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Outline
• Gradient Descent

• Convex and Lipschitz

• Polyak Step Size 

• Convergence without Optimal Value

• Optimal Time-Varying Step Sizes

• Strongly Convex and Lipschitz
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Part 1. Gradient Descent
• Convex Optimization Problem

• Gradient Descent

• Performance Measure

• The First Gradient Descent Lemma
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Convex Optimization Problem
• We adopt a minimization language
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Goal
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• In general, there are two performance measures (essentially same).

Goal
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• GD Template:

Gradient Descent
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Why Gradient Descent?
• For simplicity, we consider the unconstrained setting.

• A General Idea: Surrogate Optimization
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Why Gradient Descent?
• Following the surrogate optimization principle, let’s invent GD 

for convex and smooth functions.
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• GD Template:

Gradient Descent

This lecture will focus on GD analysis for Lipschitz functions, 
and next lecture will discuss smooth functions.



GD Convergence Analysis
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The First Gradient Descent Lemma

Proof:

(Pythagoras Theorem)

(GD)
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Part 2. Polyak Step Size
• Polyak Step Size

• Convergence

• Convergence Rate
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Polyak Step Size
• GD method satisfies the following inequality:

A natural idea:

minimizing the right-hand side of the inequality
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Polyak Step Size
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Geometric way to “optimize” (consider the 1-dim function)

Geometrically, the best way of iterates

would satisfy that (given known     ) 

A Geometric View of Polyak Step Size 

(Unconstrained) GD with Polyak Step Size
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Polyak Step Size

Boris T. Polyak
1935-2023

Introduction to optimization

Boris T. Polyak

Optimization Software, Inc., 1987
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Convergence
• With Polyak step size, we obtain the convergence results:

Note: recall that bounded gradients condition implies Lipschitz continuity.
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Convergence
Proof:

(i) is proved.

(the first GD lemma)
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Convergence
Proof:

Infinite summation is bounded by constants → convergent series.
(ii) is proved.
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Convergence Rate
• We can also derive the convergence rate.

Proof:
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Part 3. Convergence without Optimal Value
• The Second Gradient Descent Lemma

• Convergent Step Size

• Convergence without Optimal Value
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Step Size without Optimal Value
• Note that Polyak step size requires the optimal value
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The Second Gradient Descent Lemma
• A second version of gradient descent lemma.

Proof: The statement can be derived directly from the gradient descent lemma:
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Convergence Result
• GD lemma implies the following convergence result.
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Convergence Result
Proof:

Combining the above inequality with Lemma 2 (as restated below),

we have completed the proof of the desired result:
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Convergence Result
Proof:

(Jensen’s inequality)

(distribution)

Thus, we achieve the desired result:



Lecture 3. Gradient Descent MethodAdvanced Optimization (Fall 2024) 28

Convergent Step Size

Indeed, this structure appears in the second gradient descent lemma.Proof:
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Convergent Step Size

Example:
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Convergence without Optimal Value
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Convergence without Optimal Value

Proof:

(the second GD lemma)
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Part 4. Optimal in Convex and Lipschitz Case
•

•
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Towards Optimal Resolutions

Now, we will improve this to
optimality with an additional
bounded domain assumption.
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Proof:
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The last characteristics could be undesirable in practice.
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Proof:
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Parameter-Free Extension
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Parameter-Free Extension
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Part 5. Strongly Convex and Lipschitz
• Strong Convexity

• Convergence Result
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Strongly Convex and Lipschitz
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Strongly Convex and Lipschitz
Proof: we start by extending the first GD lemma to strongly convex case.

Strongly convex case:

(rearranging)
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Strongly Convex and Lipschitz

telescope now
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Strongly Convex and Lipschitz

Case 1:

Case 2:

(distribution)

(Jensen’s inequality)
(i) is proved.
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Strongly Convex and Lipschitz
Proof:  (ii) can be derived directly from (i) and strong convexity.

(strong convexity) (i)

(ii) is proved.
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Summary
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Summary

Q & A
Thanks!
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