

Lecture 2. Convex Optimization Basics

Advanced Optimization (Fall 2024)

Peng Zhao zhaop@lamda.nju.edu.cn Nanjing University

(Constrained) Optimization Problem

• We adopt a *minimization* language

 $\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in \mathcal{X} \end{array}$

- optimization variable $\mathbf{x} \in \mathbb{R}^d$
- objective function: $f : \mathbb{R}^d \mapsto \mathbb{R}$
- feasible domain: $\mathcal{X} \subseteq \mathbb{R}^d$

Unconstrained Optimization

• The optimization variable is feasible over the whole \mathbb{R}^d -space.

 $\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in \mathbb{R}^d \end{array}$

• It is one of *the most basic* forms of mathematical optimization and serves as the foundations.

--- "any optimization problem can be regarded as an unconstrained one"

$$\begin{array}{cccc} \min & f(\mathbf{x}) & & & & \\ \text{s.t.} & \mathbf{x} \in \mathcal{X} & & & \\ & & & \\ \end{array} & \begin{array}{cccc} \min & h(\mathbf{x}) \triangleq f(\mathbf{x}) + \underline{\delta_{\mathcal{X}}(\mathbf{x})} \\ & & & \\ & & & \\ \end{array} \\ \begin{array}{ccccc} \text{s.t.} & \mathbf{x} \in \mathbb{R}^d & & \\ \end{array} \\ \begin{array}{ccccc} \text{barrier/indicator function} \\ & & \\ \delta_{\mathcal{X}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{X}, \\ \infty, & \mathbf{x} \notin \mathcal{X}. \end{cases} \end{array}$$

Advanced Optimization (Fall 2024)

Convex Optimization

- This lecture focuses on the following simplified setting:
 - Language: *minimization* problem
 - Objective function: *continuous* and *convex*
 - Feasible domain: a *convex* subset of *Euclidean space*

- What is a convex set?
- What is a convex function?
- How to minimize?

Outline

- Convex Set and Convex Function
- Convex Optimization Problem
- Optimality Condition
- Function Properties

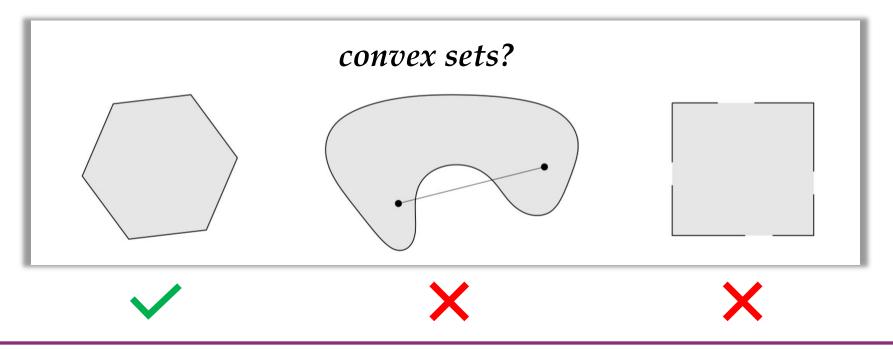
Part 1. Convex Set and Convex Function

- Definition
- Ball and Ellipsoid
- Convex Hull and Projection
- Convex/Concave Function
- Zeroth, First and Second-order Condition

Convex Set

Definition 1 (Convex Set). A set \mathcal{X} is convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, all the points on the line segment connecting \mathbf{x} and \mathbf{y} also belong to \mathcal{X} , i.e.,

$$\forall \alpha \in [0,1], \ \alpha \mathbf{x} + (1-\alpha)\mathbf{y} \in \mathcal{X}.$$



Examples

- A line segment is convex.
- A ray, which has the form $\{\mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0\}$, where $\mathbf{v} \neq \mathbf{0}$, is convex.
- Any subspace is convex.

Convex Set

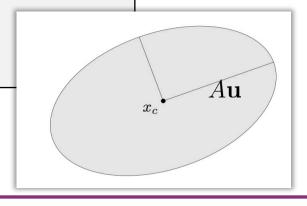
Definition 2 (Ball). A (Euclidean) ball (or just ball) in \mathbb{R}^d has the form

$$\mathbb{B}(\mathbf{x}_c, r) = \{\mathbf{x}_c + \mathbf{r}\mathbf{u} \mid \|\mathbf{u}\|_2 \le 1\}.$$

Definition 3 (Ellipsoids). A ellipsoid in \mathbb{R}^d has the form

$$\mathcal{E}(\mathbf{x}_c, A) = \{\mathbf{x}_c + \mathbf{A}\mathbf{u} \mid \|\mathbf{u}\|_2 \le 1\},\$$

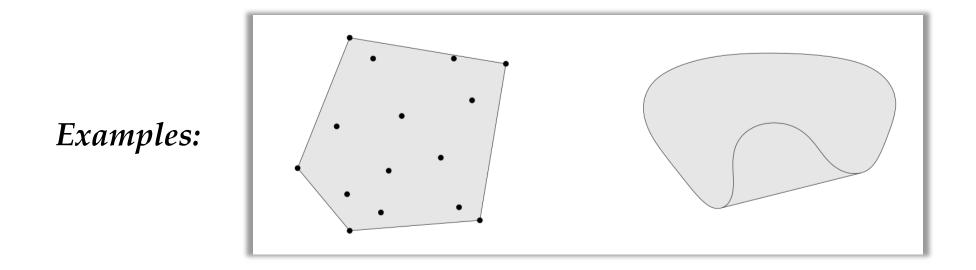
where *A* is assumed to be symmetric and positive definite.



Convex Set

Definition 4 (Convex Hull). The convex hull of a set X, denoted conv X, is the set of all convex combinations of points in X:

conv
$$\mathcal{X} = \{\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k \mid \mathbf{x}_i \in \mathcal{X}, \theta_i \ge 0, i \in [k], \theta_1 + \dots + \theta_k = 1\}$$



Advanced Optimization (Fall 2024)

Projection onto Convex Sets

Definition 5 (Projection). The projection a given point y onto a convex set X is defined as the closest point inside the convex set. Formally,

$$\mathbf{x}^{\star} = \Pi_{\mathcal{X}}[\mathbf{y}] \triangleq \arg\min_{\mathbf{x}\in\mathcal{X}} \|\mathbf{x} - \mathbf{y}\|.$$

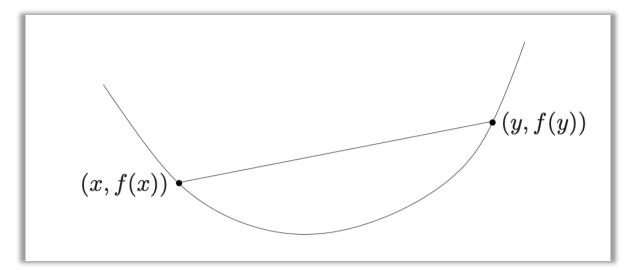
Note: the projected point \mathbf{x}^* is unique as long as the norm is strictly convex.

Theorem 1 (Pythagoras Theorem). Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a convex set, $\mathbf{y} \in \mathbb{R}^d$. Then for any $\mathbf{z} \in \mathcal{X}$ we have $\|\mathbf{y} - \mathbf{z}\| \ge \|\Pi_{\mathcal{X}}[\mathbf{y}] - \mathbf{z}\|.$

Advanced Optimization (Fall 2024)

Definition 6 (Convex Function). A function $f : \mathcal{X} \mapsto \mathbb{R}$ is called *convex* if for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$\forall \alpha \in [0, 1], \quad f((1 - \alpha)\mathbf{x} + \alpha \mathbf{y}) \le (1 - \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}).$$



a convex function

Advanced Optimization (Fall 2024)

Convex/Concave Function

Definition 6 (Convex Function). A function $f : \mathcal{X} \mapsto \mathbb{R}$ is called *convex* if for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$\forall \alpha \in [0, 1], \quad f((1 - \alpha)\mathbf{x} + \alpha \mathbf{y}) \leq (1 - \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}).$$

Definition 7 (Concave Function). A function $f : \mathcal{X} \mapsto \mathbb{R}$ is called *concave* if for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$\forall \alpha \in [0, 1], \quad f((1 - \alpha)\mathbf{x} + \alpha \mathbf{y}) \ge (1 - \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}).$$

- Both definitions have already assumed a *convex* feasible domain.
- We focus on the *"convex language"*, clearly the negative of concave functions are convex.

How to check whether a function is convex or not?

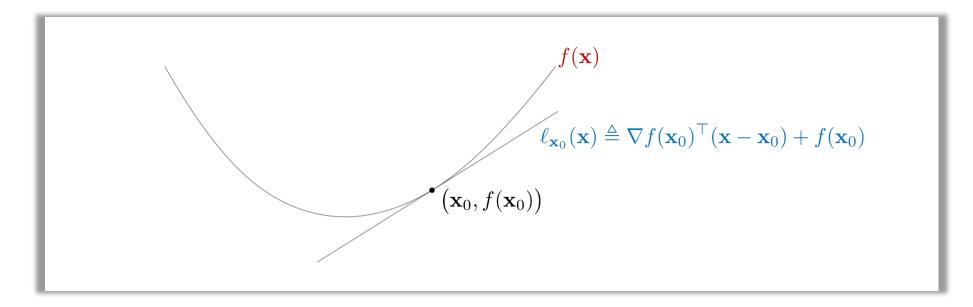
Theorem 2. A function f is convex **if and only if** dom f **is convex** and one of the following properties hold, for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$ and $\alpha \in [0, 1]$,

- (i) Zeroth order condition: $f((1 \alpha)\mathbf{x} + \alpha \mathbf{y}) \le (1 \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y})$.
- (ii) First order condition: $f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle \leq f(\mathbf{y})$.

(iii) Second order condition: $\nabla^2 f(\mathbf{x}) \succeq 0$.

If *f* is convex and differentiable, then $f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \leq f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$. *the first-order Taylor approximation of f near* \mathbf{x}

A commonly used equivalent form: $f(\mathbf{x}) - f(\mathbf{y}) \leq \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle$.



Examples on \mathbb{R} :

- Exponential: e^{ax} , where $a \in \mathbb{R}$.
- Powers: x^a , where $a \ge 1$ or $a \le 0$.
- Powers of absolute value: $|x|^p$, where $p \ge 1$.
- Negative logarithm: $-\log x$.
- Negative entropy: $x \log x$.

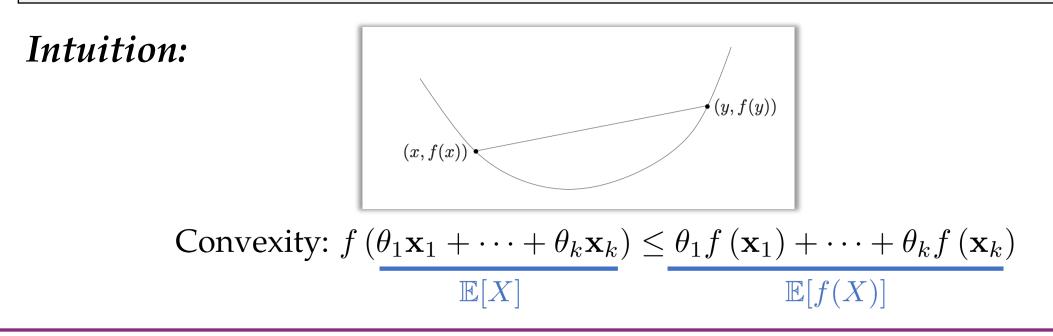
Examples on \mathbb{R}^d :

- norm: $f(\mathbf{x}) = \|\mathbf{x}\|$.
- maximum: $f(\mathbf{x}) = \max \{x_1, ..., x_n\}.$
- Log-sum-exp: $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n}).$

Jensen's Inequality

Theorem 3 (Jensen's Inequality). *If* X *is a random variable such that* $X \in \text{dom } f$ *with probability one, and* f *is convex, then we have*

 $f(\mathbb{E}[X]) \le \mathbb{E}[f(X)].$



Advanced Optimization (Fall 2024)

Part 2. Convex Optimization Problem

- Setup
- Subgradients
- Why Convexity?

Constrained Optimization Problem

• We adopt a *minimization* language

 $\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in \mathcal{X} \end{array}$

- optimization variable $\mathbf{x} \in \mathbb{R}^d$
- objective function: $f : \mathbb{R}^d \mapsto \mathbb{R}$
- feasible domain: $\mathcal{X} \subseteq \mathbb{R}^d$

Convex Optimization Problem

• We adopt a *minimization* language

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \leq 0, \ i = 1, \cdots, m \\ & \mathbf{a}_i^\top \mathbf{x} = b_i, \ i = 1, \cdots, n \end{array}$$

- optimization variable $\mathbf{x} \in \mathbb{R}^d$
- *convex* objective function: $f : \mathbb{R}^d \mapsto \mathbb{R}$
- *convex* inequality constraints: g_1, \ldots, g_m

Convex Optimization Problem

• We adopt a *minimization* language

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \leq 0, \ i = 1, \cdots, m \\ & \mathbf{a}_i^\top \mathbf{x} = b_i, \ i = 1, \cdots, n \end{array}$$

Example 1 (SVM).

$$\min_{\mathbf{w},b} \quad \|\mathbf{w}\|^{2}$$
s.t. $y_{i} \left(\mathbf{w}^{\top} \mathbf{x}_{i} + b\right) \geq 1, i = 1, \cdots, n$

Advanced Optimization (Fall 2024)

Convex Optimization Problem

• We adopt a *minimization* language

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \leq 0, \ i = 1, \cdots, m \\ & \mathbf{a}_i^\top \mathbf{x} = b_i, \ i = 1, \cdots, n \end{array}$$

Example 2 (NMF decomposition).

$$\min_{U,V} \quad \left\| X - UV^{\top} \right\|_{\mathrm{F}}^{2}$$
s.t. $U_{i,j}, V_{i,j} \ge 0$

Ref: Lee, DD & Seung, HS (1999). Learning the parts of objects by non-negative matrix factorization. *Nature* 401,788-791.

Advanced Optimization (Fall 2024)

Subgradient

Definition 8 (Subgradient). Let $f : \mathcal{X} \mapsto \mathbb{R}$ be a proper function and let $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$. A vector $\mathbf{g} \in \mathbb{R}^d$ is called a *subgradient* of f at \mathbf{x} if

 $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$, for all $\mathbf{y} \in \mathbb{R}^d$.

Intuition: subgradient $\mathbf{g} \in \partial f(\mathbf{x})$ can be any variable that makes the line $f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$ below the curve f. \mathbf{g}_1

Advanced Optimization (Fall 2024)

Lecture 2. Convex Optimization Basics

 \mathbf{X}_1

 \mathbf{X}_2

Subdifferential

Definition 8 (Subgradient). Let $f : \mathcal{X} \mapsto \mathbb{R}$ be a proper function and let $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$. A vector $\mathbf{g} \in \mathbb{R}^d$ is called a *subgradient* of f at \mathbf{x} if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$
, for all $\mathbf{y} \in \mathbb{R}^d$.

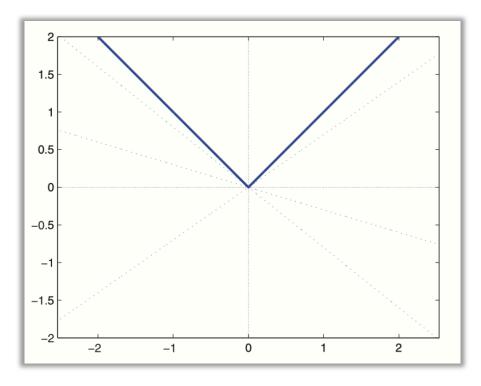
Definition 9 (Subdifferential). The set of all subgradients of f at \mathbf{x} is called the *subdifferential* of f at \mathbf{x} and is denoted by $\partial f(\mathbf{x})$,

$$\partial f(\mathbf{x}) \triangleq \{ \mathbf{g} \in \mathbb{R}^d \mid f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle, \text{ for all } \mathbf{y} \in \mathbb{R}^d \}.$$

Advanced Optimization (Fall 2024)

Subgradient and Subdifferential

Example 3. The subdifferential of $f(\mathbf{x}) = ||\mathbf{x}||$ at $\mathbf{x} = \mathbf{0}$ is the dual norm unit ball, i.e., $\partial f(\mathbf{0}) = \{\mathbf{g} \mid ||\mathbf{g}||_* \le 1\}$.



an illustration for 1-dim case

$$f(x) = |x|$$

Advanced Optimization (Fall 2024)

Subgradient and Subdifferential

Example 3. The subdifferential of $f(\mathbf{x}) = ||\mathbf{x}||$ at $\mathbf{x} = \mathbf{0}$ is the dual norm unit ball, i.e., $\partial f(\mathbf{0}) = \{\mathbf{g} \mid ||\mathbf{g}||_* \le 1\}.$

Proof:

By definition, it suffices to prove that $\mathbf{g} \in \partial f(\mathbf{0})$ if and only if

 $\|\mathbf{y}\| \ge \langle \mathbf{g}, \mathbf{y} \rangle$ holds for all $\mathbf{y} \in \mathbb{R}^d$.

① if $\|\mathbf{g}\|_* \leq 1$, then by the Cauchy-Schwarz inequality, $\langle \mathbf{g}, \mathbf{y} \rangle \leq \|\mathbf{y}\| \|\mathbf{g}\|_* \leq \|\mathbf{y}\|.$

② if $\|\mathbf{y}\| \ge \langle \mathbf{g}, \mathbf{y} \rangle$ is true, then by the definition of dual norm,

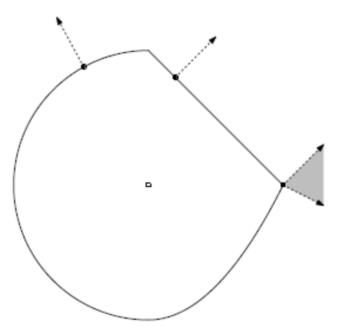
 $\|\mathbf{g}\|_* \triangleq \sup\{\langle \mathbf{g}, \mathbf{y} \rangle \mid \|\mathbf{y}\| \le 1\} \le \sup\{\|\mathbf{y}\| \mid \|\mathbf{y}\| \le 1\} \le 1.$

Subgradient and Subdifferential

Example 4. For indicator function $f(\mathbf{x}) = \delta_{\mathcal{X}}(\mathbf{x})$, its subdifferential at any point

$$\mathbf{x} \in \mathcal{X} \text{ is } N_{\mathcal{X}}(\mathbf{x}) = \partial f(\mathbf{x}) = \{ \mathbf{g} \mid \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \leq 0, \forall \mathbf{y} \in \mathcal{X} \}.$$

called normal cone



Proof can be found in Example 3.5 of Amir Beck's book.

Existence of Subgradient

• Existence of subgradients implies convexity.

Theorem 5. Let $f : \mathcal{X} \mapsto \mathbb{R}$ be a proper function and assume \mathcal{X} is convex. If **for any** $\mathbf{x} \in \mathcal{X}$, its subgradients exist, then f is convex.

- A *sufficient condition* for deciding a convex function.
- The reverse direction is *not* always correct (example on the next page).

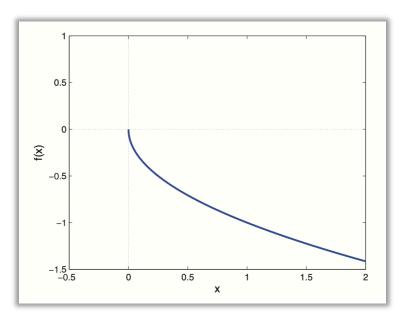
Existence of Subgradient

• Convexity *doesn't* always imply existence of subgradients.

Example 5. Consider function $f : \mathbb{R} \to (-\infty, \infty]$ defined by

$$f(x) = \begin{cases} -\sqrt{x}, & x \ge 0\\ \infty, & \text{else} \end{cases},$$

it is convex but does not have a subgradient at x = 0.



Existence of Subgradient

• Nevertheless, if we only care about the *interior* of feasible domain, convexity *does* imply existent subgradients.

Theorem 6. Let $f : \mathcal{X} \mapsto \mathbb{R}$ be a convex function and assume the feasible domain \mathcal{X} is convex. Consider any interior point $\mathbf{x} \in int(\mathcal{X})$. Then $\partial f(\mathbf{x})$ is nonempty.

How to Compute Subgradient

- General principle: unfortunately, hard to give :(
- Ad-hoc calculations: see earlier examples.
- Good news: easy for *convex and differential* functions.

Theorem 7. Let $f : \mathcal{X} \mapsto \mathbb{R}$ be a proper and convex function and assume \mathcal{X} is convex.

1. If f is differentiable at \mathbf{x} , then $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$

2. Conversely, if f has a unique subgradient, then it is differentiable at \mathbf{x} and $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$

How to Compute Subgradient

Example 6. The subdifferential of ℓ_2 -norm $f(\mathbf{x}) = \|\mathbf{x}\|_2$ is

$$\partial f(\mathbf{x}) = \begin{cases} \left\{ \frac{\mathbf{x}}{\|\mathbf{x}\|_2} \right\}, & \mathbf{x} \neq \mathbf{0} \text{ (gradient of norm)} \\\\ \left\{ \mathbf{g} \mid \|\mathbf{g}\|_2 \leq 1 \right\}, & \mathbf{x} = \mathbf{0} \text{ (discussed earlier)} \end{cases}$$

Proof can be found in Example 3.34 of Amir Beck's book.

Why Convexity?

• Local to Global Phenomenon

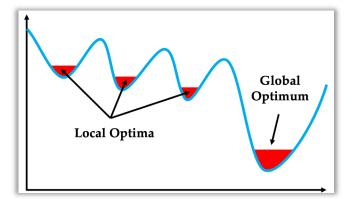
For convex (and differentiable) functions, gradient is highly informative.

$\nabla f(\mathbf{x}) \in \partial f(\mathbf{x})$

- Local: the gradient ∇*f*(**x**) is actually computed *locally* over the function *f* around **x**;
- **Global**: the subdifferential $\partial f(\mathbf{x})$ gives global information in the form of a linear lower bound on the *entire* function.

Why Convexity?

Local to Global Phenomenon



For convex (unconstrained) optimization, *local minima are global minima*.

Theorem 8. Let f be convex. If \mathbf{x} is a local minimum of f then \mathbf{x} is a global minimum of f.

A simple proof:

Assume that **x** is local minimum of *f*. Then for γ small enough, for any **y**, (local minima) $f(\mathbf{x}) \leq f((1 - \gamma)\mathbf{x} + \gamma \mathbf{y}) \leq (1 - \gamma)f(\mathbf{x}) + \gamma f(\mathbf{y}),$

which implies $f(\mathbf{x}) \leq f(\mathbf{y})$ and thus \mathbf{x} is a global minimum of f.

Part 3. Optimality Condition

- Fermat's Optimality Condition
- First-order Optimality Condition
- Some Corollaries

Fermat's Optimality Condition

• Unconstrained case

Theorem 9 (Fermat's Optimality Condition). Let $f : \mathbb{R}^d \to (-\infty, \infty]$ be a proper convex function. Then

 $\mathbf{x}^{\star} \in \operatorname{argmin}\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^d\}$

if and only if $\mathbf{0} \in \partial f(\mathbf{x}^{\star})$ *.*

A simple proof:

 $\begin{array}{l} \text{Combining} & f(\mathbf{x}) \geq f(\mathbf{x}^{\star}) \\ & f(\mathbf{x}) \geq f(\mathbf{x}^{\star}) + \langle \mathbf{g}, \mathbf{x} - \mathbf{x}^{\star} \rangle, \, \mathbf{g} \in \partial f(\mathbf{x}^{\star}) \end{array} \qquad \text{finishes the proof.} \end{array}$

Advanced Optimization (Fall 2024)

Example 7 (Median). Suppose that we are given *n* different and ordered numbers $a_1 < a_2 < \cdots < a_n$. Denote $A = \{a_1, a_2, \ldots, a_n\} \subseteq \mathbb{R}$. The median of *A* is a number satisfying

$$\operatorname{median}(A) = \begin{cases} a_{\frac{n+1}{2}}, & n \text{ odd} \\ \left[a_{\frac{n}{2}}, a_{\frac{n}{2}+1}\right], & n \text{ even} \end{cases}$$

Solving the optimization problem:

From an optimization perspective, solving medians equals to solving the following optimization problem.

median(A) =
$$\arg \min_{x} \left\{ f(x) \triangleq \sum_{i=1}^{n} |x - a_i| \right\}$$

Advanced Optimization (Fall 2024)

• Proof of median

From an optimization perspective, solving medians equals to solving the following optimization problem.

median(A) =
$$\arg \min_{x} \left\{ f(x) \triangleq \sum_{i=1}^{n} |x - a_i| \right\}$$

Denote $f_i(x) = |x - a_i|$, then it hold that $f(x) = f_1(x) + f_2(x) + \cdots + f_n(x)$ and

$$\partial f_i(x) = \begin{cases} 1, & x > a_i \\ -1, & x < a_i \\ [-1, 1], & x = a_i \end{cases}$$

Advanced Optimization (Fall 2024)

• Proof of median

Denote $f_i(x) = |x - a_i|$, then it hold that $f(x) = f_1(x) + f_2(x) + \cdots + f_n(x)$ and

$$\partial f_i(x) = \begin{cases} 1, & x > a_i \\ -1, & x < a_i \\ [-1,1], & x = a_i \end{cases}$$

$$\partial f(x) = \partial f_1(x) + \partial f_2(x) + \dots + \partial f_n(x)$$

=
$$\begin{cases} \# \{i : a_i < x\} - \# \{i : a_i > x\}, & x \notin A, \\ \# \{i : a_i < x\} - \# \{i : a_i > x\} + [-1, 1], & x \in A. \end{cases}$$

Advanced Optimization (Fall 2024)

• Proof of median

$$\partial f(x) = \partial f_1(x) + \partial f_2(x) + \dots + \partial f_n(x)$$

=
$$\begin{cases} \# \{i : a_i < x\} - \# \{i : a_i > x\}, & x \notin A, \\ \# \{i : a_i < x\} - \# \{i : a_i > x\} + [-1, 1], & x \in A. \end{cases}$$

$$\partial f(x) = \begin{cases} i - (n - i) = 2i - n, & x \in (a_i, a_{i+1}) \\ (i - 1) - (n - i) + [-1, 1] = 2i - 1 - n + [-1, 1], & x = a_i \\ -n, & x < a_1 \\ n, & x > a_n \end{cases}$$

Advanced Optimization (Fall 2024)

• Proof of median

$$\partial f(x) = \begin{cases} i - (n - i) = 2i - n, & x \in (a_i, a_{i+1}) \\ (i - 1) - (n - i) + [-1, 1] = 2i - 1 - n + [-1, 1], & x = a_i \\ -n, & x < a_1 \\ n, & x > a_n \end{cases}$$

① Suppose $x = a_i$. Then,

 $0 \in \partial f(x) = 2i - 1 - n + [-1, 1] \Leftrightarrow |2i - 1 - n| \le 1 \Leftrightarrow \frac{n}{2} \le i \le \frac{n}{2} + 1 \Leftrightarrow x = \left[a_{\frac{n}{2}}, a_{\frac{n}{2}+1}\right]$

② Suppose
$$x \in (a_i, a_{i+1})$$
. Then, $0 \in \partial f(x) = 2i - n \Leftrightarrow i = \frac{n}{2} \Leftrightarrow x \in (a_{\frac{n}{2}}, a_{\frac{n}{2}+1})$

Combining the two cases finishes the proof (by further checking *n* is odd or even).

First-order Optimality Condition

Constrained Case

Theorem 10 (First-order Optimality Condition). Let f be convex and \mathcal{X} a closed convex set on which f is differentiable. Then $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ if and only if there exists $\mathbf{g} \in \partial f(\mathbf{x}^*)$ such that

$$\langle \mathbf{g}, \mathbf{x} - \mathbf{x}^* \rangle \ge 0, \forall \mathbf{x} \in \mathcal{X}.$$

A simple proof: derived from the Fermat's optimality condition.

☐ deploying the Fermat's optimility condition on the unconstrained "surrogate" objective

 $h(\mathbf{x}) \triangleq f(\mathbf{x}) + \delta_{\mathcal{X}}(\mathbf{x})$

Advanced Optimization (Fall 2024)

First-order Optimality Condition

Constrained Case

Theorem 10 (First-order Optimality Condition). Let f be convex and \mathcal{X} a closed convex set on which f is differentiable. Then $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ if and only if there exists $\mathbf{g} \in \partial f(\mathbf{x}^*)$ such that

$$\langle \mathbf{g}, \mathbf{x} - \mathbf{x}^* \rangle \ge 0, \forall \mathbf{x} \in \mathcal{X}.$$

Example 4. For indicator function $f(\mathbf{x}) = \delta_{\mathcal{X}}(\mathbf{x})$, its subdifferential at any point $\mathbf{x} \in \mathcal{X}$ is $N_{\mathcal{X}}(\mathbf{x}) = \partial f(\mathbf{x}) = \{ \mathbf{g} \mid \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \leq 0, \forall \mathbf{y} \in \mathcal{X} \}.$

Set Addition: elementwise sum

Advanced Optimization (Fall 2024)

First-order Optimality Condition

Constrained Case

Theorem 10 (First-order Optimality Condition). Let f be convex and \mathcal{X} a closed convex set on which f is differentiable. Then $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ if and only if there exists $\mathbf{g} \in \partial f(\mathbf{x}^*)$ such that

$$\langle \mathbf{g}, \mathbf{x} - \mathbf{x}^* \rangle \ge 0, \forall \mathbf{x} \in \mathcal{X}.$$

Fermat's optimality condition says that \mathbf{x}^* is optimal if and only if $\mathbf{0} \in \partial f(\mathbf{x}^*)$.

$$\mathbf{0} \in \partial h(\mathbf{x}^{\star}) = \partial f(\mathbf{x}^{\star}) + N_{\mathcal{X}}(\mathbf{x}^{\star})$$
$$\longrightarrow \quad -\partial f(\mathbf{x}^{\star}) \cap N_{\mathcal{X}}(\mathbf{x}^{\star}) \neq \emptyset$$
$$\implies \exists \mathbf{g} \in -\partial f(\mathbf{x}^{\star}) \quad \text{s.t. } \langle \mathbf{g}, \mathbf{x} - \mathbf{x}^{\star} \rangle \leq 0, \forall \mathbf{x} \in \mathcal{X}$$

Advanced Optimization (Fall 2024)

Karush–Kuhn–Tucker (KKT) Conditions

Theorem 11. *Consider the minimization problem*

 $\begin{array}{ll} \min & f(\mathbf{x}) \\ s.t. & g_i(\mathbf{x}) \le 0, \ i \in [m], \end{array}$

where f, g_1, g_2, \ldots, g_m are real-valued convex functions.

1. Let \mathbf{x}^* be an optimal solution of (1), and assume that Slater's condition is satisfied. Then there exist $\lambda_1, \ldots, \lambda_m \geq 0$ for which

$$\mathbf{0} \in \partial f(\mathbf{x}^{\star}) + \sum_{i=1}^{m} \lambda_i \partial g_i(\mathbf{x}^{\star})$$
(2)
$$\lambda_i g_i(\mathbf{x}^{\star}) = 0, \quad i \in [m].$$
(3)

2. If \mathbf{x}^* satisfies conditions (2) and (3) for some $\lambda_1, \lambda_2, \ldots, \lambda_m \ge 0$, then it is an optimal solution of problem (1).

(1)

Harold KuhnAlbert Tucker1925-20141905-1995Published conditions in 1951.

William Karush 1917-1997

Developed (necessary) conditions in 1939 in his (unpublished) MS thesis.

Understanding the role of KKT Conditions

- On the one hand, KKT conditions depict properties of the optimization solution (consider the dual form and interpretation in SVM).
 - 1. Let \mathbf{x}^* be an optimal solution of (1), and assume that Slater's condition is satisfied. Then there exist $\lambda_1, \ldots, \lambda_m \ge 0$ for which $\mathbf{0} \in \partial f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \partial g_i(\mathbf{x}^*)$ $\lambda_i g_i(\mathbf{x}^*) = 0, \quad i \in [m].$
- On the other hand, many optimization methods can be thought of as iterative approximations to solve the KKT conditions.

2. If \mathbf{x}^* satisfies conditions (2) and (3) for some $\lambda_1, \lambda_2, \ldots, \lambda_m \ge 0$, then it is an optimal solution of problem (1).

Part 4. Function Properties

- Smoothness
- Strong Convexity

Lipschitz Continuity

Definition 1 (Continuity). A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $\mathbf{x} \in \text{dom}$ *f* if for all $\epsilon > 0$ there exists a $\delta > 0$ with $\mathbf{y} \in \text{dom } f$, such that

$$\|\mathbf{y} - \mathbf{x}\|_2 \le \delta \Rightarrow \|f(\mathbf{y}) - f(\mathbf{x})\|_2 \le \epsilon.$$

Definition 2 (Lipschitz Continuity). A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is *G*-Lipschitzcontinuous if for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$,

$$\|f(\mathbf{x}) - f(\mathbf{y})\| \le G \|\mathbf{x} - \mathbf{y}\|.$$

Lipschitzness and Subgradient

• Relationship between *Lipschitzness* and *bounded subgradient*

Theorem 1. Let $f : \mathcal{X} \to \mathbb{R}$ be a convex function. Consider the following two *claims:*

(i) Lipschitzness: $|f(\mathbf{x}) - f(\mathbf{y})| \le G ||\mathbf{x} - \mathbf{y}||$ for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.

(*ii*) Bounded subgradient: $\|\mathbf{g}\|_* \leq G$ for any $\mathbf{g} \in \partial f(\mathbf{x}), \mathbf{x} \in \mathcal{X}$.

Then

(a) $(ii) \Rightarrow (i)$. (b) if \mathcal{X} is open, then $(i) \Leftrightarrow (ii)$.

Definition 3 (Smoothness). A function *f* is *L*-smooth with respect to the $\| \cdot \|$ norm if, for any $\mathbf{x}, \mathbf{y} \in \text{dom } f$,

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_* \le L \|\mathbf{x} - \mathbf{y}\|.$$

Smoothness is also called *gradient Lipschitz* in many literature.

Smoothness is defined over the primal-dual norms, which become ℓ_2 -norm when specialized to Euclidean space (and then, $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \leq L \|\mathbf{x} - \mathbf{y}\|_2$).

Smoothness (in Optimization theory)

Definition 4. Let $\mathcal{X} \subseteq \mathbb{R}^d$. We denote by $C_L^{a,b}(\mathcal{X})$ the class of functions with the following properties:

(i) any $f \in C_L^{a,b}(\mathcal{X})$ is a times continuously differentiable on \mathcal{X} .

(ii) f's *b*-th derivative is Lipschitz continuous on \mathcal{X} with constant *L*:

$$\left\| \nabla^b f(\mathbf{x}) - \nabla^b f(\mathbf{y}) \right\|_* \le L \|\mathbf{x} - \mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}.$$

- Lipschitz continuous functions belong to $C_L^{0,0}(\mathcal{X})$.
- *L*-smooth functions can be denoted by $C_L^{1,1}(\mathcal{X})$.

Ref: Lectures on Convex Optimization, Yurii Nesterov. Page 23-24.

Example 1. Linear function $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + c$ is 0-smooth.

Example 2. Quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} + \mathbf{w}^{\top}\mathbf{x} + c$ is $||A||_{\text{op},p}$ -smooth w.r.t. $|| \cdot ||_p$ norm.

Proof. The proof is direct by the definition of smoothness and the operator norm:

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_p = \|A\mathbf{x} - A\mathbf{y}\|_p \le \|A\|_{\mathrm{op},p} \|\mathbf{x} - \mathbf{y}\|_p.$$

Definition 6 (Matrix Operator Norm). The operator norm (or called induced norm) of a matrix $A \in \mathbb{R}^{m \times n}$ is defined by $\|A\|_{\text{op},p} \triangleq \max \left\{ \frac{\|A\mathbf{x}\|_p}{\|\mathbf{x}\|_p} \middle| \mathbf{x} \in \mathbb{R}^d, \mathbf{x} \neq \mathbf{0} \right\}.$

Advanced Optimization (Fall 2024)

Example 3. Log-sum-exp function $f(\mathbf{x}) = \log (e^{x_1} + e^{x_2} + \cdots + e^{x_n})$ is 1-smooth w.r.t. ℓ_2 -norm and ℓ_{∞} -norm.

Example 4. Function $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_p^2$ is (p-1)-smooth w.r.t. ℓ_p -norm.

Example 5. Function $f(\mathbf{x}) = \sqrt{1 + \|\mathbf{x}\|_2^2}$ is 1-smooth w.r.t. ℓ_2 -norm.

Example 6. Function $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \Pi_{\mathcal{X}}[\mathbf{x}]\|^2$ is 1-smooth w.r.t. ℓ_2 -norm, where $\Pi_{\mathcal{X}}[\mathbf{x}]$ denotes the Euclidean projection of \mathbf{x} onto a *convex* domain \mathcal{X} .

Advanced Optimization (Fall 2024)

Example 5. Function $f(\mathbf{x}) = \sqrt{1 + \|\mathbf{x}\|_2^2}$ is 1-smooth w.r.t. ℓ_2 -norm.

Proof:

$$\nabla f(\mathbf{x}) = \frac{\mathbf{x}}{\sqrt{\|\mathbf{x}\|_2^2 + 1}}$$

$$\implies \nabla^2 f(\mathbf{x}) = \frac{1}{\sqrt{\|\mathbf{x}\|_2^2 + 1}} \left(I - \frac{\mathbf{x}\mathbf{x}^\top}{\|\mathbf{x}\|_2^2 + 1} \right) \preceq \frac{1}{\sqrt{\|\mathbf{x}\|_2^2 + 1}} I \preceq I \qquad \Box$$

Example 6. Function $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \Pi_{\mathcal{X}}[\mathbf{x}]\|^2$ is 1-smooth w.r.t. ℓ_2 -norm, where $\Pi_{\mathcal{X}}[\mathbf{x}]$ denotes the Euclidean projection of \mathbf{x} onto a *convex* domain \mathcal{X} .

The next lemma is an *equivalent* condition of smoothness.

Lemma 1 (Descent Lemma). *Let* f *be an* L*-smooth function over a given convex set* X. *Then for any* $\mathbf{x}, \mathbf{y} \in X$

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

Proof: $f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt$ (calculus) $\implies f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle = \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle dt$ (Cauchy-Schwarz) $\leq \int_0^1 \|\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x})\| \|\mathbf{y} - \mathbf{x}\| dt$ (smoothness) $\leq L \|\mathbf{y} - \mathbf{x}\|^2 \int_0^1 t dt \leq \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2$

Advanced Optimization (Fall 2024)

Theorem 2 (*First-order* Characterizations of *L*-smoothness). Let $f : \mathcal{X} \to \mathbb{R}$ be a convex function, differentiable over \mathcal{X} . Then the following claims are equivalent: (*i*) f is L-smooth. (ii) $f(\mathbf{y}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$. (iii) $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2L} \| \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}) \|_*^2$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$. (iv) $\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \geq \frac{1}{L} \| \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}) \|_*^2$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$. (v) $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \geq \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) - \frac{L}{2}\lambda(1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^2$ for any $\mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ and } \lambda \in [0, 1].$

Proofs can be found below Theorem 5.8 of Amir Beck's book.

Advanced Optimization (Fall 2024)

Theorem 3 (*Second-order* Characterization of *L*-smoothness). Let *f* be a twice continuously differentiable function over \mathbb{R}^d . Then for a given $L \ge 0$, *L*-smoothness w.r.t. the ℓ_p -norm ($p \in [1, \infty]$) is equivalent to

$$\left\|\nabla^2 f(\mathbf{x})\right\|_{op,p} \le L,$$

for any $\mathbf{x} \in \mathbb{R}^d$.

Definition 5 (Strong Convexity). A function *f* is σ -strongly convex with respect to norm $\|\cdot\|$ if, for any $\mathbf{x}, \mathbf{y} \in \text{dom } f$ and $\lambda \in [0, 1]$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) - \frac{\sigma}{2}\lambda(1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^2$$

• Clearly, for generally convex functions, $\sigma = 0$.

Examples:

- $f(\mathbf{x}) = \|\mathbf{x}\|_p^2$ is 2-strongly-convex with respect to norm $\|\cdot\|_p$.
- Negative entropy $f(\mathbf{x}) = \sum_{i=1}^{d} x_i \ln x_i$ over probability distribution (i.e., $x_i \in [0, 1]$ and $\sum_{i=1}^{d} x_i = 1$) is 1-strongly-convex with respect to norm $\|\cdot\|_1$.

Theorem 3 (*First-order* Characterizations of Strong Convexity). Let f be a proper closed and convex function. Then for a given $\sigma > 0$, the followings equal:

(i) f is σ -strongly convex.

(ii) For any $\mathbf{x} \in \operatorname{dom}(\partial f), \mathbf{y} \in \operatorname{dom}(f)$ and $\mathbf{g} \in \partial f(\mathbf{x})$,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + \frac{\sigma}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$
commonly used

(iii) For any $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(\partial f)$, and $\mathbf{g}_{\mathbf{x}} \in \partial f(\mathbf{x}), \mathbf{g}_{\mathbf{y}} \in \partial f(\mathbf{y})$,

$$\langle \mathbf{g}_{\mathbf{x}} - \mathbf{g}_{\mathbf{y}}, \mathbf{x} - \mathbf{y} \rangle \ge \sigma \|\mathbf{x} - \mathbf{y}\|^2.$$

(iv) Function $f(\cdot) - \frac{\sigma}{2} \| \cdot \|^2$ is convex.

Proof: (*i*) \rightarrow (*ii*)

$$\begin{aligned} f(\lambda \mathbf{y} + (1 - \lambda)\mathbf{x}) &\leq \lambda f(\mathbf{y}) + (1 - \lambda)f(\mathbf{x}) - \frac{\sigma}{2}\lambda(1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^2 \\ \Rightarrow \frac{f(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\lambda} &\leq f(\mathbf{y}) - f(\mathbf{x}) - \frac{\sigma}{2}(1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^2 \quad \text{(rearrange)} \\ \Rightarrow f'(\mathbf{x}; \mathbf{y} - \mathbf{x}) &\triangleq \lim_{\lambda \to 1} \frac{f(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\lambda} &\leq f(\mathbf{y}) - f(\mathbf{x}) - \frac{\sigma}{2}\|\mathbf{x} - \mathbf{y}\|^2 \end{aligned}$$

 $f'(\mathbf{x}; \mathbf{y} - \mathbf{x})$: the *directional derivative* of f at point \mathbf{x} along direction $\mathbf{y} - \mathbf{x}$ $\forall \mathbf{g} \in \partial f(\mathbf{x}), \quad \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \leq f'(\mathbf{x}; \mathbf{y} - \mathbf{x})$ Plugging $\mathbf{g} = \nabla f(\mathbf{x})$ finishes the proof

Plugging $\mathbf{g} = \nabla f(\mathbf{x})$ finishes the proof.

Theorem 4. Let \mathcal{X} be a Euclidean space. Then f is σ -strongly convex with respect to norm $\|\cdot\|$ if and only if the function $f(\cdot) - \frac{\sigma}{2} \|\cdot\|^2$ is convex.

f is "as least as convex" as a quadratic function.

Example 8. $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} + \mathbf{w}^{\top}\mathbf{x} + c$ is σ -strongly convex w.r.t. the ℓ_2 -norm if and only if $A \succeq \sigma I$.

Proof: f is σ -strongly convex if and only if $h(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top} (A - \sigma I) \mathbf{x} + \mathbf{w}^{\top} \mathbf{x} + c$ is convex $\longrightarrow \nabla^2 h(\mathbf{x}) = A - \sigma I \succeq 0$

Theorem 5 (*Second-order* Characterization of Strong Convexity). Let \mathcal{X} be a Euclidean space. Then f is σ -strongly convex with respect to $\|\cdot\|$ if and only if for any $\mathbf{x}, \mathbf{w} \in \mathcal{X}$, $\mathbf{w}^{\top} \nabla^2 f(\mathbf{x}) \mathbf{w} \geq \sigma \|\mathbf{w}\|^2$.

a more familiar form: $\|\mathbf{w}\|_{\nabla^2 f(\mathbf{x})}^2$

Furthermore, when using ℓ_2 *-norm, it is equivalent to* $\nabla^2 f(\mathbf{x}) \succeq \sigma I$.

- Negative entropy $f(\mathbf{x}) = \sum_{i=1}^{d} x_i \ln x_i$ over probability distribution (i.e., $x_i \in [0, 1]$ and $\sum_{i=1}^{d} x_i = 1$) is 1-strongly-convex.

Theorem 6. Let f be a proper closed and σ -strongly convex function. Then

- f has a unique minimizer, denoted by \mathbf{x}^* .
- $f(\mathbf{x}) f(\mathbf{x}^*) \ge \frac{\sigma}{2} \|\mathbf{x} \mathbf{x}^*\|^2$ for all $\mathbf{x} \in \text{dom}(f)$.

Strongly Convex and Smooth

If function *f* is both σ -strongly convex and *L*-smooth w.r.t. ℓ_2 -norm, then

- $\sigma I \preccurlyeq \nabla^2 f(\mathbf{x}) \preccurlyeq LI$
- *f* is γ -*well-conditioned* where $\gamma \triangleq \sigma/L \leq 1$ is called the condition number.

Relationship

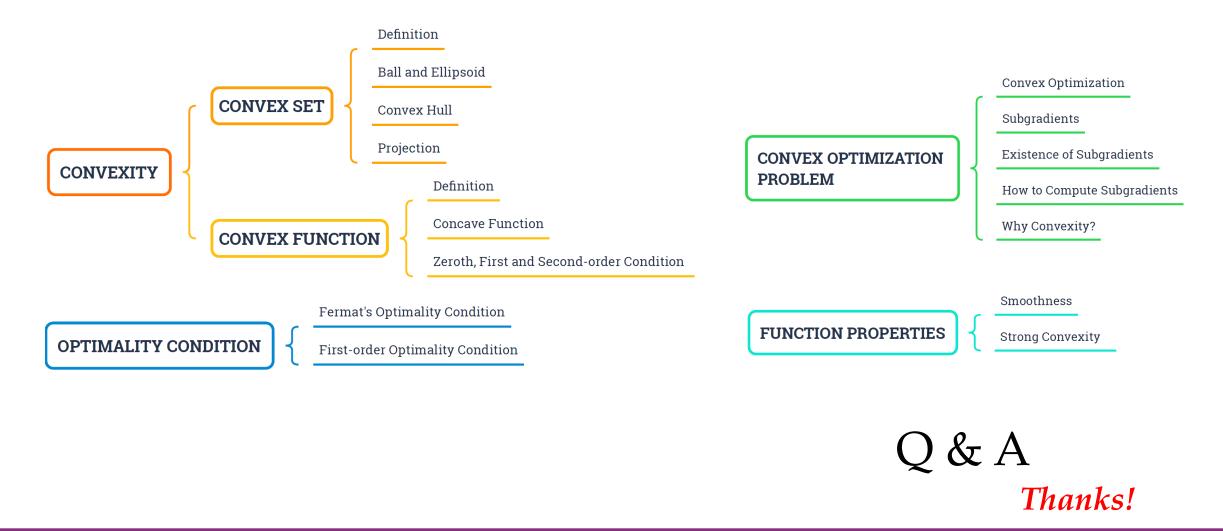
Theorem 7 (Conjugate Correspondence). *Consider the conjugate function:*

$$f^*(\mathbf{y}) \triangleq \max_{\mathbf{x}\in\mathcal{X}} \{ \langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x}) \}.$$

- (a) If the function f is convex and $\frac{1}{\sigma}$ -smooth w.r.t. the norm $\|\cdot\|$, then its conjugate f^* is σ -strongly convex w.r.t. the dual norm $\|\cdot\|_*$.
- (b) If f is proper closed σ -strongly convex w.r.t. the norm $\|\cdot\|$, then f^* is $\frac{1}{\sigma}$ -smooth w.r.t. the dual norm $\|\cdot\|_*$.

Reference: Kakade et al., <u>On the duality of strong convexity and strong</u> <u>smoothness: Learning applications and matrix regularization</u>. 2009.

Summary



Advanced Optimization (Fall 2024)