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* GD for Smooth Optimization
« Smooth and Convex Functions

* Smooth and Strongly Convex Functions

e Momentum and Acceleration

* Polyak’s Momentum

* Nesterov’s Accelerated GD

 Extension to Composite Optimization

 Proximal Gradient and Accelerated One
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Part 1. GD for Smooth Optimization

* Smooth and Convex
* Smooth and Strongly Convex

* Extension to Constrained Case
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Overview

Table 1: A summary of convergence rates of GD for different function families,
where we use k 2 L /o to denote the condition number.

Function Family Step Size Output Sequence  Convergence Rate
D S 1 7T
= —= = — O1/VT
G-Lipschitz COnYEX ! G\f T . Zt:; B V) last lecture
o-strongly convex n: = 5y X7 = D X O1/T)
1 —
convex n=+ XT = XT O(1/T
L-smooth j; L/ >T this lecture
o-strongly convex 1= —— X7 = X O (exp (—1))

For simplicity, we mostly focus on unconstrained domain, i.e., X¥ = R,
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Convex and Smooth

Theorem 1. Suppose the function f : R? — R is convex and differentiable, and also
L-smooth. GD updates by x;+1 = x; — 0.V f(x¢) with step size ny = %, and then GD
enjoys the following convergence guarantee:

o< 2Ll x|
foxr) - 1) < XL o (1)

Note: we are working on unconstrained setting and using a fixed step size tuning.
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The First Gradient Descent Lemma

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x;}}_, be the sequence generated by the gradi-
ent descent method, X* be the optimal set of the optimization problem and f* be the
optimal value. Then for any x* € X* andt > 0,

i1 — x*)% < e — x*)|° = 20 (f(xe) — f7) + 0 IV F (0|1

M [x; — 0V F(xe)] — x*||?

x; — 0V (%) — x|

o — |7 = 20 (V f(xe), %0 — X7) + 07 [V (%)
o — X7 = 2m(f(xe) — f) + i IV F ()|

Proof: |xip1 —x*||’

INA

VAN

[]
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Refined Result for Smooth Optimization

Proof: ||xi+1 — X*Hz = |[ILx[x¢ — eV f(xt)] — X*H2
< lxe = mV f(xe) = x|
=[x, — x| " = 20V f(xe), % — X )+ N f (x|
< —x*7 =20 (f(xe) = f*) + 07 IV F (o)
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Refined Result for Smooth Optimization

e Recall the first-order characterization of smooth functions

Smoothness

Theorem 2 (First-order Characterizations of L-smoothness). Let f : X' — R be
a convex function, differentiable over X. Then the following claims are equivalent:

(i) f is L-smooth.

(i) f(y) < f(x)+(Vix),y —x)+ 5lx —y|® forall x,y € X.
i) f(y) > f(x) +(Vf(x),y —x) + 3£ [|[Vf(x) = V()| forall x,y € X.
(iv) (Vf(x) =V [(y),x-y) > zIVf(x) = V()3 forallx,y € X. co—coerciveity

@ fOx+ (1= Ny) > Af(x) + (1= Nf(y) = 521 = N)|x - y|? for any
x,y € X and X\ € [0,1].

Proofs can be found below Theorem 5.8 of Amir Beck’s book.
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Co-coercive Operator

Lemma 2 (co-coercivity). Let f be convex and L-smooth over R, Then for all
x,y € RY, one has

(VI(x) = VI(y).x—y) 2 7 [VF(x) = VI ()|

Definition 1 (co-coercive operator). An operator C is called B-co-coercive (or
B-inverse-strongly monotone, for 5 > 0, if for any z,y € H,

(Cx — Cy,z —y) > B||Cz — Cy|*.

The co-coercive condition is relatively standard in operator splitting literature and variational inequalities.
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Refined Result for Smooth Optimization

Proof: ||xi+1 — X*Hz = |[ILx[x¢ — eV f(xt)] — X*H2
< lxe = mV f(xe) = x|
=[x, — x| " = 20V f(xe), % — X )+ N f (x|
< —x*7 =20 (f(xe) = f*) + 07 IV F (o)
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Refined Result for Smooth Optimization

Proof: |xi41 —x"|" =

<

IA

T [x — 7V f(x2)] = %7
% = 0V f (%) = x*|°

i — 3|7 = 2V F (), % — XY+ 02 |V f(x0) ||

2
% — x| + (nf - ﬁ) 1V ()2

2 2 21 2
= e — x5 < lxe =7+ (0f = ) IVFx)]]

2 2
< e =77 = 22 IV £ (o)

<lxe —x*° <. < lxq — x*

2
|

Advanced Optimization (Fall 2024)
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Smooth and Convex

Proof: Now, we consider the function-value level,

f(xi1) — f(x7) = f(xeq1) = fxe) + f(x0) — f(x7)

f(x¢a1) — f(x¢) one-step improvement

= f(xe —=mVf(xe)) — f(x)
< (V1) 0 f () + 5 |V Fx)]

= (=t 20 IV

=~ IV (x)]

Cautious: This derivation even doesn’t require convexity!!

= Sxi) — [x) S =5 ISP+ £x0) = 1)
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Smooth and Convex

Proof: |
—>  f(xe41) — f(xF) < 57 IV (x)lI” + f(x0) = f(x7)

Next step: relating ||V f(x;)|| to function-value gap to form a telescoping structure.

f(x¢) — f(X*))Q

Fxi) = F() < (Vo) xe —x) < [VFO e = x| = (VA2 >

%6 — x|

+ f(xt) — f(x")

< — 2 —|_f(Xt)_f(X*)
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Smooth and Convex

Proof:  f(xi+1) — f(x') € ~ g3 (f(3) = f(x"))" + fx0)

— fx)

Define §, £ f(x;) — f(x*) and § £ 1

2L||x1—x*||?"

—> Op+1 < & — 867

< —
= 5 S
T—1
—> g < 11 < S
— o7 01 — Or
t=1
1 2L [|x; — x*°
or & — ) < = :
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Key Lemma for Smooth GD

* During the proof, we have obtained an important lemma for smooth
optimization, that is, one-step improvement

o) = fx) < (=m+ 5 ) IVSG)P = flxr) - 1x) <0 (7).

last-iterated convergence

* Compare a similar result that holds for convex and Lipschitz functions.

Lemma 2. Under the same assumptions as Theorem 1. Let {x;}{_, be the sequence
generated by GD. Then we have

T 1 1 T
S m(FG) = %) < Sl — 1P+ 5 3wV G
t=1 t=1

TtX¢

Z?:l N

This lemma usually implies convergence like f(X7) — f* < ... withxp £ 327, (or other average).

average-iterated convergence
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One-Step Improvement Lemma for Smooth GD

Lemma 3 (one-step improvement). Suppose the function f : R? — R is convex
and differentiable, and also L-smooth. Consider the following unconstrained GD up-
date: X' = x — nV f(x). Then,

Fx) - f(x) < ( n+Ln)HVf< 2.

In particular, when choosing n = +, we have

F(x= 9060) = 70 < —57 19760

Function progress is proportional to the square of gradient magnitude (consider due reasons).
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Smooth and Strongly Convex

* Recall the definition of strongly convex functions ( first-order version).

Definition 5 (Strong Convexity). A function f is o-strongly convex if, for any
x € dom(9f),y € dom(f) and g € Jf(x),

F(y) = £x) + gy — %) + 2 ly — xII”
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Smooth and Strongly Convex

f is o-strongly convex f is L-smooth
o L
FO)+(VF(),y =)+ 2 [x—yI3 = f(y) < FO0)+(VF60,y —x) + 5 x5

h(x) £ f(x0) + (Vf(%0),x — x0) + 5 [x — %013

(%0, f(X0))
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Smooth and Strongly Convex

Theorem 2. Suppose the function f : R? s R is o-strongly-convex and differen-

tiable, and also L-smooth. Then, setting n, = + ——, GD satisfies
L A(T — 1) o T
_ < = _ _ — _
foxr) = 1) < F oo (== I = = 0 (o0 (1))

where k = L /o denotes the condition number of f.

Note: we are working on unconstrained setting and using a fixed step size tuning.
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Smooth and Strongly Convex

My [x; — 0V f(x)] — x|
x; — 7V F(x:) — X7
i — |7 = 20V F(%0), X¢ — XY+ 07 |V F(x4)])

Proof: X1 — X*HQ

IA

Lemma 4 (co-coercivity of smooth and strongly convex function). Let f be L-
smooth and o-strongly convex on R%. Then for all x,y € R?, one has

ol
o+ L

(V100 = VIy)x =) 2 = x = y[P + — 9760 - V1)
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Coercivity of Smooth and Strongly Convex Function

Lemma 4 (co-coercivity of smooth and strongly convex function). Let f be L-
smooth and o-strongly convex on R%, Then for all x,y € R?, one has

ol

(VI) = V) x—y) = =

=yl + —— VS () = VS

Proof : Define h(x) = f(x) — Z||x||*. Then, h enjoys the following properties:
- his convex: by o-strong convexity (see previous lecture).

- his (L — o)-smooth. V?h(x) = V2f(x) — ol < (L —0)I.

1 by co-coercivity o
:> <Vh(X) o Vh(Y)’ X = y> = L—o HVh(X) o Vh(Y)H2 sr):vooth and cgvv]ecxfunctions
Then, rearranging the terms finishes the proof. []
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Smooth and Strongly Convex

Ty [x; — eV (x0)] — x*||
x; — eV f(x;) — x*||
i — |7 = 20V F(%0), X¢ — XY+ 07 |V F(x0)])7

27’]tO'L 112 2 27715 9
1 — _ _

Proof: |xi11 —x"||"

IA

2 2 tO’L 2 2 t 2
= e —x° < (1= Z2E) e = x*[* + (2 = 225 ) VS (o)

serving as the “one-step improvement” in the analysis
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Smooth and Strongly Convex

PTOOf: HXt—i-l B X*HQ < (1 B 277tO'L) th o X*HQ + (77752 . 2m ) va(xt)HZ

L+o L+o

The step size configuration:

2?71;0'[/

(i) first, we need 1 — 5=

< 1 to ensure the contraction property;

(i) second, we hope (17 — Iﬁta) < 0, or it becomes 0 is enough.
2

—> a feasible (and simple) setting: 17 =7 =

2 2 AN
= e = < (1= e ) I = x*1= (52 ) I 1 =

:> HXT o X*HQ < (H_—1>2(T_1)
— k+1

k+1

1 = x| < exp (— 21 [y — x|

Advanced Optimization (Fall 2024) Lecture 4. Gradient Descent Method II
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Smooth and Strongly Convex

. 2(T—1) B
Proof |y~ < (52) 7 =P < exp (- 2L s — x|
Next step: relating ||xr — x*||* to f(xr) — f(x*).
* * L * (|2 * L * || 2
Floxe) < FO) +(TF0¢) 30— %)+ 5 [ = X2 = £ + 5 [x— x|
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Constrained Optimization

* For unconstrained optimization, the key technical lemma is

1

f (X Ly f(x)) ~ (0 < o VI,

where V f(x) is used to measure the function progress.

* For constrained optimization, a generalized one-step improvement:

Lemma 5. Suppose f is L-smooth. Let xy+1 = llx[x; — %V f(x¢)|, and define
9(x) = L(x — x441) for any x € X. Then the following holds true for any u € X’:

f(xe1) = f(u) < (g(x¢), % — 1) — %Hg(xt)!\z-

- g(x¢) is used to qualify the progress; and in the unconstrained case, g(x;) = V f(x;).

- comparator u is introduced because (projected) GD is not necessary “descent”.
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Constrained Optimization

Same convergence rates as unconstrained case can be obtained in
the constrained setting for smooth convex optimization.

Detailed proofs for the constrained optimization will
not be presented. The proof follows the same vein

yet requires some additional twists, we refer anyone
interested to the following parts in Bubeck’s book:

noew

e R o e

 Constrained + smooth + convex: Section 3.2
Convex Optimization:

* Constrained + smooth + strongly convex: Section 3.4.2 Algorithms and Complexity
Sebastien Bubeck
Foundations and Trends in ML, 2015
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Lower Bound

Lower bounds reflect the difficulty of the problem, regardless of algorithms.

notice: this lower bound only holds for first-order methods

Table 1: A summary of convergence rates of GD for different functiof families.

Function Family Convergence Rate | Lower Bound | Optimal?
O /vT Q1 /T
G-Lipschitz COnYer (/VT) (/VT)
o-strongly convex O/T) Q(1/T)
convex O(1/T) Q(1/T?)

L-smooth

X %

o-strongly convex O (eXP (_ %) ) ) (eXp (_ %) )

—> GD is suboptimal in smooth convex optimization!
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Part 2. Momentum and Acceleration

* Polyak’s Momentum
* Nesterov’s Accelerated GD
e Smooth and Convex

* Smooth and Strongly Convex

Advanced Optimization (Fall 2024) Lecture 4. Gradient Descent Method II
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Polyak’s Momentum

* GD method (with a fixed step size): x;,; =x; —nVf(x;), e.g.,n = %

* The problem: pathological curvature

Considera deploying GD on a quartic function f(z) = z*.

Gradient Descent: x* Gradient Descent: x* MOtiV&tiOI‘l‘

d Ensure smaller steps in
regions of high curvature
to dampen oscillations.

Gradient Descent

d Ensure larger steps and
accelerate in regions of
low curvature.

— 0.00

04 -0.2 0.0 02 D4 04 -0.2 0.0 02 D4

(a) large step size (b) large step size

Source: https://boostedml.com/2020/07/gradient-descent-and-momentum-the-heavy-ball-method.html
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Polyak’s Momentum

« GD with momentum:

J/

X1 = Xg — va(Xt)J‘F?(Xt — X¢_1)

N

GD Update momentum

where (3 is a hyperparameter (usually 5 € |0, 1] though not limited to it), which
scales down the previous step adaptively.

A If the current gradient step is in the same direction as the previous step (e.g., in
the region of low curvature), then move a little further in that direction;

4 If it’s in the opposite direction (e.g., in the region of high curvature), move less far.

* Also known as the “heavy ball method” (think of the physical intuition).
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Polyak’s Momentum

* Provable benefit: can achieve accelerated rate for optimizing the
quadratic functions (but fail for more general cases like smooth and
convex/strongly convex functions). Details are omitted [more details].

* Other benefit: help jump out of the local region (can be useful
for non-convex opt) s Movement -

Negative of dL/dw + Last Movement

=P Negative of dL / dw
===2p Last Movement

=P Real Movement

dL/dw =0 \.

Source: Hung-yi Lee ML 2021 Spring course Lecture on batch and momentum
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Nesterov’s Accelerated GD

(Yi+1 )—ivf(}’@
/ ////

~

1
Xt+1 = Yt — zvf(}’t)

/%ww
Yit1 = Xtp1 T 5t(Xt+1 — Xt) 6 Y,

/

/
- Define X1 =Y. f

- B¢ > 01is a time-varying mixing rate of x; and x;41; 8; = 0 recovers vanilla GD.

- AGD can be also thought a version of GD with momentum.
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Nesterov’s Accelerated GD

e a momentum term is added to
boost the convergence

Example

p
minimize log X exp(alx + b;)
i=1

* the descent property iS relaxed e two randomly generated problems with p = 2000, n = 1000
and not ensured nOW e same fixed step size used for gradient method and FISTA

e figures show (f(x(K)) — f*)/f*

100 : : :
F — GD g
107! -
1072} : " E
103 | ' -3 '
1074 -
1073 -
—6 . I —6 L L
107 50 100 150 200 107% 50 100 150 200
k k
Accelarated GD Accelerated proximal gradient methods 7.9

https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf
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Polyak’s Momentum v.s. Nesterov’s AGD

* Polyak’s Momentum:

X1 = Xg — va(Xt)J‘F?(Xt — X¢—1)

J/

N

GD Update momentum

* Nesterov’s AGD: Xt11 =Yt — NV f(ye)
Vir1 = Xe41 + Be(Xer1 — X¢)

Xt+1 = X¢ — va(Xt + Bi(x¢ — Xt—l)) ‘I‘?(Xt — X¢_1)

N _y 7
v V

GD Update momentum

Main difference: separate the gradient calculation state and the momentum state.
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Convergence of Nesterov’s Accelerated GD

Theorem 3. Let f be convex and L-smooth. Nesterov’s accelerated GD is configured
as

1
Xt+1 = Yt — zvf()’t% Yi+1 = X¢41 + 5t(Xt+1 — Xt),

144 /14407

where \g = 0, \; = >

,and By =

2=L Then, we have
t41

X1 — X*||?
Flxr) - flx) < 2P X :o(%).

Note: for simplicity, we are working on unconstrained.
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Proof of AGD Convergence

Proof: First, we prove the following ¢eneralized one-step improvement lemma.
P 88 p imp

Lemma 6. Foranyu € X, if x;41 = x¢ — + V f(xy), then the following holds true:

Floxi1) = Flu) < (V7 (x), %0 —m) — o [V ()|

a comparator variable u is introduced here,

because now AGD is not necessary “descent” due to the momentum

:> Setting u = x; recovers the one-step improvement used in earlier analysis.

f(xer1) — f(x¢) < — % IVf(x:)||*?  GD for smooth and convex functions
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Generalized One-Step Improvement

Lemma 6. Foranyu € X, if x;41 = x¢ — + V f(xy), then the following holds true:

Floxi1) = Flu) < (V7 (x), %0 —m) — o [V ()|

Setting u = x; recovers the one-step improvement used in earlier analysis.
Proof:
f(xes1) — f(a) = f(xeg1) — f(xe) + f(xe) — f(u)
L
< (Vf(xe), X1 —%e) + S [%eq1 — x¢||* + (V f(xe), % — )

= (Vf(x¢), X1 —u) + % IV f (=)l

= (Vf(x).x ) = o [V (x)
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1
Proof of AGD Convergence | >+ =v %/t

Vit1 = Xet1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)

Lemma 6. Foranyu € X, if x' = x — +V f(x), then the following holds true:

F) — f(m) < (V)% —w) = o [V

() Plugging in u = x;:
Fxisn) — Fx0) < (VF(ye), v —x) = 5195 ()|

(i) Plugging in u = x*:
Fxesn) = Fx) < (VF(ye)sye = x) = 595 ()|
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1
Proof of AGD Convergence | >+ =v %/t

Vit1 = Xet1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)
(i) Plugging in u =x: f(x41) — f(x¢) SAVF(¥e)ye —x0) — 5 [V (yo)ll*.
(ii) Plugging inu=x*: f(x;41) — F(x*) < (Vf(ye),y1 —x7) — &V F(yo)|I2
LHS of (\; — 1)(i) + (ii) equals:
(Ae = D) (f(xe1) = f(xe)) + f(xug1) — F(x)
= M (f(xe41) = (1)) = e = D(f(x0) = [ (x))

Define 6; = f(x;) — f(x*), then we have

LHS — )\t5t+1 — ()\t - 1)575
Goal: design a telescoping series
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1
Proof of AGD Convergence | >+ =v %/t

Vit1 = Xet1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)
() Plugging inu = x;: f(x¢11) — f(x¢) <AV f(ye),ye — Xt) — ﬁ”vf(}’})w
(ii) Plugging inu = x*: f(x;41) — f(x*) < (VF(y1), ¥ —x*) — 2|V Fa) 1%

RHS of (A; — 1)(i) + (ii) equals:
= 1) (91503~ %) = 5 IVFGOI ) + (V1031 = x°) = 57 19550

At
= (Vf(ye), dye — (M — 1)xy — X7) — EHVf(Yt)HQ
That is

AeOip1 — (A —1)0 <AV f(ye), My — (e — D)xyp — x7) — ;—szf(Yt)HQ
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1
Proof of AGD Convergence | >+ =v %/t

Vit1 = Xet1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)

Cautious: many terms of interest have already appeared in the following inequality.

optimal point

At
AeOpr1 — (A —1)0 <AV f(ye), Mye — (A — D)xyp — x5) — i”vf(Yt)W

optimality gap linear combination gradient norm
telescoping structure related to momentum
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1
Proof of AGD Convergence | >+ =v %/t

Vit1 = Xet1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)

MeOip1 — (A —1)0 <AV f(ye), My — (e — D)xyg — x7) — ;—EHVf(yt)\P

1
= A0 =N (N — 1)d, <

= 2NV F(ye), Ly — (A = 1)xe — X)) — [NV F(yo)]1?)
Requirement (1): \j(N\; — 1) = \2_
1

= A/ 0ir1—A, 16 < o7 2NV f(ye), Lvy: — (v — Dxe — x)) — ANV (y0)]1?)

Denote by a £ )\tVf(yt), b £ L()\t}’t — ()\t — 1)Xt — X*).

1 1
= i = Ny < 5= (2(a,b) — al) < o= (b~ [[b~ al]?)
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1
Proof of AGD Convergence | >+ =v %/t

Vit1 = Xet1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)

Denote by a £ )\tVf(yt), b £ L()\t}’t — ()\t — 1)Xt — X*).

A6t — AP0y

1
< E(LQH)\th — (At — 1)x¢ — X*HQ — |IL(Aty: — (A — 1)x¢ —X7) = MV f Yt)H2)
L Vi(ye)

)\tyt — ()\t — 1)Xt — X* — )\t

)

— 5 <’)\th — ()\t — 1)Xt — X*HQ - ‘

L
2

L

(eye — A = Dxe — x*))7 = [ Aexegr — (N — D)xe — x¥]|7)

Goal: design a telescoping series
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1
Proof of AGD Convergence | >+ =v 1%/t

Vit1 = Xet1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)

L

AfOir1 — Af_10; < 5(\|>\th — (M = Dxe — xF[)7 = [ Nxin — (A — 1)xp — x5||?)

Requirement (2): \;Xi11 — (At — 1)Xe = M1 yer1 — (Aer1 — 1)Xegq

L * *
A0 41—=A710; < o5 Ay = (A —1)x;—x P=lA 1y e — Aegr — Dxep—x|1%)
telescope

Define z; = \;y; — (A — 1)x; — x*, then we have

L
Aibir1 — Ap_10¢ < §(HZtH2 — ||Zes1]]?)

L
= Ar_10r = Agor = o ([zal* = ||z ]]*)
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1
Proof of AGD Convergence | >+ =v 1%/t

Vit1 = Xet1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)

L
A _107 — \jo1 = §(|\Zl\|2 — ||z |]?)

Requirement (3): \o = 0

L LHZ1”2 LH)\lyl — ()\1 — 1)X1 — X*”2
Ao 0 < = 2 5 60 < —
T_107 < 2H21H TS0 DI
Requirement (4): y1 = x
L LHz1H2 LHX1 —X*H2
A\ O < = 2 5 60 < —
T—19T > 2 HZ1H T = 2)\%_1 2)\%_1
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as

Theorem 3. Let f be convex and L-smooth. Nesterov’s accelerated GD is configured

PrOOf Xt+1 = Yt — %vf(}’t)a Vir1 = Xe+1 + Be(Xer1 — Xi),

144/T14r2_
where \g = 0, \y = —r———

Proof: (continued proving Theorem 3)

T2

Flxr) — fx) < 2P =X _ (i)

_ A1
,and By = et Then, we have

T2

Requirement (1): \j(N\; — 1) = \2_
Ly — 14+4/TH4N2_,

2

Requirement (2).' )\tXt—i—l — <At — 1)Xt = )\t+1}’t+1 — <At—i—1 — 1)X7H—1

_ Ae—1 B X1
Yi+1 = Xg41 + Nt (Xt4+1 — X¢) = By = Att1
Requirement (3): \og = 0
Requirement (4): y1 = X3
2 * |2
1+4/17402 t+1 Lllxy —x*[|* _ 2L[x, —x*| 1
A\t = =L = N > —— =07 < < =0(—) U
! 2 2 2)\2,_, T2 T2
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Smooth and Strongly Convex

Theorem 4. Let f be o-strongly convex and L-smooth, then Nesterov’s accelerated
gradient descent:

vy —1

Nal!

1
Xt+1 — Yt — va(}’t)a Yt+1 = Xer1 + (Xt+1 - Xt)

satisfies

% O'—I—L % 2 T
Flor) = ) < T2 e =y esn (2 ).

where v = L /o denotes the condition number.

core technique: estimate sequence
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Smooth and Strongly Convex

e Proof sketch

Core technique: construct an estimate sequence

O

Dy (x) = f(x1) + ;

Dy () 2 (1= 0)@,(x) +0 (F00) + (VF(xe)x = x0) + 2 [x = x]*)

% = x1|°

The estimate sequence {®,}/_, is required to satisify some nice properties:
(i) Dpq(x)— f(x) < (1—0)"(P(x)— f(x)) = approximate f well.
(ii) f(x;) < mingcpa P;(x) = useful when giving the convergence rate.

It can be proved that the above construction satisfies the two properties.
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Smooth and Strongly Convex

e Proof sketch

Core technique: construct an estimate sequence

< (1=0)"(21(x*) — f(x9))

= (1=0)" (fx1) + 3 [x* —xa|* = £(x))

S (o + L) x* = x| exp(—6t)
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Estimate Sequence

* Admittedly, how to construc

Foundations and Trends®
Machine Learning
8:3-4

References:

Chapter 3.7

Zhouchen Lin
Huan Li
Cong Fan

Accelerated
Optimization

for Machine
Learning

First-Order Algorithms

@ Springer

Chapter 2.1 M. Baes, Estimate sequence methods:

estimate sequence is highly tricky

Estimate sequence methods:
extensions and approximations

Michel Baes*

August 11, 2009

Abstract

The approach of estimate sequence offers an interesting rereading of a mumber of accelerating
schemes proposed by Nesterov [Nes03), [Nes05], and [Nes06]. It seems to us that this framework
is the most appropriate descriptive framework to develop an analysis of the sensitivity of the
schemes to approximations.

We develop in this work a simple, self-contained, and unified framework for the study of
s, with which we can recover some accelerating scheme proposed by Nesterov,
tion procedure for constrained cubic regularization in convex optimization,
y generalizations to regularization schemes of a Vi
the sensitivity of these algorithms to various types of approximations: partial resolution of

use of . or both, and draw some guidelines on the design
of further estimate sequence schemes.

1 Introduction

The concept of estimate sequences was introduced by Nesterov in 1983 [Nes83] to define the provably
fastest gradient-type schemes for convex optimization. This concept, in spite of its conceptual

for this concept resurrected in 2003, when Nesterov wrote his seminal paper on smoothing techniques
[Nes05]. Indeed, the optimization method Nesterov uses on a smoothed approximation of the

convex non-smooth objective fimction c:
sequence methods play a crucial role in further papers of Nesterov Auslender
and Teboulle [AT06] managed to extend the estimate sequence method, stated in Section 2.2 of
[Nes03] for sauared Euclidean norms as prox-functions, to general Bregman distances at the cost of
a supplementary technical assumption on the domain of these Bregman distances.

Several other papers propose generalizations of Nesterov’s smoothing algorithm, and can be
interpreted in the light of the estimate sequence concept or sight generalizations of it. For instance,

“M. Baes is with the Institute for Operations Research, ETH, Riimistrasse 101, CH-8092 Ziirich, Switzerland. Part
of this work has been done while the author was at the Department of Electrical Engineering (ESAT), Research Group
SCD-SISTA and the Optimization in Engineering Center OPTEC, Katholicke Universiteit Leuven, Kasteelpark

Arenberg 10, B-3001 Heverlee, Belgium. E-mail: Michel. Baes®ifor.math.ethz.ch.

extensions and approximations.

Technical report, ETH, Ziirich (2009)
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More Explanations for Nesterov’'s AGD

 Ordinary Differentiable Equations

* Su, W, Boyd, S, & Candes, E. A differential equation for modeling
Nesterov’s accelerated gradient method: theory and insights. NIPS 2014.

 Even, M., Berthier, R., Bach, F., Flammarion, N., Gaillard, P.,, Hendrikx, H.,
Taylor, A. A continuized view on nesterov acceleration for stochastic
gradient descent and randomized gossip. NeurIPS 2021.

* Variational Analysis

* Wibisono, A., Wilson, A. C., & Jordan, M. I. A variational perspective on
accelerated methods in optimization. PNAS 2016, 113(47), E7351-E7358.
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More Explanations for Acceleration

* Linear Coupling of GD and MD

* Allen-Zhu, Z., & Orecchia, L. Linear coupling: An ultimate unification
of gradient and mirror descent. [TCS 2017.

* Cutkosky A. Chapter 14 Momentum & Chapter 15 Acceleration. Lecture
Notes for EC525: Optimization for Machine Learning, 2022.

* Online Learning with Suitable Optimism

« Kavis, A., Levy, K. Y., Bach, F., & Cevher, V. UnixGrad: A universal,
adaptive algorithm with optimal guarantees for constrained

optimization. NeurIPS 2019.

 Kreisler, I., Ivgi, M., Hinder, O., & Carmon, Y. Accelerated Parameter-
Free Stochastic Optimization. COLT 2024.
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History Bits

Nesterov’s four ideas (three acceleration methods):

* Y. Nesterov (1983), A method for solving a convex
programming problem with convergence rate O(1/k?)

* Y. Nesterov (1988), On an approach to the construction
of optimal methods of minimization of smooth convex
functions

* Y. Nesterov (2005), Smooth minimization of non-smooth

functions Yurii Nesterov
1956 —
* Y. Nesterov (2007), Gradient methods for minimizing UCLouvain, Belgium

composite objective function
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Nesterov, Y. (1983), A method of solving a convex programming problem with
convergence rate O(1/k?), Soviet Mathematics Doklady 27(2), 372-376.

Iloka, Axan, Hayx CCCP
Tom 269 (1983), N 3

A METHOD OF SOLVING
A CONVEX PROGRAMMING PR{

WITH CONVERGENCE RATE O
uDnc 51

YU. E. NESTEROV

1. In this note we propose a method of solving a convel
Hilbert space E. Unlike the majority of convex programmi
this method constructs a minimizing sequence of points {
This property allows us to reduce the amount of computatio
Al the same time, it is possible to obtain an estimate of cof
improved for the class of problems under consideration (see

2. Consider first the problem of unconstrained minimizati
We will assume that f(x) belongs to the class C'(E), i.e
L > 0such thatforallx, y € E

(1 [7Cx) = £ () < Llix = .
From (1) it follows that for all x, y € E
(&) F(p) <f(x) + (f(x), y = x)+ 0.5

To solve the problem min{ f(x)|x € E} with a nonempty{
the following method.
0) Select a point y, € E. Put

(3) k=0, ag=1, x =y, e =lw—zI/N
where z is an arbitrary point in E, z # y; and f'(2) # f'(y, ).
1) kth iteration. a) Calculate the smallest index i = 0 for

(@) ) =y =2 f(¥)) =27 la,
b) Put
@ =27, X = o S ()
) “Av|:(l+)/m4l)/2_

Vi1 = %+ (@ — D(x, — x4)
The way in which the one-dimensional search (4) is halted
[2]. The difference is only that in (4) the subdivision in the
with a, _, (and not with 1 as in [2]). In view of this (see the pi
sequence {x, )3 is constructed by method (3)-(5), no more
sions will be made. The recalculation of the points y, in (5)

1980 Mathematics Subject Classification. Primary 90C25.
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Let us
the sequences {x, )i and {y, ).

THEOREM 1. Let f(x) be a convex function in C
sequence {x, }¥ is constructed by method (3)~(5), then:

1) For any k = 0;

(6) fx,)

where C = 4L|yy — x*|* and f* = f(x*), x* € X*.
2) In order to achieve accuracy e with respect to the
a) to compute the gradient of the objective function ni
b) to evaluate the objective function no more than NI

Here and in what follows, ](-)[ is the integer part of
PrOOF. Let y, (@) = y, — af(y, ). From (2) we obti
() — f(xla) =052 —

Consequently, as soon as 2 'a; | becomes less than

and a, will not be further decreased. Thus a; = 0.51,°
—Xi). Then pg, | — XA

Let p, = (a; — I)}x,—,
Consequently,

lPasr =

I Ohr ) Fows = 2> f(x,40) = f*
050, | I < fes) — S, 4

We substitute these two inequalities into the preceding
lpst = Fpr + -“*”: =llpe —
—2ay @y [y —f*) + (afyy — a4

< 2ay o (fxey) = 7%) + 2(ai s,

=204 1@ ( f(x) = f*) — 204y}, ( (X
<2a,ai( f(x,) = f*) — 20y 4 a4 ([l

Thus

20, I[1L1+I(f(xl(~l) = I%) <2, |af~|(/>{x;+1

=< 2e,a,(f(x;) = f*) +llps —

< 2a4a5( f(x0) = f*) +llpo

It remains to observe thata; , , = a, + 0.5 > 1 + 0.5

It follows from the estimate of the convergence rat
method (3)-(5) needs to achieve accuracy & will be ni
each iteration, one gradient and at least two values ol

so remark that method (3)-(5) does not guarg

2 2
Xepr + ¥ =lpe — x + 22l + 2(ay,

+2ap 10 0 (L (Ve 1) 8

Using inequality (4) and the convexity of f(x), we 0

2
= o+ x*|" <l 3

r=c/k

—ai 1 { /(s

2
x; +x*| = 2(a

2
X5 +x®|
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be calculated. Let us remark, however, that to each addi
function corresponds a halving of a;. Therefore the total
not exceed Jlog,(2La_)[ + 1. This completes the proof of

If the Lipschitz constant L is known for the gradient o
can take ¢, = L' in the method (3)~(5) for any k = 0. I
to hold, and therefore Theorem 1 remains valid
llyo — x*ly2L/€[ —1 and NF = 0.

To conclude this section we will show how one may m
the problem of minimizing a strictly convex function.

Assume that f(x) — f* = 0.5m||x — x*|| for all x € &
constant m is known.

We introduce the following halting rule in the method

¢) We stop when

N k =22/ (may) — 2.

Suppose that the halting has occurred in the N'th step-
(3)-(5), one has N < |4,/L /m [ — 1. At the same time,

2y = 2
fley) - < AR

=L < 0.25m|y, — x4
ay(N +2)

After the point x, has been obtained, it is necessary
begin calculating, by the method (3}-(5), (7). from the poi

As a result we obtain that after each 4)/L/m [ — 1 it
to the function decreases by a factor of 2. Thus the
cannot be improved (up to a dimensionless constant) amg
class of strictly convex functions in C''(£) (see [1]).

3. Consider the following extremal problem:

(®) min{ F(f(x)) | xe @

where Q is a convex closed set in £, F(u), with u € R",
positive homogeneous of degree one, and f(x) = (fy(x
continuously differentiable functions on E. The set X
assumed to be nonempty. In addition to this, we will a
functions { F(-), f(+)} has the following property:
(+) If there exists a vector A € 8F(0) such that X < 0
The notation 3 F(0) means the subdifferential of the fu
As is well known, the identity F(u) = max{(\, u)|A
tions that are positive homogeneous of degree one. The
the convexity of the function F( j( x))onallof E.
Problem (8) can be written in minimax form:

(9) min{max{ (X, 7(x))| A € 9F(0)

One can show that the fact that the set X* is nonem
the existence of a saddle point (A*, x*) for problem (9).
of problem (9) can be written as 2% = A* X X*, where

A* = Argmax{F(A) | A € 9F(0)}, ¥(A) =

374

The problem
max{¥(X)| X € 3F(0) N dom Wi
will be called the problem dual to (8).
Suppose the functions f;(x), kK = 1,...,m, in problem (8
with constants L*? = 0, Let L = (L,... L"),
Consider the function
Dy, 4,2) = F(f(y.2)) +054|n
where
Frz) = (g 2)se e A s %)),
) =LY+ ()2 — ), k
and A is a positive constant. Let
o*(y, A) =min{®(y, 4,2)|z € 0}, T(y, A) = af
Observe that the mapping y — T(y, a) is a natural generali
“gradient” mapping introduced in [1] in connection with th
minimizing functions of the form max,_,.,, fi(x). For the
as for the “gradient™ mapping of [1]) we have
(10)  @*(y,4) +4{(y—T(y,4),x *)’) + 054y — T
forallx € Q,y € Eand 4 = 0, and if A = F(L), then
@*(y, 4) = F([(T(v, 4))).

To solve problem (8) we propose the following method.
0) Select a point y, € £. Put

(11) k=0, ap=1, x =)y A, =
where Ly = (L., L§™), L& = 11 fiyo) — iz W/ 11Ye —
inE, z+#y,

1) kth iteration. a) Calculate the smallest index i = 0 for
(12) O*( ¥, 24, |);)F(/'(T()'L‘2'AA~

b) Put 4, = 2'4,_,, x, = T(y,, 4;) and

- ap = (1442 + 1) /2,

Yier =%+ (@ = 1)(x, = x, ),

It is not hard to see that the method (3)-(5) is simply
method (11)-(13) for the unconstrained minimization proble;
and Q = E in (8)).

THEOREM 2. If the sequence {x, )i is constructed by methoe
assertions are true:
1) Forany k =0
Ff(x)) = F(F(x) < €/ (k 4
where C, = 4F(L)||y, — x*||>, x* € X*.

2) To obtain accuracy € with respect to the functional, one needs
a) to solve an auxiliary problem min{®(y,, A, x)|x € Q} no more than

1VC /e | + Imax(logs(F(L ) /4 )0}

times,
b) to evaluate the collection of gradients f{( ). ...f,( ¥) no more than |;C, /¢ | times, and
) to evaluate the vector-valued funciion f(x) at most
2)yC,ze + Imax{log,( F(E)/4_,).0}[
times.

Theorem 2 is provéd in essentially the same way as Theorem 1. It is only necessary to
use (10) instead of (2), while the analogue of «, f'( v, ) will be the vector v, — T( ¥, 4, ),
and the analogue of a; the values of A;'.

Just as in the method (3)-(5). in the method (11)-(13) one can take into account
information about the constant F( L) and the parameter of strict convexity of the function
F( f(x)) — m (for this, of course, we must have y, € Q).

In conclusion let us mention two important special cases of problem (8) in which the
auxiliary problem min{®( y,, 4, x)|x € Q] turns out to be rather simple.

a) Minimization of a smooth function on a simple set. By a simple set we understand a set
for which the projection operator can be written in explicit form. In this case m = | and
F(y) =y in problem (8), and

(. 4) = f(3) — 0543 + 0.54
in the method (11)-(13), where
T(y. A) = argmin{ |y —a7'f(y) jr;“\_;_EWQ_},__ —

b) Unconstrainted minimization (in problem (8), QO = E). In this case the auxiliary
problem min{®( y., 4. x)|x € E} is equivalent to the following dual problem:

(. A) =y + A7)

2

i NOf(y)

k=1

+ 3 Mp(p)) (A, A om™) € aF(O)l
k=1

g

(14) max{—D.SA !

Here

m

T(y, A)=y—A4" 3 M fi(»)

where the X*(p), k= 1,.... )
remark that the set dF(0) is usu
such cases problem (14) is the stz
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YIOK 51
10.E. HECTEPOB
METOI PEWEHMSA 3AIAYH BHNYKJIOTO MPOI
CO CKOPOCTBI0 CXOIMMOCTH O |

J1B. P

1. B cramse 2€TCA METOJ, P 3a/iaun
BaHHA B rwisbeproBom npocrpanctee E. B omnmume or Gon
JI0ro MpoTp paHee, 3TOT ME
myo nocnenonuenmom Touek {xk} k=0, KOTOpaA He ABN
0COBEHHOCTh IIO3BOJIAET CBECTH K MHHHMYMY BBIMMCIIHTEN
ware. B To Xe BpemMA IA TAKOrO METOJA YHAeTcs WONyd
CMaTpUBAEMOM KITacce 3a[jay OLICHKY CKOPOCTH CXOMMMOCTH (|

2. Paccmorpum cHavana 3aady Ge3ycnoBHOH MHHHME
f(*). Mb1 Gynmem npemnonarats, 9ro GyHKuMA f(X) MpUHA
YTO CywecTByeT KoHctaHTa L > 0, mif KOTOpOH NpH BE
HEpaBeHCTBO

N M-I Lix -yl

W3 HepaseHcTBa (1) crenyer, 4To npH Beex X, y €
Q@ < FE '), y -0+05LLy —xIP.

Jna pemermsa sapam min{f(x)| x € E} c Hemyctsll
X" npepnaraeTcst CreAyionmMit MeTOL.

0) Boi6upaem TouKy yo € E. ITonaraem
B3) k=0, ao=1, x,4=ys, @,=lyo—2I/If'(yo)
rne z — mo6as Touka u3 E,z#yo f'(z) # f'(o)-

1) k-z Urepaums.

) BrIumcrsieM HaMMeHbLIMi HoMep i 3> 0, [I15 KOTOPOro
@ ) —Fx =21 > 27 e 17,

6) Tonaraem

@ =270y, Xx =i — @S (Vi)

(5)  ar+r =(1+Vdap +1)/2,

Pia1 =Xx + (@ — 1) (e — Xk 1) axs1-

CniocoG mpeprIBaHHA OIHOMEpDHOro moucka (4) aR
seHHOMy B [2]. PasHuua muius 8 ToM, 10 B (4) IpoGnenue
HM3BOJMTCA, HAWMHAA C @y _; (a He C eIMAHMUBL, Kak B [2])|
TeNsCTBO Teopemsl 1) mpu mocrpoerun Merogom (3)—(5) 0
Gymer cnenaﬂo He 6onee 0(log1L) TaKuXx apoGenui. [lepecy
p " wwara. OTMeTHM TaKxe, §
y dyHkmn f(x) wa . mocy

T M

Vil k=0
Teopema 1. Hycrb evinyxaas pynxkuyus f(x) €

nocnedosarenbHocTs { Xy} =o nocrpoena merodom (3) —(5),

1) 0aa arbozo k >0
©)  fex)—f"< Cfk+2)?,
20e C=4Lly,—x*1?, f*=f(x*), x*€X";
2) 048 OOCTUNEHUA TOYHOCTU € NO FYHKYUOKAAY He0b)

) BLIYUCAUTY 2DAOUEHT yenegoit yHKyuu He 6onee NG

6) eblyucauts 3HaueHue yeneeoill PYHKyUU He
+ ]loga(2Lay)[ +1 pas.

3necs u manee ] () [ — uenas vacs wicna (-).

HoxasarenbcrBo. Ilyets (@) = yx — of ()

nonyuaem f(yx) ~f(yx (@) = 05a(2—aL) If'(yi) I7. C.
2%y _y cramer Membue, yem L™, HepaBeHCTBO (4) BHINOIN
yMeHbIaThCs He GymyT. Takum o6pasom, ay = 0,5L ! s sce
O6Go3nawM p, = (@, — 1) (xx—; — Xz). Torna py
+ Aga10441f (Vie1). CnenosatemsHo, Ipgy; — Xpyq + X
+ 2@k — Dok r (' (V1) PO+ 284410541 (F (Pier1)5 1
X f ' (pa)I?.
Tonb3yscs HepaBeHCTBOM (4) M BBITYKIIOCTBIO QYHKIH
LDk Prwr =X i) =7 +0,50, 17'(3
0,504 1f'(7ies1)I? < f(¥ie1) = Fxi1) < Fxx)
=iy ' (Vs1), P
TlozcTaBuM 3TH [1Ba HePaBEHCTBA B IIPEIbIAYILEE PaBEHC
IDgsr —Xpay +3* 02— Ipg —xp +x* 12 < 2(agy; — 1
25410541 (FOkar = ")+ @Fay — axe1)0f oy 1F()
< 20411041 (F (1) =) + 2%y — @ier 1)1
= 2044185 (f k) — ") — 2044185 (FGiar) —F1) S
— 2044184 (k1) —f7).
Taxum o6pa3om,
Mkﬂai”(f(xkﬂ) -M< 2ak+]ai+x(f(xk+l) -
F0Piay = Xpeay +x° 1% < 205a(f (k) —f*) + I oy =
< 200a3(f(x0) = f*) + Ipo—xo+x* 12 < lyo—x*12

OcTanock 3aMeTHTb, UTO @4y =ax +0,5=>1+05(k+1).

U3 ouenku ckopoctd cxomumocth (6) ciemyer, 4ro g
Moe Merofy (3)—(5) miA JOCTHXEHHS TOMHOCTH €, He GymeT
TIpu 5TOM Ha KaXMOH MTepauuy GyneT BHIMMCIATHCA OFMH Ipi
fBa 3HATCHHA UENEBOA QYHKUMH. 3aMETHM, ONHAKO, IO K
i YHKIMM COOTBETCTBYeET }
BaBoe. [TostoMy obluee WACIIO TAKHX BHIYMCIIEHHM He IpeB3(

Teopema loKa3aHa.

Ecnu st rpajMeHTa ueneBOd (QYHKIMM M3BECTHa KO
metone (3)—(5) MoxwHo monoxmts ax = L~ mpu mobom k
BeHCTBO (4) Gymer 3aBeOMO BBINOJIHEHO H NO3TOMY YTBE]
Hytcst BepubiMu tipn C=2L 1 yo — x* 12, NG =]l yo — x*I\/2i
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B 3akmoueHHe 3TOTO pasfena NMOKaxeM, KaK MOXI
(3)—(5) map 3afaw CHIIBHO BBITYKJI|
Tlpennonoxmm, yto mns GyHKuyH f (x) npH Beex X € |
f&) —f*>0,5mlx — x*I?,rae m >0, 1 nycTh KOHCTaHTa 77
Bsenem B Metop (3) —(5) crenyromee MPaBHIIO Mpephl
B) OcraHaBiMBaemcs, eCiii

T k= 2V2[(moy) —
Ilycts npeprrBaHMe nmpousouuio Ha N-m mare. Tak K
>05L7", 10 N< ]4/L/m[ —1. B 10 e Bpemsa

2l yo - x*12
fy) =" < ———eir
Gn) oy (N +2)?

Tlocne TOrO Kak MOJNyYeHa TOUKaA Xy, HeO6XOmHUMO O
wath cyet MeTofioM (3) —(5), (7) U3 TOUKH X, KaK 3 Hayasbl

B pesynsrate monmyuaem, 4To 3a Kaxmpie |4+/L/m|
¢ynxuum y6bisaer Basoe. Takum obpazom, meron (3)—(5)
€TCA HeyNyulaeMbIM (C TOYHOCTBIO O Ge3pa3MepHOH KOHC!
BOTO MOPAAKA Ha KIACCe CHITBHO BHIMYKIbIX GyHKUKi 3 C'!

3. PaccMOTpHM criefiylollylo 3KCTpeMaIbHYI0 3a/iauy :
(® min{F(f () x€Q},
e Q — BBIMyKNOe 3aMKHYTOe MHOXecTBO H3 E, F (), u €
R™  nonoxwTenbHO-ONHOPOAHAA CTeNleHH eHHHIA (QyHKIMA

..y fm(¥)) — BekTOp BBIMYKI/BIX HempepsiBHO muddeper

MuoxectBo X pewtennit 3amaw (8). Bcerha mpeAnonaraet
Mbl Bcerfa GyfeM Mpedmonarate, 4T0o CHCTeMa (QyHKuMHA {
AYIOLIMM CBOHCTBOM :

(*) Ecnu cymectsyer Bextop A € 3F (0) Tako#, um
HeiiHas QYHKUHA.

Yepes 0F (0) B (*) oGo3HaueH cy6mudpepenuman GpyH

Kax M3BeCTHO, I BBUIYKJIBIX IOJIOKHTETBHO-OME
yHKuMiA cripaBemIMBO TOXAECTBO F (1) = max{(\, u)| |
Npe[INoNoXeHUs (*) ciedyeT BRITYKIoCTh GyHkunn F (f (X)

3apauy (8) MOXHO 3amucaTh B MHHMMaKCHOH popme:
9) minfmax{{\, £ (x))] AEIF(0)}| x € Q}.

MoOXHO MOKa3aTh, YTO M3 HEMyCTOThI MHOXecTBa X* M mped
wectBoBanue y 3amaun (9) cemtosoit Toukn (A x*). oz
Touek 3afam (9) npencraBumo B Bume 2= A' X X', 1@
€ 0F(0)}, ¥(N) =min{}, f(x))| x €Q}. 3apmauy

max {¥(A)| A€ 3F(0) N dom W ()},

< 025mlly,—x*12< 0,

MblﬁyﬂeMHa3blBaTb 33)13‘16;{ HBOHCTBCHHOHK(
Iycrs B 3apave (8) dyHkuwmm fi (x),k =1,2,.
CYY(E) ¢ xouctantamu L %) > 0. O6osnamm L = (L“) L(

Paccmotpum dyrkumio O (y, 4, z) = F (f(y, 2)) +(
=00, P, 1, 2), (P, 2) =4
., M, A — NONOXHTENbHAA KOHCTaHTa. OGO3HAWM

©*(y, A)=min{®(y,4,2)| zEQ}, T(y,A)=arg

3.174

Ormetum, uto orobGpaxenue y > T(y, A) sABuseTCcA ecrec

3aam (8) “rpapueHTHOro” 0TOGpaXKeHWs, BBEEHHOTO B [1

METOJIOB MMHMMM3auu¥ GYHKIMHA BHAa max [y (x). D
1<k<m

(xax u 1A “’rpaguentHoro” oro6paxerus’” u3 [1]) npu Bee
TOJIHACTCA HEPAaBEHCTBO

(10) ©°(y,A)+A(y —T(y,A),x - +0,54ly - T(y, A
npuuem ecnu A > F(L), 10
*(3, A)>F(F(T(v.4)).

Ins peuienus 3anaum (8) mpeayiaraeTca CleMyIOMMA Mt
0) Bai6upaem TouKy yOE E. Tlonaraem

(11) k=0, ao=1, x,=yo, A_=F(L,),

rae Lo=(L§", LS, .. L‘“’) L =1 fi(r0) - Fr@V/
Touka u3 E, z#y,.

1) k-a Urepauus.

a) BorumcnsieM HauMeHbumit Homep i > 0, 1A ¥
PaBEHCTBO

(12) O (¥k, 2'4x—1) 2 F(F(T(yk, 24k 1))
6) Tonaraem Ay =2'4;_,, x; = T(yy, Ar),

ey =(1+ \/4:1,‘5 +1)/2,

Vi1 =Xk + @k — 1) Xk — X —1)/ax41-

HerpymHo 3ameruts, wro metom (3)—(5) sBnserc
samicu meroma (11)—(13) mia 3amawm Ge3ycnoBHOH MHHH
m=1, F(y)=y, Q=E).

Teopema 2. Ecau nocaedosareasHocts {xk} k=0
(13),70:

1) daa awbozo k > 0 F(f(x)) — F(fx*))
=4F(L)lyo—x*I?, x*€X".

2) 048-00CTUNEHUR TOYHOCTU € NO PYRKYUOHANY Heob

a) pewuts gcnomozarenbiyio 3adayy min{®(y, .
1VCi/el +] maxtlogy (F(L)/A ), 01[ pas,

6) e@bluucauT HAGOP 2pAOUEHTOS
WCi/e[ pas, _

B) @blyucauTs gexTop-Pynkyuio f (x) He Goaee 2]/Cy
0}[ pas.

Teopema 2 moKa3bIBaeTCA NMPAKTHYECKH TaK Ke, KAK
TONBKO BMECTO HEpPaBEHCTBa (2) HCIONB30BaTh HEPABEHCTB(
BexTopa axf'(yx) Gymer Bextop ¥y — T(Vr, Ax), a anal

TouHo Tak e, kak u B merone (3)—(5), B Merome
mH(opMaimio o KoHcTante F (L) 1 mapamerpe CHIBHOI BBITY)
—m (A 31010, MpaBMa, He06X0AMMO, UTOBbI Yo € Q).

B 3akiioueHMe OTMETHM J1Ba BaXKHBIX YacTHBIX CITyd
BecroMoratenbHas 3afaya min{®(yy, 4, x)| x € Q } oxaspll

a) MuHHMH3aUMA ITaJKOH BBHITYKIION GYHKUMH Ha
NPOCTBIM MHOXECTBOM MBI NIOHHMAEM TaKoe 'MHOXKEeCTBO, [
eKTHPOBAaHUSA 3alMCBIBACTCA B ABHOM BHJe. B 3TOM ciyuae B

(13)

(), 12(5)
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u B Meroe (11)—(13)
" (3, A)=f(y) =054 If' (I*+05AIT(y, 4) -y + 47 ' (N7,
roe T(y, A)=argmin {ly - 47 f'(y) -zl | z€Q}.
6) BesycnosHas muHuMm3auusi (B 3amave (8) Q = E). B arom cimyuae Bcnomo-

ratenbHas 3ajava min{®(y, A, x)| x € E} 3KBHBaIEHTHa CIeMyIOLEH IBOHCTBEH-
HOM 3aiaye:

m
(14) max{ ~054" “ Z AEL() Amye

m
P T AW 00 OWAD, L
k=1

S aF(O)} .
Tlpu atom T(y, A)=y — A~

m
AR CTARWIFINY BN €3 1V N A T )

weHus 3agaw (14) mpu ¢
OGBIYHO 3a[[aeTCA MPOCTHIMK
KHX Cioyvasx 3agava (14)

ABTOp MCKpeHHe NpH
JIMPOBAJIH €TO HHTEPEC K pacd)

Received 19/JULY/82

LIeHTpasbHBIA IKOHOMHKO-MaTeMaTHYeCKHIt HHCTHTYT
Axanemun Hayk CCCP, MockBa

Tocrymusio
19 V11 1982

JIMTEPATYPA
1. Hemuposckuii A.C., 0our A.5. C 3aav ¥ MeTONIOB
wnu. M.: Hayka, 1979. 2. Mwenuwnwiit B.H., Januaux OM. MeTofbl B P

3apavax. M.: Hayxa, 1975.

YOK 515.1 MATEMATHUKA

E.H. HOYKA
K TEOPUH MEPOMOP®HBIX KPHBbIX

P BC.B 18 v 1982)

1. IycTs 3amaHa MepoMopdbHas KpHBas, T.e. MepoMOpdHOe 0ToGpaXeHHe

£ c-cp,
H IyCTh roioMopdHoe 0ToGpaXeHne
i CoCMY =, fares fan)s

SIBNAETCA PeNYLIMPOBAHHBIM NPEJCTABIIEHHEM KPHBOMH f XapakTepuCTHUECKYI0  yHK-
w0 f onpenenum, cnenys A. Kaprany [1]:

~ 1 .
T n = 5 [ loglf(re™)I*dy — log|£(0)1*.
T o
Mycts A — runepmwiockocts B CP” M @ — eNWHHYHBIA BEKTOP TAKOH, YTO paBeH-
ctBo (W, @) =0 (cxobku 0603HAYAIOT IPMHTOBO CKAIAPHOE NPOH3BEJECHHE) €CTb ypas-
HEHHE THMepIUIOCKOCTH A B OIHOPOMHBIX KOOPAHHATAX; 0Go3HawiM f4 = (f, a).
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History Bits
* Polyak’s Momentum, credit goes to Polyak, date back to 1960s

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1-17, 1964.

Math. Program., Ser. B 91: 401-416 (2002)

Digital Object Identifier (DOI) 10.1007/s101070100258

B.T. Polyak

History of mathematical programming in the USSR:
analyzing the phenomenon*

Received: January 29, 2001 / Accepted: May 17, 2001
Published online October 2, 2001 — © Springer-Verlag 2001

Abstract. I am not a historian; these are just reminiscences of a person involved in the development of
optimization theory and methods in the former USSR. I realize that my point of view may be very personal;

Boris T. POlyak however, I am trying to present as broad and unbiased picture as I can.
1935-2023
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Part 3. Extension to Composite Optimization

* Composite Optimization
* Proximal Gradient Method (PG)
* Accelerated Proximal Gradient Method (APG)

* Application to LASSO
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Composite Optimization
* Problem setup

min F(x) £ f(x) + h(x)

xERd

where f is smooth (namely, gradient Lipschitz) while h is not smooth.

* The composite optimization problem is common in practice.

Example 1. The objective of LASSO: F(w) = 3 |[w'X — sz + A|wll;,
where X = [x1,....X,,y = [y1,...,yn] .

How to effectively leverage the (partial) smoothness to improve convergence?

Advanced Optimization (Fall 2024) Lecture 4. Gradient Descent Method II
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Recall Non-composite Optimization

Recall how we invent GD for unconstrained non-composite optimization.

* Idea: surrogate optimization

We aim to find a sequence of local upper bounds Uy, --- ,Ur, where the
surrogate function U; : RY — R may depend on x; such that

(1) f(xt) = Us(xz);
(i) f(x) < U¢(x) holds for all x € R¢;

(iii) U.(x) should be simple enough to minimize.

:> Then, our proposed algorithm would be x;; = arg min, U;(x)

Advanced Optimization (Fall 2024) Lecture 4. Gradient Descent Method II
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Recall Non-composite Optimization

e Consider miny f(x), and assume f is L-smooth.

By smoothness: f(x) < f(x;) + (V[f(x),x —x;) + gHX — x4

\ - 7
V

£ U:(x) surrogate objective

—> to minimize f(x), it suffices to minimize the surrogate sequence {U,(x)}/_;.

Claim. GD for smooth functions can be equivalently represented by

. 1
X1 = argmin Uy (x) = [y [Xt — Evf(xt)] ;
xeX

where U;(x) = f(x:) + (Vf(xt), x — x¢t) + £||x — x¢||? is a quadratic upper bound of f at x;.
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Recall Non-composite Optimization

Claim. GD for smooth functions can be equivalently represented by

. 1
X1 = argmin Uy (x) = [y [Xt — va(xt)] ;
xeX

where U;(x) = f(x:) + (Vf(xt), x — x¢t) + £||x — x¢||? is a quadratic upper bound of f at x;.

Proof:
L
X117 = arg min U;(x) = arg min {(Vf(xﬁ,x} + = ||x||? — L{x, xt>}
xeX xeX 2
(L 1 ,
—argmin { £ (2(x ~ 19x0. ) + <17 |
L 1 ? 1 1
= argmin — ||x — [ x; — =V f(x}) = argmin ||[x — [ x; — =Vf(xy) ||| =y |xt — =V [f(x¢)
xXeX 2 L xeX L L

[]
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Composite Optimization
* Problem setup

min F(x) £ f(x) + h(x)

xERd

where f is smooth (namely, gradient Lipschitz) while h is not smooth.

A natural idea for surrogate objective:

Following previous argument (for non-composite optimization), to minimize
F = f + h, it’s natural to optimize surrogate sequence {U;(x)}._, defined as

Ur(x) £ F(3x0) + (V7 (3x0).% — 1) + 21 — [ + h(x)
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Composite Optimization
L

By smoothness: f(x) < f(x;) + (V[f(x),x —x;) + EHX — x4?

\ .

J/

"V

2 0, (x)

—> to minimize F'(x) = f(x) + h(x), it suffices to minimize

’

—

arg min U (x) = arg min
X X L

,

surrogate objective

Uy (x) = ug(x) + h(x).

F0) + (7). x = x0) + G = x4 B

(9 1x)x) + 5 Il = L) + b |

= argmin{
= arg}fnin {g (—2<Xt — Vfl(;Xt) ,X> + HXH2) + h(x)}
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Composite Optimization

L

By smoothness: f(x) < f(x;) + (V[f(x),x —x;) + §HX — x4?

\ .

J/

—> to minimize F'(x) = f(x) + h(x), it suffices to minimize

"V

2 0, (x)

surrogate objective

Uy (x) = ug(x) + h(x).

(—2<xt _ VfL(Xt),x> + HxH?) + h(x)}

arg min Uy (x) = arg min <
X X

= |arg min <

* \

I
2
(L
2

X — (Xt_

V f(x¢)
L

)

+ h(x)}

this will be abstracted as an operator, a subproblem to optimize
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Composite Optimization

* [teratively solve the surrogate optimization problem.

Deploying the following update rule:

. , L
x; 11 = arg min Uy (x) = arg min 5
xceRd xcRd

x - (xt - %Vﬂxt)) . h<x>}

A .
prox,; (x) = arg min {
ucRd

Definition 2 (proximal mapping). Given a function h : R% — R, the proximal
mapping (or called proximal operator) of h over x is the operator given by

i) + 5 a = x? .
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Proximal Gradient

Definition 2 (proximal mapping). Given a function h : R% — R, the proximal
mapping (or called proximal operator) of h on x is the operator given by

1
prox; (x) £ arg min {h(u) + 3 |x — uHQ} .

ucRd

Proximal Gradient Method

X;41 = arg min {gHX — (Xt — %Vf(m)) H2 + h(X)} = 2UOREL (Xt - %Vf(xt))

xER4

1
An equivalent notation: Xi11 = Pl(x:) & Prox.y <Xt — EVf()g)) :
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Proximal Gradient

Proximal Gradient Method
1
Xp1 = Pﬁ(xt) £ Proxi, (Xt — sz(XQ)

— arg min {gHX — (Xt — %Vf(xt)) H2 + h(x)} .

xERd

- In LASSO, where h(x) = ||x||1, P} is easy to compute and has closed
form solution.

- Algorithmically, PG induces famous algorithms for solving LASSO problem,
which are called ISTA (GD-type) and FISTA (Nesterov’s AGD-type).
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Convergence of Proximal Gradient

Smooth Optimization

blem: mi
problem i f(x)

assumption: f is L-smooth

Convergence: f(xr)— f(x*) <O <—

1
GD: Xt+1 — Xt — ZVf(Xt)

1
T

)

Smooth Composite Optimization

problem: min F(x) = f(x) + h(x)

xER4
assumption: f is L-smooth, h not
1
PG: x411 = proxu, <Xt — ZVf()g))

Convergence: F(xp)— F(x*) <7
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Convergence of Proximal Gradient

Theorem 5. Suppose that f and h are convex and f is L-smooth. Setting the param-
eters properly, Proximal Gradient (PG) enjoys

o Lllxo—x** /1
F(xr) — F(x*) < TG _0<?>

Proximal gradient can also achieve an O (1/7") convergence rate, which is the
same as the non-composite optimization counterpart.

The result can be further boosted to O (exp(—T1'/k)) when the function f is
o-strongly convex (where k = L /o is the condition number).
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Convergence of Proximal Gradient

e Generalized one-step improvement lemmaon F = f + h

Lemma 7. Suppose that f and h are convex and f is L-smooth. Let x4, = Pﬁ(xt)
and g(x) = L(x — X¢y1). Then foranyu € X,

Flxis1) — F(u) < {a(xe), % — ) — o lg(x)|”

Suppose the above lemma holds for a moment, we now prove the O(1/7") con-
vergence rate of PG.
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Proof of PG Convergence

Proof: e o st L = P
Setting u = x* in Lemma 7: F(x041) — F(u) < (g(x¢),x; — u) — %Hg(xt)n?
1
F(x¢41) — F(x*) < (9(x¢),%x¢ — X7) — ﬁHg(Xt)H2
L
—>  F(xy1) — F(x") < L{x — Xgq1, % — X)) — 5’ Xt — Xep1]”
L 2
= 5(2<Xt — X1, Xt — X)) — ||x¢ — xe41]]7)
L
= 5 (lxe =" = flxeq1 — x*||%)

= Y Flxe) = (T = DF(x*) < lxo — x|
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Proof of PG Convergence

Proof:

T—1 L||xo—x*||?
> i S Fxi) — F(x*) < 2]

which already gives an O(1/T) convergence rate of X = + Zz;l X¢.

What we want: F(xr) — F(x*)

Next step: analyzing F(xr) — = 32_11 F(x3).

Setting u = x; in Lemma 7: F(x;11) — F(x¢) < —5-||g(x¢)||* < 0.
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Proof of PG Convergence

Proof:
What we want: F(xr)—F(x*) = Next step: analyzing F(x7)— Zf:_f F(xy).
S HE (i) — Flx) = 3 tF(xe1) — Flx) + Flx) ~ F(x)

= 3 (tF(x) — (= DF(x)) = 3 Flxi) = (T = DF(xr) = 3 Flxi) <0

What we have:
- F(xr) — 7 S0 F(x4) <0 Tllxn — x* |12

L 2 P =R < BT

< D Flx) = F(x) < 5557

2(T—1) L]
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Proof of One-Step Improvement Lemma

Lemma 7. Suppose that f and h are convex and f is L-smooth. Let x; 1 = P} (x;)
and g(x¢) = L(x; — X411). Then for any u € X,

1

F(x¢1) — F(u) < (g(x¢),x¢ —u) — EHQ(Xt)HQ-

Proof: What we have: F(x) < Ug(x) forany x € X = F(x¢4+1) — F(u) < U(x¢41) — F(u)
analyzing this quantity

{Ut Xer1) = F) + (VF(Xe), Xep1 — Xe) + Fl1xeq1 — xe|3 4+ Pl

F(u) = f(u)+h(u) > Tt +(Vf(xt), u—x¢) + M) + (VA(Xe41), 0 —Xe11)

L
D Ur(x¢41) — F(u) < (V[f(x¢) + Vh(xii1),Xep1 —u) + §th+1 — x5

\ . 4
~

Next step: relate V f(x;) + Vh(xs11) to g(xy). =31 llg(xe)l]

Advanced Optimization (Fall 2024) Lecture 4. Gradient Descent Method II 74



Proof of One-Step Improvement Lemma

Proof:

What we have: F(x) < Uy(x) forany x € X = F(x¢41) — F(u) < Ug(x¢41) — F(u)

analyzing this quantity

= Urlstisa) — F(w) < (V/(3x0) + Vhisi1), i1 — )+ o= ()

x40 = argmin {A(x) +  [x = (x — V()|
2 H(x)

by Fermat’s
optimality condition

Theorem 8 (Fermat’s Optimality Condition). Let f : R — (—oo, 00 be a
proper convex function. Then

x* € argmin{f(x) | x € R}

if and only if 0 € O f (x*).

0 = VH(X¢41) = VA(X¢41) + L(Xep1 — %x¢) + V[ (x¢)
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Proof of One-Step Improvement Lemma

Proof:

What we have: F(x) < Uy(x) forany x € X = F(x¢41) — F(u) < Ug(x¢41) — F(u)
analyzing this quantity

{ Ur(oci1) = F(u) < (V7 (50) + Vi), %1 — ) + o= lg()]

and the fact that Vf(x;) + VA(x¢11) = —L(X11 — Xt) = —9g(x¢)

> Uilxin) — F(w) < (g0x). 00— ) + o [la(x)|
1 2
= (9(X¢), % —u) — EHQ(XOH -
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One-Step Improvement Lemma

* A fundamental result for GD/AGD of smoothed optimization.

unconstrained, GD f(Xt+1) — f(Xt) < — % va<Xt) H2 specialized

unconstrained, AGD f(Xt+1) — f(ll) < <Vf(Xt)7Xt — 11> — %HVJ%Xt)HQ

1
constrained, GD f(xe1) — f(u) < (g(x¢), % —u) — ng(xt)HQ

U

1
composite, GD/AGD F(x:01) — F(u) < (g(x¢),x; —u) — 5T Hg(xt)HQ general

Corollary: the proof of PG can also be used to prove the O(1/7") convergence rate of GD.
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Accelerated Proximal Gradient Method

* A natural idea: Can we achieve AGD in composite optimization?

:> This induces the Accelerated Proximal Gradient (APG) method.

Nesterov’s Accelerated GD

1
Xt41 = Yt — Evf(Yt)a Vit1 = Xe41 + Be(Xep1 — Xe)

Accelerated Proximal Gradient

1
2G4l = PSS Ly <Yt — va(Yt)> y o Ytt+1l = X1 T 5t(Xt+1 — Xt)

The covergence rates can be similarly obtained.

Advanced Optimization (Fall 2024) Lecture 4. Gradient Descent Method II 78



Accelerated Proximal Gradient Method

Theorem 6. Suppose that f and h are convex and f is L-smooth. Setting the param-
eters properly, APG enjoys

2L

F(XT) _F(X*) < (T—|—1)

*H2'

2HX0 — X

Suppose that h is convex and f is o-strongly convex and L-smooth. Setting the pa-
rameters properly, APG enjoys

Foxr) - F(x') < exp (7 ) (Foxa) = ) + Sllxa — 7).

where k = L /o denotes the condition number.

The convergence rates can be obtained same as those in non-composite optimization.
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Application to LASSO

e LASSQ: /;-regularized least squares

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + 82| < t and B? 4 B3 < t2, respectively,
while the red ellipses are the contours of the least squares error function.
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Application to LASSO

e LASSQ: /;-regularized least squares

Fw)=1|wTX —y|* +A|w],

commonly encountered in
signal/image processing.

> composite optimization: first part is simooth, the other one is non-smooth

* ISTA (Iterative Shrinkage-Thresholding Algorithm): PG for LASSO

* FISTA (Fast ISTA): APG for LASSO

Closed-form solution:

Phowols =sign  |wi = 297w ) (|[wi = 79 s0m0)

1

A
L

).

Advanced Optimization (Fall 2024)

Lecture 4. Gradient Descent Method 11

81



SIAM J. IMAGING SCIENCES (© 2009 Society for Industrial and Applied Mathematics
Vol. 2 No. 1, pp. 183-202

A Fast lterative Shrinkage-Thresholding Algorithm

Application to LASSO

* Comparison of ISTA and FISTA

Abstract. We consider the class of iterative shrinkage-thresholding algorithms (ISTA) for solving linear inverse
problems arising in signal /image processing. This class of methods, which can be viewed as an ex-
tension of the classical gradient algorithm, is attractive due to its simplicity and thus is adequate for
solving large-scale problems even with dense matrix data. However, such methods are also known to
converge quite slowly. In this paper we present a new fast iterative shrinkage-thresholding algorithm
(FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence
which is proven to be significantly better, both ically and ically. Tnitial ising nu-
merical results for wavelet-based image deblurring demonstrate the capabilities of FISTA which is
shown to be faster than ISTA by several orders of magnitude.

Key words. iterative shrinkage- thresholding algorithm, deconvolution, linear inverse problem, least squares and
I, regularization problems, optimal gradient method, global rate of convergence, two-step iterative
algorithms, image deblurring
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1. Introduction. Linear inverse problems arise in a wide range of applications such as
astrophysics, signal and image processing, statistical inference, and optics, to name just a
few. The interdisciplinary nature of inverse problems is evident through a vast literature
which includes a large body of mathematical and algorithmic developments; see, for instance,
the monograph [13] and the references therein.

A basic linear inverse problem leads us to study a discrete linear system of the form

(1.1) Ax=b+w,

where A € R™*™ and b € R™ are known, w is an unknown noise (or perturbation) vector,
and x is the “true” and unknown signal/image to be estimated. In image blurring problems,
for example, b € R™ represents the blurred image, and x € R" is the unknown true image,
whose size is assumed to be the same as that of b (that is, m = n). Both b and x are
formed by stacking the columns of their corresponding two-dimensional images. In these
applications, the matrix A describes the blur operator, which in the case of spatially invariant
blurs represents a two-dimensional convolution operator. The problem of estimating x from
the observed blurred and noisy image b is called an image deblurring problem.
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Summary

Table 1: A summary of convergence rates of GD method for smooth optimization.

Algorithm Function Family Step Size Output Sequence Convergence Rate Remark
L-smooth and convex n=1 X7 = X7 O(1/T) suboptimal
GD
L-smooth and o-strongly convex n= 2 X7 = X7 O (exp (L)) suboptimal
L-smooth and convex Xi41 =Yt — %Vf(yt), Virl = Xer1 + Oe(Xep1 — X¢) X 2 X1 O0(1/1?) optimal
AGD
L-smooth and o-strongly convex  x;11 =y; — +Vf(y:) = X1 + L (X1 — X¢) X =X O <ex <—£>) optimal
gly t+1 =Yt — T Yi) Yi+1 = X421 NaEohShax" t T = XT p N P
PG F(x) £ f(x) + h(x) X111 = Ph(x;) £ proxiy, (x¢ — £V f(xt)) X7 = X7 Oo(1/T) suboptimal

f and h are convex

f is L-smooth but h is not smooth R
APG Xt+1 = ,P]LL (yt), Yit+1 = X¢41 —+ ,31«, (Xt_|_1 — Xt) XT = XT O(l/Tz) optimal
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summary

Smooth and Convex

~ [ GD FOR SMOOTH OPTIMIZATION ] Smooth and Strongly Convex

Constrained Optimization

Polyak’'s momentum

< MOMENTUM AND ACCELERATION Nesterov’s Accelerated GD

Smooth and Convex/Strongly Convex Functions

~ Composite Optimization

k EXTENSION TO COMPOSITE Proximal Gradient Method (PG)

OPTIMIZATION Accelerated Proximal Gradient Method (APG)

~  Application to LASSO
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