooth w.r.t. f5-norm, where

ITy x| denotes the Euclidean projection of x onto a convex domain X'
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Smoothness

Example 5. Function f(x) = /1 + ||x]||2 is 1-smooth w.r.t. £5-norm.

- X
VIxll3 +1

1 xx | 1
—> VZf(x) = (I— )j I <1 []
VIxIE+1 x5 + 1 VIxIE+1

Proof V£(x)

1

Example 6. Function f(x) = 5 ||x — Iy [x] |? is 1-smooth w.r.t. f5-norm, where

ITy x| denotes the Euclidean projection of x onto a convex domain X'
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Smoothness

The next lemma is an equivalent condition of smoothness.

Lemma 1 (Descent Lemma). Let f be an L-smooth function over a given convex set
X. Then for any x,y € X

Fy) < 700+ V10T (y = %) + 5 ly —x]”

Proof: fly) = f(x) = [} (Vf(x Y =),y —x)dt
= f(y)— f(x) = (Vf(x),y —x) = / (Vf(x+ty — %)) — VF(x),y — x)dt

< / IV£(x+ tly — %)) — V)| [y — x| dt

1
L
<Ly - x| [ tdt <y - a
0

Advanced Optimization (Fall 2024) Lecture 2. Convex Optimization Basics 56



Smoothness

Theorem 2 (First-order Characterizations of L-smoothness). Let f : X — R be
a convex function, differentiable over X. Then the following claims are equivalent:

(1) f is L-smooth.

(i) f(y) < f(0)+(Vf(x),y —x)+ 5llx—y|*forallx,y € X.
(iii) f(y) = f(x) +(V(x),y —x) + 5z [[Vf(x) = V)| forall x,y € X.
(i) (Vi(x) = Vf(y),x—y) > LIVI(x) = Vi(y)|2 forall x,y € X.

@) FOx + (1= Ny) > Af(x) + (1= Nf(y) — LA(1 = N)|x — y||? for any
x,y € X and X € [0,1].

Proofs can be found below Theorem 5.8 of Amir Beck’s book.
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Smoothness

Theorem 3 (Second-order Characterization of L-smoothness). Let f be a twice
continuously differentiable function over R, Then for a given L > 0, L-smoothness
w.r.t. the {,-norm (p € |1, <)) is equivalent to

IV f(x)|| <L,

op,p —

for any x € R4,
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Strong Convexity

Definition 5 (Strong Convexity). A function f is o-strongly convex with re-
spect to norm || - || if, for any x,y € dom f and X € [0, 1],

FOX+ (1= Ny) S M)+ (1= NF(y) = ZAL=N)x =y

e Clearly, for generally convex functions, o = 0.

Examples:

- f(x) = HxHi is 2-strongly-convex with respect to norm || - ||,,.

- Negative entropy f(x) = Zle z; In x; over probability distribution (i.e.,
x; € [0,1] and Zle z; = 1) is 1-strongly-convex with respect to norm || - ||;.
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Strong Convexity

Theorem 3 (First-order Characterizations of Strong Convexity). Let f be a proper
closed and convex function. Then for a given o > 0, the followings equal:

(1) f is o-strongly convex.

(ii) Forany x € dom(0f),y € dom(f)and g € 0f(x),

F(y) = f(x) + (&Y — %) + 2 |y — xII”
commonly used

(iii) Forany x,y € dom(0f), and gx € 0f(x),8y € 0f(y),
(gx — 8y, x —y) > ollx — y|*.

(iv) Function f(-) — || - ||* is convex.
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Strong Convexity
Proof: (i)—(ii)

FOY + (L= X)%) S Af(y) + (1= N f(x) = SAL = N]x =y

o S DI iy - T - N -yl

A
A X+ My —x)) — f(x
- Py ) 2 i LN =) =

<)~ Fx) - Slx -yl

f'(x;y — x): the directional derivative of f at point x along direction y — x

Vg € 0f(x), (g8, y—x) < fl(xy—x)

Plugging g = V f(x) finishes the proof. L]
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Strong Convexity

Theorem 4. Let X be a Euclidean space. Then f is o-strongly convex with respect to
norm || - || if and only if the function f(-) — || - ||* is convex.

f is “as least as convex” as a quadratic function.

Example 8. f(x) = 3x' Ax + w'x + cis o-strongly convex w.r.t. the {5-norm

ifand only if A > o1.
Proof: f is o-strongly convex if and only if h(x) = ixT (A — oI)x+w ' x+cis convex

—> V?h(x)=A—0l =0 ]
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Strong Convexity

Theorem 5 (Second-order Characterization of Strong Convexity). Let X be a
Euclidean space. Then f is o-strongly convex with respect to || - || if and only if for any
X, W e X,

w !V f(x)w > o ||wl|”

a more familiar form: HWHQVQf(X)

Furthermore, when using fs-norm, it is equivalent to V2 f(x) = ol.

- Negative entropy f(x) = Zle z; In x; over probability distribution (i.e.,
r; € 0,1] and Z,fizl r; = 1) is 1-strongly-convex.

.
7
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Strong Convexity

Theorem 6. Let f be a proper closed and o-strongly convex function. Then

- f has a unique minimizer, denoted by x*.

- f(x) — f(x*) > |lx — x*||? for all x € dom(f).
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Strongly Convex and Smooth

If function f is both o-strongly convex and L-smooth w.r.t. /5-norm, then

- ol X V?f(x) x LI

- fis y-well-conditioned where v = ¢ /L < 1is called the condition number.
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Relationship

Theorem 7 (Conjugate Correspondence). Consider the conjugate function:

f*(y) = max {{y,x) — f(x)}.

xecX

(a) If the function f is convex and =-smooth w.r.t. the norm ||-||, then its conjugate
f* is o-strongly convex w.r.t. the dual norm || - || ..

(b) If f is proper closed o-strongly convex w.r.t. the norm ||- ||, then f* is 2-smooth
w.r.t. the dual norm || - | ..

Reference: Kakade et al., On the duality of strong convexity and strong
smoothness: Learning applications and matrix regularization. 2009.
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Summary

Definition
Ball and Ellipsoid .
Convex Optimization
CONVEX SET Convex Hull ! i
Subgradients
[ Projection CONVEX OPTIMIZATION Existence of Subgradients
CONVEXITY ] - )
Definition PROBLEM How to Compute Subgradients
Concave Function Why Convexity?
CONVEX FUNCTION -

Zeroth, First and Second-order Condition

Smoothness

Fermat's Optimality Condition

[ FUNCTION PROPERTIES ] { Strong Convexity

[ OPTIMALITY CONDITION { First-order Optimality Condition

Q& A
Thanks!
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