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(Constrained) Optimization Problem
• We adopt a minimization language
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Unconstrained Optimization 
•

• It is one of the most basic forms of mathematical optimization and 
serves as the foundations. 

--- “any optimization problem can be regarded as an unconstrained one”

barrier/indicator function
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Convex Optimization
• This lecture focuses on the following simplified setting: 

• Language: minimization problem
• Objective function: continuous and convex 
• Feasible domain: a convex subset of Euclidean space

• What is a convex set?

• What is a convex function?

• How to minimize?
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Outline
• Convex Set and Convex Function

• Convex Optimization Problem

• Optimality Condition

• Function Properties
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Part 1. Convex Set and Convex Function
• Definition

• Ball and Ellipsoid 

• Convex Hull and Projection

• Convex/Concave Function

• Zeroth, First and Second-order Condition
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Convex Set

convex sets?
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Examples
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Convex Set
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Convex Set

Examples:
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Projection onto Convex Sets

Note: the projected point       is unique as long as the norm is strictly convex. 
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Convex Function

a convex function
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Convex/Concave Function

• Both definitions have already assumed a convex feasible domain.

• We focus on the “convex language”, clearly the negative of concave functions are convex. 



Lecture 2. Convex Optimization Basics Advanced Optimization (Fall 2024) 14

Convex Function
How to check whether a function is convex or not?
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Convex Function
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Convex Function
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Convex Function
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Jensen’s Inequality

Intuition:
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Part 2. Convex Optimization Problem
• Setup

• Subgradients

• Why Convexity?
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Constrained Optimization Problem
• We adopt a minimization language
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Convex Optimization Problem
• We adopt a minimization language
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Convex Optimization Problem
• We adopt a minimization language
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Convex Optimization Problem
• We adopt a minimization language

Ref: Lee, DD & Seung, HS (1999). Learning the parts of objects by 
non-negative matrix factorization. Nature 401,788-791.
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Subgradient
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Subdifferential



Lecture 2. Convex Optimization Basics Advanced Optimization (Fall 2024) 26

Subgradient and Subdifferential

an illustration for 1-dim case
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Subgradient and Subdifferential

Proof:
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Subgradient and Subdifferential

called normal cone

Proof can be found in Example 3.5 of Amir Beck’s book.
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Existence of Subgradient
• Existence of subgradients implies convexity.
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Existence of Subgradient
• Convexity doesn’t always imply existence of subgradients.
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Existence of Subgradient
• Nevertheless, if we only care about the interior of feasible domain, 

convexity does imply existent subgradients.



Lecture 2. Convex Optimization Basics Advanced Optimization (Fall 2024) 32

How to Compute Subgradient
• General principle: unfortunately, hard to give :( 
• Ad-hoc calculations: see earlier examples.
• Good news: easy for convex and differential functions. 
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How to Compute Subgradient

(gradient of norm)

(discussed earlier)

Proof can be found in Example 3.34 of Amir Beck’s book.
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Why Convexity?
• Local to Global Phenomenon
   For convex (and differentiable) functions, gradient is highly informative.



Lecture 2. Convex Optimization Basics Advanced Optimization (Fall 2024) 35

• Local to Global Phenomenon
   For convex (unconstrained) optimization, local minima are global minima.

Why Convexity?

A simple proof:

(local minima)
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Part 3. Optimality Condition
• Fermat’s Optimality Condition

• First-order Optimality Condition

• Some Corollaries
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Fermat’s Optimality Condition
• Unconstrained case

A simple proof:

Combining finishes the proof.
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Example

Solving the optimization problem:
From an optimization perspective, solving medians equals to solving the 
following optimization problem.
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• Proof of median

Example

From an optimization perspective, solving medians equals to solving the 
following optimization problem.
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• Proof of median

Example
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• Proof of median

Example
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• Proof of median

Example

Combining the two cases finishes the proof (by further checking    is odd or even).
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First-order Optimality Condition
• Constrained Case

A simple proof: derived from the Fermat’s optimality condition.
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First-order Optimality Condition
• Constrained Case

Set Addition: elementwise sum
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First-order Optimality Condition
• Constrained Case
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Karush–Kuhn–Tucker (KKT) Conditions

Albert Tucker
1905-1995

Harold Kuhn
1925-2014

William Karush
1917-1997

Published conditions in 1951.

Developed (necessary) 
conditions in 1939 in his 
(unpublished) MS thesis.
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Understanding the role of KKT Conditions
• On the one hand, KKT conditions depict properties of the optimization

solution (consider the dual form and interpretation in SVM).

• On the other hand, many optimization methods can be thought of as
iterative approximations to solve the KKT conditions.
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Part 4. Function Properties

• Smoothness

• Strong Convexity
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Lipschitz Continuity
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Lipschitzness and Subgradient
• Relationship between Lipschitzness and bounded subgradient
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Smoothness

Smoothness is also called gradient Lipschitz in many literature. 
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Smoothness (in Optimization theory)

Ref: Lectures on Convex Optimization, Yurii Nesterov. Page 23-24.
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Smoothness

Proof.
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Smoothness
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Smoothness

Proof:
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Smoothness
The next lemma is an equivalent condition of smoothness.

Proof: (calculus)

(Cauchy-Schwarz)

(smoothness)
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Smoothness

Proofs can be found below Theorem 5.8 of Amir Beck’s book.
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Smoothness
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Strong Convexity

Examples:
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Strong Convexity

commonly used
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Strong Convexity

(rearrange)

Proof: (i)→(ii)
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Strong Convexity

Proof:
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Strong Convexity
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Strong Convexity
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Strongly Convex and Smooth
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Relationship

Reference: Kakade et al., On the duality of strong convexity and strong 
smoothness: Learning applications and matrix regularization. 2009.

https://home.ttic.edu/%7Eshai/papers/KakadeShalevTewari09.pdf
https://home.ttic.edu/%7Eshai/papers/KakadeShalevTewari09.pdf
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Summary

Q & A
Thanks!
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