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Outline

e Gradient Descent

* Convex and Lipschitz

 Polyak Step Size
» Convergence without Optimal Value

* Optimal Time-Varying Step Sizes

 Strongly Convex and Lipschitz
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Part 1. Gradient Descent

* Convex Optimization Problem
e Gradient Descent
e Performance Measure

e The First Gradient Descent Lemma
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Convex Optimization Problem
* We adopt a minimization language

min  f(x)
st xe kX
- optimization variable x € R¢

- objective function f : R? — R: convex and continuously differentiable

- feasible domain X C R%: convex
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Goal

To output a sequence {x; }/_, such that x; approximates x* when ¢ goes larger.
e Function-value level: f(xr) — f(x*) < &(T)

e Optimizer-value level: ||xp — x*|| < (7))

where {X;}/_, can be statistics of the original sequence {x;};_,

and £(7") is the approximation error and is a function of iterations 7.
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Goal

* In general, there are two performance measures (essentially same).

Convergence: f(xr)— f(x*) < &(T),

- Qualitatively: £(7)) — 0 when T" — oc

- Quantitatively: C’)( ) / C’)( ) / C’)( ) / O(%) /...

Complexity:

- Definition: number of iterations required to achieve f(xr) — f(x*) < e.

- Quantitatively: O(%) / O(2) / O( =)/ O(In(2)) /...
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Gradient Descent

* GD Template:

X1 = Iy [Xt — T]tVf(Xt)}

- X1 can be an arbitrary point inside the domain.
- 1¢ > 0 1s the potentially time-varying step size (or called learning rate).

- Projection Il x[y| = arg min, . y ||x — y|| ensures the feasibility.
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Why Gradient Descent?

 For simplicity, we consider the unconstrained setting.

* A General Idea: Surrogate Optimization

We aim to find a sequence of local upper bounds Uy, --- ,Ur, where the
surrogate function U; : R? — R may depend on x; such that

(1) f(x¢) = U(xe);
(ii) f(x) < U;(x) holds for all x € RY;

(iii) U;(x) should be simple enough to minimize.

:> Then, our proposed algorithm would be x;,; = arg min, U;(x)
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Why Gradient Descent?

 Following the surrogate optimization principle, let’s invent GD
for convex and smooth functions.

Proposition 1. Suppose that f is convex and differentiable. Moreover, suppose that
f is L-smooth with respect to ly-norm. Define the surrogate U; : RY — R as

A L
Up(x) = f(xe) +{(Vf(xe),x = %) + 5 [[x = x¢ |3 -

Then, we have
(i) f(Xt) — Ut(Xt);
(i) f(x) < U;(x) holds for all x € R%;

(iii) x¢41 = arg min, Uy(x) isequivalentto x; 1 = x;—+ V f(xy).
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Gradient Descent

* GD Template:
X1 = Iy [Xt — fr]tVf(Xt)}

- X1 can be an arbitrary point inside the domain.

- 1¢ > 0 1s the potentially time-varying step size (or called learning rate).

- Projection Il x[y| = arg min, . y ||x — y|| ensures the feasibility.

T'his lecture will focus on GD analysis for Lipschitz functions,
and next lecture will discuss smooth functions.
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GD Convergence Analysis



The First Gradient Descent Lemma

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x;}]_, be the sequence generated by the gradi-
ent descent method, X* be the optimal set of the optimization problem and f* be the
optimal value. Then for any x* € X* and t > 0,

Ixes1 — x*[I7 < e = x[1F = 206 (F (%) — %) + 0 [ V.f(xe) 1.

2

Proof: %11 — X*HQ = [[Hxl[x; — eV f(xe)] — x|
< lxe — eV f(x0) — x*||°
= [ = x" |7 = 20V f(x0), %0 = X7) + 07 |V F (1)1
< s — x5 7 = 2m(f(xe) = F) 0 IV f ()|

[]
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Part 2. Polyak Step Size

* Polyak Step Size
* Convergence

* Convergence Rate
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Polyak Step Size

* GD method satisfies the following inequality:

%01 = x*|1% <l = x*)1° = 2 (F(xe) — f*) + 0 IV F (%017

l )
!

h(n) = =2n(f(xe) — ) + 2|V f(x)|?

A natural idea:

minimizing the right-hand side of the inequality

 f(x) - f
AT TERIE

assume known [* for a moment
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Polyak Step Size

301 = x*|1% < e = x*)1° = 20 (f(xe) = %) + mZ IV (3017

l )
!

h(n) = =2n(f(xe) = f*) + 2 IV f(x0) |7

Cornercase: when Vf(x;) =0

—> actually a good news owing to convexity, V f(x;) = 0 implies optimality

(o) g
Sreop: VI(x) #0

Polyak step size: 1 = {

]-7 Vf(xf) =0

\
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A Geometric View of Polyak Step Size

Geometric way to “optimize” (consider the 1-dim function)

Geometrically, the best way of iterates

Tyl = Tt — T]tfl(il‘t)

would satisfy that (given known f*)

'1}.5_./‘/(;1_‘!,:) . _/’f(l;'!f{.) — '/'(\;;rf:) _ ]*

) = 7
—> m= TERE

= (x", [7)

Q: if we have known f* already,
(Unconstrained) GD with Polyak Step Size

. J(xe) = 17
R T

how would we set x;1?
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Polyak Step Size

( f(xe)—f"
NreaE: Vi) #0

]-7 vf(xt) =0

assume known f* for a moment.

Polyak step size: 13 = <

@ Peter Richtarik @peter richtarik - 2848

| Boris Polyak (1935) passed away today. An immensely gentle person the
way | knew him, and a giant of science in general and optimization in
particular. His name, results and legacy will live forever.

Boris T. Polyak

With Boris Polyak @ Optimization & Statistical Learning, Les Houches, INTRODUCTION

France, 2015 (Alfonso S. Bandeira, John Duchi, Alexander Rakhlin, -% 1 TO ° ° ° °
Vladimir Spokeiny, Boris T. Polyak, Ekaterina Krymova, Yury Maximov, o IntrOduCtlon tO Optlmlzatlon

Boris T. Polyak

Peter Richtarik = me)

Optimization Software, Inc., 1987

Boris T. Polyak
1935-2023
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Convergence

» With Polyak step size, we obtain the convergence results:

Theorem 1. Under the same assumptions with Lemma 1, assume the gradient of f
is bounded by G, i.e., ||V [(-)| < G. Let {x;}]_, be the sequence generated by the

gradient descent method with Polyak step size and f* be the optimal value. Then,
(D) Ilxesr —x*[% < [l —x*1%.

(i1) f(x¢) — f*ast — oo.

Note: recall that bounded gradients condition implies Lipschitz continuity.
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Convergence

Proof: HXt+1 - X*HQ < HXt - X*HQ - 277t(f(xt)

- Case 1: V f(x;) = 0. By convexity, f(x¢)

— )+ 07 [V f(x0)]]?

= f* = o — %2 = e — x

- Case 2: V f(x;) # 0. Polyak’s step size n; = IIf (x¢) =

Vf(xe)|?

*x\ 2
f ) E ||Xt _X*HE

=5 Ilxest — XM < e — x4]J2 — L&)

IVf(xe)?

*HZ.

(i) is proved.

Advanced Optimization (Fall 2024)
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Convergence

Proof: we can simply focus on the case of V f(x;) # 0

*||2 o (f(xt) — f*)2

*HQ o (f(xf) B f*)Z
IV f(xe)|?

G2

< ||x¢ — x

Ixer = x*[* < [lxe — x

1 T
= g 00 = 1 < by =P = e =

—> > (f(xe) = )7 < Gxq — x|

Infinite summation is bounded by constants — convergent series.
(ii) is proved. []
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Convergence Rate

* We can also derive the convergence rate.

Theorem 2. Under the same assumptions with Theorem 1. Let {x;}]_, be the se-
quence generated by the gradient descent method with Polyak step size and f* be the
optimal value. Define Xp = argming, yr» f(Xy), we have

f&ﬂfﬁgGWy%ﬂ”:o(j%)

Proof:  f(zy) =ming,yr  f(x) < f(x)"
' - T(f(xr) = ) < GPllxa = x7?
S (Fxe) = 1) < G¥lx —x7|2 N

t=1
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Part 3. Convergence without Optimal Value

e The Second Gradient Descent Lemma
* Convergent Step Size

* Convergence without Optimal Value
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Step Size without Optimal Value

* Note that Polyak step size requires the optimal value f*

( f(x¢)—f"
Nreor: VIx) #0

Polyak step size: 1 = <

]-7 V.f(xf) =0

\

assume known [* for a moment

From now on, we try to design step sizes without the optimal value f*.
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The Second Gradient Descent Lemma

* A second version of gradient descent lemma.

Lemma 2. Under the same assumptions as Theorem 1. Let {x;}/_, be the sequence
generated by GD. Then we have

T 1 1 T
D () = 1) < Sl = x4 5 D 0 IV ()1
t=1 t=1

Proof: The statement can be derived directly from the gradient descent lemma:

xesn = x*[1* < flxe = x*|1* = 200 (f (%) = f*) + 07 [V f (x0)|I?

* * 1 :
(llxe = x*[1* = lIxer —x*[%) + 5773\\V1(Xt)|l2 H

DN | =

—> m(f(xt) = f7) <
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Convergence Result

* GD lemma implies the following convergence result.

Lemma 3. Under the same assumptions as Theorem 1. Let {x;}/_, be the sequence
generated by GD. Define X = arg min 32, J(x¢) or X = ZL]_

Nt X¢

> :: 1 Mt

L we have

N I
O T D > 4 (E

f(xr) — f
) 2 ZtT:1 T 2 23:1 Ur
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Convergence Result

Proof:

e Case 1: X7 = argming, yr f(x¢).

t=1

Y om(fx) = ) > (Z m) (f(xr) = 7).

Combining the above inequality with Lemma 2 (as restated below),
T
oy L . 1 .
Do m(f ) = ) < gl = x4+ 5 3o n IV )
t=1

we have completed the proof of the desired result:
* (]2 r 2 2
— X _ V f(x;
f()_(T) - f* < Hxl - || 4+ Zt_l Mt ”T f( f)H -
22 i1 22 1
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Convergence Result

Proof:

_ T
o Case2: X7 =) ,_, Z"E’x‘*m.
t=1

T T T
> n(f(xe) = f*) = (Zm) (Z i f(xt)f*)

AV
<Uh
agk

=
\_/
N

\h
~
l ~
Wﬂﬁ
~ | X
=
v

|
=
\\__/

Thus, we achieve the desired result:

J(xr)— 7 <

: T
T GO A A e
T T ’
2 thl Tt 2 thl Tt

Advanced Optimization (Fall 2024)
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Convergent Step Size

Theorem 3. Under the same assumptions with Theorem 1. Let {x;}{_, be the se-
quence generated by the gradient descent method (note that the step size setting cannot
use knowledge of 'I" ahead of time). If

T 5
thl ”?f
T
D i—1

>»0as ' — oo,

then f(x7) — f*asT — oc.

Proof: Indeed, this structure appears in the second gradient descent lemma.
T
x2S VG
T T
2 1 M 2> 1 Mt

— 0 implies the convergence of the second term.

f(xr) — [7 <

Z?:l nf
Z?:l M
Moreover, this condition implies Zf:.l ne — oo (think why?). ]

The condition
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Convergent Step Size

Theorem 3. Under the same assumptions with Theorem 1. Let {x;}{_, be the se-
quence generated by the gradient descent method (note that the step size setting cannot
use knowledge of 'I" ahead of time). If

T 5
thl ”?f
T
D i—1

>»0as T — oo,

then f(x7) — f*asT — oc.

Example:

a typical time-varying (in fact, decreasing) step sizes:

T 2
e = ! — Zt:l il ~ log T

Vit 23:1 Tt VT

— 0
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Convergence without Optimal Value

Theorem 4. Under the same assumptions with Theorem 1. Let {x;}/_, be the se-
quence generated by GD with step size

1
IVFG)|VE

Tt

Then

f()_(T) _f* < G(HX1 _X*H2_|_1OgT+ 1) _ 0 (10gT>

2v/T VT

_ . — A T
where Xp = arg min g, 7 f(xe)orxp =) . <.

Advanced Optimization (Fall 2024) Lecture 3. Gradient Descent Method 30



Convergence without Optimal Value

Proof:
far) - pr < X2 e VGl
22 i1 23 i1 N
Gl =P, Gy IV ()l

T 2Rl VIOl 28 ml V()
C Gl x|, GE i
S22y 22y

Thus,

f(xr)— [ <

G ([lx1 —x*[|” +1og T + 1) _ (10gT)
2VT - \VT )

Advanced Optimization (Fall 2024) Lecture 3. Gradient Descent Method

31



Part 4. Optimal in Convex and Lipschitz Case

* Optimal Result with Known T

* Optimal Result with Unknown T
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Towards Optimal Resolutions

Theorem 4. Under the same assumptions with Theorem 1. Let {x;}L_, be the se-

quence generated by GD with step size Remark: The last theorem gives
= HVf()lct)Hx/i' an O(log T//T) c01:1verge1’.1ce
- rate. However, this rate is
fxp) - < G = X;l\j; logT+1) (1(;_,7/) worse than the O(1/1/7') with
s Polyak step size.

s A . s A T
where Xp = argming, v f(x) orXp =),

SHINTT

Theorem 2. Under the same assumptions with Theorem 1. Let {x,}[_, be the se-
quence generated by the gradient descent method with Polyak step size and f* be the
optimal value. Define Xp = arg ming, 4o f(x¢), we have

Now, we will improve this to
optimality with an additional

fan) - < X o (\/}Tj bounded domain assumption.

with Polyak’s step size (known )

Advanced Optimization (Fall 2024) Lecture 3. Gradient Descent Method 33



Optimal Result with Known T

Theorem 5. Under the same assumptions with Theorem 1, assume the feasible domain
X 1s bounded and convex with a diameter D > 0, that is, ||x — y||» < D holds for any
x,y € X. Let {x;}]_, be the sequence generated by GD with step size

Then

where X = arg ming, yr f(X¢) or Xr =5 Z?:l Xy,
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Optimal Result with Known T

step size 1, = CL\% —> Yk
_ . _ T
X7 = arg ming,,yr f(X¢) or X =5 DY
Proof: Plugging n, = GL\;T into
¢ T .
N [ D S 2 1) &
f(XT) f i T + T
22 i1 Mt 2D i e
Notice that x, £ 3/ - X — Ly 7 x ]
T t=1 T p, T Lat=1"t-

Advanced Optimization (Fall 2024) Lecture 3. Gradient Descent Method
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Optimal Result with Known T

step size 1, = ovr =

XT—argmm{X r f(x¢)or Xr =5 Z,_le

- D—\/% convergence rate is equivalent to 7' = D;Gz complexity result to
achieve f(xp) — f* <e.

D& s already minimax optimal for convex and Lispchitz functions.

VT
- This result needs to know the total round number 7" in advance.
The last characteristics could be undesirable in practice.
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Optimal Result with Unknown T

Theorem 6. Under the same assumptions with Theorem 1, assume the feasible domain
X 1s bounded and convex with a diameter D > 0, that is, ||x — y||2 < D holds for any
X,y € X. Let {x;}!_, be the sequence generated by GD with step size

D
N = G—ﬁ
Then - .
f(xr) — " < \/T:O<\/T>7
where X7 £ arg ming, T o f(x)orxp 23, "T/2] zf:”;;; o

Intuition: bounded domain assumption ensures||x; — x*|| (not just ||x; — x*||)
to be bounded so that we can avoid the O(log T') factor in the analysis.
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Optimal Result with Unknown T

Proof: 1t is easy to extend the second GD lemma from ¢t = 1,...,Ttot = [5],...,

2

e kx2S IV x|
f(xp)— fF< +

B 223:17% 22?:17715
. Xy = x 1P g2 Sz 0
—> f(Xr)—[" < — e E
2 (Zt:(?ﬂ ’f}t) Zt:(%} Mt
T
bG 1 DG 2 =131 1
= 2 ZT LJF 2 ZT 1
t=[%1 t=[L1 &
D@ 1
) fr< 20— -
=> flxr) "< ( ﬁ)

Advanced Optimization (Fall 2024) Lecture 3. Gradient Descent Method



Parameter-Free Extension

Algorithm 1 DoG with SGD [Ivgi et al., 2023]

Input: feasible domain X’ (which can be unbounded); initial point X, € X; step size {1;}/_,: a
small con%tant re > 0.
I+ Setnio = reop

2: fort =1to--- (maybe 7)) do
3:  Perform the SGD update

X1 = Hx [Xe — e8], (4)

where g; is the stochastic gradient of f at x; and the step size is set as

Tt

, where 7y = maxmax{“x — xol|, 7} (5)

Nt = ; o
VI el

4: end for )
Output: weighted average x; = 22:1%' — - ZZ;O reXs.

71 s

Advanced Optimization (Fall 2024) Lecture 3. Gradient Descent Method
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Parameter-Free Extension

Assumption 1 (convexity). The function f : X — R is convex.

Assumption 2 (domain boundedness). The feasible domain & is convex and bounded by D, that is,
for any x,y € X, we have ||[x —y|| < D.

Assumption 3 (boundedness of gradient estimates). The norm of gradient estimates is bounded by
G, that is, for any x € X, we have ||V f(x)]|. < G.

Theorem 1. Under Assumptions 1-3, the DOG algorithm (Algorithm 1) achieves the following
convergence guarantee:

E[f(%:)— f] <O (D—\/; log | <7~2>> 7 (6)

where D and G are the upper bounds of the domain diameter and the stochastic gradient norm, as
defined in Assumptions 2 and 3, respectively. Notably, those constants (D and G) are not required
as the algorithmic input.

Advanced Optimization (Fall 2024) Lecture 3. Gradient Descent Method
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Part 5. Strongly Convex and Lipschitz

* Strong Convexity

* Convergence Result

Advanced Optimization (Fall 2024) Lecture 3. Gradient Descent Method
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Strongly Convex and Lipschitz

Theorem 7. Under the same assumptions with Theorem 1, except that f is o-strongly-
convex. Let {x;}{_, be the sequence generated by GD with step size

B 2
G o(t+1)

Then (1)

far) - < 22— 0 (1),

— A . — A T 2t
where Xp = argming, yr f(X¢) o Xy = ), 771y Xe-

And (i) ! o

ax/T—l—l-

Ixr — x| <
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Strongly Convex and Lipschitz

Proof: we start by extending the first GD lemma to strongly convex case.

Strongly convex case:

* 2 * 2 . . 9
xesn = x*[7 < [l — X7 = 20 (V f (%), %0 = X5) + 07 [V (2|

* x, 0 * ||
< e =17 = 2 (fx0) = 45 e = x5 17) + 0 |9 ()

< (1— o) || = x*|° = 2m (f(xe) — £5) + 0 V£ (x|

—1 —1 2
* — 0 * * G
= J(xe) = 1< P e =P P e — X7+
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Strongly Convex and Lipschitz

* ?7 — 0 * 77 * nG
Fx) = < T = X2 = ey — X[+
2 9 2
o GZ
_— — t_ 1 _ *||2 _ t 1 L *x |12
1 (0= Dllxe = = (¢ + Dllxer = x"|?) + T
% o) N . G2
> (f(x¢) = fF) < A ((T — D)tfjx¢ — x H2 — it + Df[xe41 — % Hz) =+ —

telescope now
T

= St < T (001 = P =TT+ 1) e - X))+

t=1

G2T  G2T

g g

Next step: relating S°, . t(f(x;) — f(x*)) to f(Xr) — f(x*).
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Strongly Convex and Lipschitz

2t

Recall that the output sequence is X1 2 arg min (%} f(x¢)orxp = Z =1 T X

Case1: Y 1(/(x) ~ f*) > (Zt) (Fr) — 1) = D () - )

Case 2: ;t(_f(xt) th X;) rr + 1)f _ T(T2+ 1) (; T(;i 1),f(Xt) B f*)
> TEED (f50) - 1)

(1) is proved. [ ]
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Strongly Convex and Lipschitz

Proof: (ii) can be derived directly from (i) and strong convexity.

; - ‘ 2G?
S l%r =X IP S (VS % = x)  Glxr = x°P < flxr) = < s

Thus, we prove that no matter for which constructions of X7, it holds that

2G
ovT +1

%7 — x| <

(i7) is proved. [ ]
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Summary

Table 1: A summary of convergence rates of GD method.

Function Family Step Size

Output Sequence Convergence Rate Remark
_ . optimal
n = % X £ argming v f(x;) O(1/VT) Polyak’s step*size
require f
XT = arcrmm{x VT f(xy) .
Nt = Tor——r X, O(logT /T suboptimal
convex and G-Lipschitz " IV xr £ Y, ﬁ (logT/VT) P
D X7 = arg Inln{x v f (xt) bounded domain
"= VT X = Zt ) Z“an O(/VT) require 7'
_ A .
Xp = argming v f(xq)
D t=[T/2] .
N = _ T ey O(1/VT bounded domain
TGVt XT = 3 1/2] Z—in—, /VT)
t=[T/2] "
_ _ ) Xp £ argming, v f(xy) .
o-strongly convex and G-Lipschitz M= 5GD s 25T iy O1/7T) |x7r — x*|| is bounded
’ T = 2i=1 S e
Advanced Optimization (Fall 2024)
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summary

[ GRADIENT DESCENT ] <

Convex Optimization Problem

Gradient Descent

Performance Measure

The First Gradient Descent Lemma

OPTIMAL IN CONVEX AND
LIPSCHITZ CASE

STRONGLY CONVEX AND
LIPSCHITZ

Polyak’s Step Size
Convergence
POLYAK'S STEP SIZE
Convergence Rate
The Second Gradient Descent Lemma
CONVERGENCE WITHOUT Convergent Step Size
OPTIMAL VALUE

Convergence without Optimal Value

Optimal Result with Known T

{ Optimal Result with Unknown T

Strong Convexity

{ Convergence Result

Q&A

Thanks!
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