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Outline
• Online Learning

• Online Convex Optimization

• Connection to Offline Learning
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Part 1. Online Learning
• Statistical Learning

• Online Learning: Problem and Measure

• Online Convex Optimization
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A Brief Review of Statistical Learning
• The fundamental goal of (supervised) learning: Risk Minimization
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A Brief Review of Statistical Learning
• Given a data distribution     , a predictive model                     and

•
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A Brief Review of Statistical Learning
• A successful paradigm : characterization of sample complexity

 excess risk bound

 generalization error bound
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Offline Towards Online Learning
• Traditional statistical machine learning

• The training data are available offline

• Learning model is trained based on the offline data 
in a batch setting

• Online learning scenario
•  In real applications, data are in the form of stream

•  New data are being collected all the time: after 
observing a new data point, the model should be  
online updated at a constant cost
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A Formulation of Online Learning
• We model online learning from the lens of optimization.

• Online learning is formulated as a repeated game between
 Player: essentially the learner, or you can think as  the “learning model“

 Environments: an abstraction of all factors evaluating the model.
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Online Learning: Formulation

•

for simplicity

Considering the task of online classification, we have
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Online Learning: Formulation

Spam filtering
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Performance Measure
• Recall in the statistical learning:

meaning: cumulative loss of online models trained on the 
growing data stream

• In online learning:

Risk

Sequential Risk
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Performance Measure
•

simply using a linear model 𝐰𝐰 to 
parametrize the hypothesis ℎ

•

benchmark performance with the offline model (optimal in hindsight)
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Regret Measure
• We use regret to measure the online learning algorithm 

benchmark performance with the offline model (optimal in hindsight)

ALT’16

Hannan Consistency

• We hope the regret be sub-linear dependence with 
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Is Online Learning (provably) solvable?
• In general, the online learning formulation is hard to solve.

A Trackable Case: Online Convex Optimization
requiring feasible domain and online functions to be convex
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Is Online Learning (provably) solvable?
• In general, the online learning formulation is hard to solve.

A Trackable Case: Online Convex Optimization
requiring feasible domain and online functions to be convex
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Online Convex Optimization
• Requirements:

(1) feasible domain is a convex set
(2) online functions are convex
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OCO: Different Feedback

on the feedback information:

less information

full information

horse racing

partial information

multi-armed bandits
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OCO: Different Environments

less restricted 
but harder

oblivious adversary

examination interview

adaptive adversary
on the difficulty of environments:

- stochastic setting

- adversarial setting oblivious

adaptive 
(non-oblivious)
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The Space of Online Learning Problems

Yevgeny Seldin. The Space of Online Learning Problems, ECML-PKDD, Porto, Portugal, 2015.

• Full-information setting:
• Online Convex Optimization
• Prediction with Expert Advice
• ...

• Partial-information setting:
• Multi-Armed Bandits
• Linear Bandits
• Parametric Bandits
• Bandit Convex Optimization
• ...
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The Space of Online Learning Problems

Yevgeny Seldin. The Space of Online Learning Problems, ECML-PKDD, Porto, Portugal, 2015.

• Full-information setting:
• Online Convex Optimization
• Prediction with Expert Advice
• ...

• Partial-information setting:
• Multi-Armed Bandits
• Linear Bandits
• Parametric Bandits
• Bandit Convex Optimization
• ...

OCO



Lecture 5. Online Convex OptimizationAdvanced Optimization (Fall 2024) 21

Part 2. Online Convex Optimization
• Convex Functions

• Strongly Convex Functions

• Exponentially Concave Functions
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Part 2. Online Convex Optimization
• Convex Functions

• Strongly Convex Functions

• Exponentially Concave Functions
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OCO: Convex Functions
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OCO: OGD Algorithm

Online Gradient Descent (OGD)

Actually, only gradient is required, so it’s also called gradient-feedback OCO model.
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Regret Analysis of OGD
• The following assumptions are required for standard analysis.
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Regret Analysis of OGD
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The First Gradient Descent Lemma

Proof:

(Pythagoras Theorem)

(GD)
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Proof for OGD Regret Bound
Proof: We use the first gradient descent lemma to analyze online gradient descent.
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Proof for OGD Regret Bound
Proof:
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OCO: Strongly Convex Functions
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OGD for Strongly Convex Functions

Online Gradient Descent (OGD)
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OGD for Strongly Convex Loss
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OCO with Strongly Convex Functions
Proof: we start by extending the first GD lemma to strongly convex case.

Strongly convex case:

(rearranging)
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OCO with Strongly Convex Functions
Proof:
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Strongly Convex Problem

Comparison of (Strongly) Convex Problems

Convex Problem

OGD: 

Property: Property:

OGD: 
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OCO: Exponentially-concave Functions

But actually we can get a tighter bound!
exp-concave Convexstrongly

convex
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An Example for Exp-concave Learning
• Universal Portfolio Selection
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An Example for Exp-concave Learning
• Universal Portfolio Selection

online function is exp-concave
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Exponential-concave Function

(concavity)

Proof.
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Exponential-concave Function

Proof.
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A Comparison of Different Curvatures
• Convex

• Strongly Convex

• Exponentially Concave
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Exponential-concave Function

Algorithmic intuition:

• For convex loss, we use 2-norm to encode the structure of the space.
• Can we exploit local structures of exp-concave loss to improve the regret?
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Intuition
• Convex

• Strongly convex

• Exp-concave

We may still GD update, but the step size should be “data-dependent”.
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ONS for Exp-concave Function
Online Newton Step
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ONS: In a View of Proximal Gradient

Convex Problem
Property:

Proximal type update:

OGD: 

Exp-concave Problem
Property:

Proximal type update:

ONS: 
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ONS: In a View of Proximal Gradient

Proof.

(constant)

Exp-concave Problem
Property:

Proximal type update:

ONS: 
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ONS for Exp-concave Function
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Proof
Extending the first GD lemma to exp-concave case:

Proof.

(Pythagoras theorem)
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Proof
Extending the first GD lemma to exp-concave case:

Proof.
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Proof

(rearranging)

Proof.

cancellation
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Proof
Proof.
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Proof

Proof.

Proof.
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Proof

Proof.

Proof.
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Proof

Proof.

(by Lemma 5)

Proof.



Lecture 5. Online Convex OptimizationAdvanced Optimization (Fall 2024) 55

Proof
Proof.

Proof.
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Proof

Therefore, by Lemma 4, we have

Proof.
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Proof
To conclude,

(elliptical potential lemma)(bounded domain)

Proof.
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Lower Bounds
• A natural question: whether previous regret can be improved?

• Lower bound argument:

minimax bound: smallest possible worst-case regret of any algorithm:



Lecture 5. Online Convex OptimizationAdvanced Optimization (Fall 2024) 59

Lower Bounds

Proof Sketch.

Construct a “hard” environment:

• Binary classification, loss functions in each iteration are chosen at random

• Similar results can be obtained for strongly convex and exp-concave cases
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Comparison

Algorithm Upper Bound Lower Bound

Convex OGD

OGD

ONS
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Back to Exp-concave Learning
• Universal Portfolio Selection

[COLT 2020 Open Problem]
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Part 3. Connection with Offline Learning
• Application to Stochastic Optimization

• Online-to-Batch Conversion
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Application to Stochastic Optimization
• Consider the following convex optimization problem:

• Stochastic optimization method

full gradient computation requires a pass of all data

stochastic method only uses a mini batch at each round



Lecture 5. Online Convex OptimizationAdvanced Optimization (Fall 2024) 64

Stochastic Gradient Descent
• Consider the following convex optimization problem:
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History: SGD
Robbins–Monro Method Kiefer–Wolfowitz Method

A Stochastic Approximation Method.
Herbert Robbins, Sutton Monro 
Ann. Math. Statist. 22(3): 400-407 (September, 1951).

Stochastic Estimation of the Maximum of a Regression Function 
Jack Kiefer, Jacob Wolfowitz 
Ann. Math. Statist. 23(3): 462-466 (September, 1952)

Herbert Ellis Robbins 
(1915 - 2001) Jacob Wolfowitz 

(1910 - 1981)

Jack Kiefer
(1924 - 1981)
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History: SGD

Herbert Ellis Robbins 
(1915 - 2001)
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Stochastic Gradient Descent
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Proof of SGD Convergence
Proof. First, we rephrase SGD from lens of online convex optimization.
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Proof of SGD Convergence

(convexity)

(Jensen’s inequality)
Proof.

Proof: 
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Proof of SGD Convergence

(convexity)

(regret of OGD algorithm)

(Jensen’s inequality)
Proof.
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Stochastic Gradient Descent
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More bits of OGD

oblivious adversary

examination interview

adaptive adversary
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Online-to-Batch Conversion
• An alternative way to solve statistic learning:

• use the data in a sequential way
• run any online algorithm minimizing the regret
• return the final model as the average 
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Online-to-Batch Conversion
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Concentration Inequalities
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Online-to-Batch Conversion

Proof Sketch.
Jensen’s inequality Azuma’s inequality

Hoeffding’s inequality
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Online-to-Batch Conversion
Proof.

(Jensen’s inequality)
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Online-to-Batch Conversion
Proof.

(definition of regret)
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History: Two-Player Zero-Sum Games

Nicolo Cesa-Bianchi, Online Learning and Online Convex Optimization. Tutorial at the Simons Institute. 2017.
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History: Prediction with Expert Advice

Volodimir G. Vovk. “Aggregating 
Strategies." COLT 1990: 371-383.

Nick Littlestone and Manfred K. Warmuth. 
"The Weighted Majority Algorithm." FOCS 1989: 256-261.

Volodimir G. Vovk
Royal Holloway, 

University of London

Manfred Warmuth

UC Santa Cruz
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Summary

Q & A
Thanks!
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