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* Online Learning
* Online Convex Optimization

* Connection to Offline Learning
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Part 1. Online Learning

» Statistical Learning
* Online Learning: Problem and Measure

* Online Convex Optimization
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A Briet Review of Statistical Learning

* The fundamental goal of (supervised) learning: Risk Minimization

2%1713 E(X’y)ND L(h(x),y)],

where
- h denotes the hypothesis (model) from the hypothesis space H.
- (x,y) is an instance chosen from an unknown distribution D.

- ¢(h(x),y) denotes the loss of using hypothesis h on the instance (x, y).
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A Briet Review of Statistical Learning

* Given a data distribution D, a predictive model i : X — Y , and

the loss function 7 : )> x YV — R, the expected risk is defined by

R(h) = Ex y)~pl(h(x),y)].

* In practice, we can only access to samples S = {(x1,41),-- -, (Xm,Ym) }-

Thus, the following empirical risk is naturally defined:

m

S h(xi), wi).

1=1

Rgs(h) =

1
m
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A Briet Review of Statistical Learning

* A successtul paradigm : characterization of sample complexity

3 excess risk bound
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Offline Towards Online Learning

* Traditional statistical machine learning

* The training data are available offline

* Learning model is trained based on the offline data

in a batch setting

* Online learning scenario
* Inreal applications, data are in the form of stream

* New data are being collected all the time: after

observing a new data point, the model should be

online updated at a constant cost
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A Formulation of Online Learning

* We model online learning from the lens of optimization.

* Online learning is formulated as a repeated game between
 Player: essentially the learner, or you can think as the “learning model”

d Environments: an abstraction of all factors evaluating the model.

Ateachroundt=1,2,---
(1) the player first picks a model w; € W;
(2) and simultaneously environments pick an online function f; : W — R;

(3) the player suffers loss f.(w;), observes some information about f; and

updates the model.
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Online Learning: Formulation

Ateachroundt=1,2,---
(1) the player first picks a model w; € W;
(2) and simultaneously environments pick an online function f; : W — R;

(3) the player suffers loss f;(w;), observes some information about f; and
updates the model.

e An example of online function f; : W — R.

Considering the task of online classification, we have

(i) theloss £: Y x Y — R, and —> fe(w) (h(w;x¢), y¢)

14
(ii) the hypothesis function h: W x X +— ). é(w Xt,Yy) for simplicity
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Online Learning: Formulation

Ateachroundt=1,2,---

updates the model.

(1) the player first picks a model w; € W;

(2) and simultaneously environments pick an online function f; : W — R;

(3) the player suffers loss f;(w;), observes some information about f; and

Spam filtering

-—

ANTI-SPAM FILTER

) 4

&
=% o

(1) Player submits a spam classifier w;

4

(2) A mail is revealed whether it is a spam 8

U

(3) Player suffers loss f;(w;) and updates model

Advanced Optimization (Fall 2024)
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Performance Measure

* Recall in the statistical learning:
Risk R(h) = E(x,y)~D [f(h(x), y)}

* In online learning:
Sequential Risk ~— R({w:}[Z1) £ fi(we) =) 6w/ x¢,10).
t=1 t=1

meaning: cumulative loss of online models trained on the
growing data stream St = {(x1,91), - -, (X¢,Y¢) }-
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Performance Measure

* In offline learning, we use excess risk as measure for h:

R(h) — min R(h)

— E(x,y)ND[K(WTX y)] — Hélul}v ]E(x y)ND[f(WTX, y)] simply using a linear model w to
parametrize the hypothesis h

* In online learning, we define regret as measure for sequence {w;}/_;:

R({wel/_)) — rrgva( W)

T T
T RegretT = ; ft (Wt) — “1’,%1)1;1\} ; ft W

t=1
benchmark performance with the offline model (optimal in hindsight)
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Regret Measure

* We use regret to measure the online learning algorithm

T
Regretp = »  fi(wy) — min > fi(w)
t=1

T

ew
t=1

benchmark performance with the offline model (optimal in hindsight)

* We hope the regret be sub-linear dependence with 7.

Regret -

sQas’l —
7 as 00

Hannan Consistency

ALT’16
Hannan Consistency in On-Line Learning
in Case of Unbounded Losses Under Partial
Monitoring***

Chamy Allenberg!, Peter Auer?, Lészl6 Gyorfi3, and Gyérgy Ottucsdk®

Advanced Optimization (Fall 2024)
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I[s Online Learning (provably) solvable?

* In general, the online learning formulation is hard to solve.

Ateachroundt=1,2,---
(1) the player first picks a model w; € W;
(2) and simultaneously environments pick an online function f; : W — R;

(3) the player suffers loss f.(w,), observes some information about f; and

updates the model.

> ATrackable Case: Online Convex Optimization

requiring feasible domain and online functions to be convex
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I[s Online Learning (provably) solvable?

* In general, the online learning formulation is hard to solve.

Ateachroundt=1,2,---

/

(1) the player first picks a modelw; € W

updates the model.

(2) and simultaneously environments pick an online function |f; : W — R;

4

(3) the player suffers loss f.(w,), observes some information about f; and

> ATrackable Case: Online Convex Optimization

requiring feasible domain and online functions to be convex
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Online Convex Optimization

* Requirements:
(1) feasible domain is a convex set
(2) online functions are convex

Ateachroundt=1,2,---
(1) the player first picks a model x; from a convex set X C RY;
(2) and environments pick an online convex function f; : X — R;

(3) the player suffers loss f;(x;), observes some information about f; and

updates the model.

Henceforth, we use x (and X)) instead of w (and }V) for consistency with opt. language.
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OCQO: Different Feedback

Ateachroundt=1,2,---

(1) the player first picks a model x; from a convex set X C RY;

(2) and environments pick an online convex function f; : X — R;

(3) the player suffers loss f;(x;), observes|some information about f; |and

updates the model.

on the feedback information:

full information partial information

ASLODN - /BLDN  /BLOTN
006 00 6066
3 |8
seee se0e veee

el =

- full information: observe entire f; (or at
least gradient V f;(x:))

- partial information (bandits): observe s

function value f;(x;) only less information horse racing‘ o multi-armed bandits
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OCQO: Different Environments

Ateachroundt=1,2,---

updates the model.

(1) the player first picks a model x; from a convex set X C RY;
(2) and|environments|pick an online convex function f; : X — R;

(3) the player suffers loss f;(x;), observes some information about f; and

on the difficulty of environments:

oblivious adversary

adaptive adversary

- stochastic setting F - -
less restricted N rﬁ
Vi but harder M.
- adversarial setting { oblivious ‘ﬁi* . : L& \
adaptive. . N examination interview
(non-oblivious)
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The Space of Online Learning Problems

environment

* Full-information setting:

Adversarial _* *adversarial bandits * Online Convex Optlmlzatlon
expert advice * Prediction with Expert Advice
g * *stochastic bandits
feedback * Partial-information setting:
no state - . ) .
SR b * Multi-Armed Bandits

Linear Bandits

reinforcemen

Parametric Bandits

Bandit Convex Optimization

structure

Yevgeny Seldin. The Space of Online Learning Problems, ECML-PKDD, Porto, Portugal, 2015.
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The Space of Online Learning Problems

environment

* Full-information setting:

*adversarial bandits ° Online Convex Optimization

adversarial

* Prediction with Expert Advice

*stochastic bandits

feedback * Partial-information setting:

e _._.."Bgndit > * Multi-Armed Bandits

Linear Bandits

no state

reinforcemen

Parametric Bandits

Bandit Convex Optimization

structure

Yevgeny Seldin. The Space of Online Learning Problems, ECML-PKDD, Porto, Portugal, 2015.
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Part 2. Online Convex Optimization

e Convex Functions
* Strongly Convex Functions

* Exponentially Concave Functions
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Part 2. Online Convex Optimization

 Convex Functions
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OCO: Convex Functions

Definition 2 (Convex Function). A function f : X — R is convex if for any

X,y e X

Vo€ [0,1], f(1 —a)x+ay) < (1 —a)f(x) + af(y).

Equivalently, if f is differentiable, we have that Vx,y € X,

fly) > f(x) +Vf(x)' (y —x).
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OCO: OGD Algorithm

Online Gradient Descent (OGD)
Ateachroundt=1,2,---
1. the player first picks a model x; € &;
2. and simultaneously environments pick a convex online function f; : X — R;

3. the player suffers loss f; (x;), observes the information of f; and update the

model according to x; 1 = Iy [x; — 1,V fi(x4)].

o [Ix[y| = argmin, y ||x — y||2 denotes the Euclidean projection onto the feasible set X'

e This belongs to the full-information setting, so player can access the gradient V f;(x;).

Actually, only gradient is required, so it’s also called gradient-feedback OCO model.
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Regret Analysis of OGD

* The following assumptions are required for standard analysis.

Assumption 1 (Convexity). The feasible set X is closed and convex

in Euclidean space, and f1, ..., fr are convex functions.

Assumption 2 (Bounded Domain). The diameter of the feasible do-

main X is upper bounded by D, i.e., Vx,y € X, ||[x —y| < D.

Assumption 3 (Bounded Gradient). The norm of the subgradients
is upper bounded by G, i.e., |V fi(x)|| < Gforallx € X and t € |T).
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Regret Analysis of OGD

Theorem 3 (Regret bound for OGD). Under Assumptions 1, 2 and 3, online gra-
dient descent (OGD) with step sizes n, = 52 for t € [T'] guarantees:

T
Regret = Z fe(x3) mmz fi(x) < ;GD\/T = O(VT).
t=1
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The First Gradient Descent Lemma

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x;}{_, be the sequence generated by the gradient
descent method. Then for any u € X* andt > 0,

Ixes1 —afl® < e —ull® = 2 (fe(xe) — fe(w)) + 07 [V fe(oxe) 1.

Proof: |[xi11 — UHQ = [Ty [x¢ — m:V fir(xe)] — UHQ
< |lxe — 7V fe(xe) — uf|’
=[x, — ull” = 20 (V fe(xe), x¢ — 1) + 07 |V fir(xe) |
<l — ull” = 2ne(fe(xe) — fe(0) + 07 [V fr(xe) ||
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Proof for OGD Regret Bound

Proof: We use the first gradient descent lemma to analyze online gradient descent.

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x;}]_, be the sequence generated by the gradient
descent method. Then for any u € X* andt > 0,

Ixe+1 = ull < lxe —ufl® = 20 (f(xe) = f(w)) + 07|V f (o) I

By Lemma 1 and the gradient boundedness, we have

2 2
o xe —uall” = lIxs41 — ul

2(fe(x¢) — fr(u)) < ” + G

Advanced Optimization (Fall 2024) Lecture 5. Online Convex Optimization

28



Proof for OGD Regret Bound

Proof: By setting n; = L\[ (with ;- O) , summing over T":

1 Mt Me—1 i1
T /4 | T
< D? (— — ) + G* ur:
; Mt Me—1 ;
T
<D*—+G*D n
< 3DGVT.
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OCO: Strongly Convex Functions

Definition 3 (Strong Convexity). A function f is o-strongly convex if, for any
X,y € dom f,

F¥) 2 f) + V) (v = %) + 5 |y =],

or equivalently, V* f(x) = al.
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OGD for Strongly Convex Functions

Online Gradient Descent (OGD)
Ateachroundt=1,2,---
(1) the player first picks a model x; € X’;

model according to x; 1 = Iy [x; — 1,V fi(x4)].

(2) and simultaneously environments pick a strongly convex function f; : X — R;

(3) the player suffers loss f; (x;), observes the information of f; and update the

Advanced Optimization (Fall 2024) Lecture 5. Online Convex Optimization
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OGD for Strongly Convex Loss

Theorem 4 (Regret bound for strongly-convex functions). Under Assumption 1
and Assumption 3, for o-strongly convex loss functions, online gradient descent with

step sizes 1, = = achieves the following quarantee

G2
Regret, < 2—(1 +logT) = O(logT).
o

e Strongly convex case compared with convex case: O(logT) vs. O(v/T)

e A caveat is that we now don’t need Assumption 2 (bounded domain).
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OCO with Strongly Convex Functions

Proof: we start by extending the first GD lemma to strongly convex case.

Strongly convex case:

I =l < [ = ul® = 20 (T fi (), %0 = w) + 0 1V £ (x0)
o
< o —ul® = 2m (fi(xe) = folw)+5 3 = ul]?) + 07 [V £l

< (1= o) e = ull® = 2m0 (fe(xe) = fi(w) + 17 |V £ x|

Y .
= folxe) = Jo(w) < Py = ul]? = P — ul? + 25
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OCO with Strongly Convex Functions

-1 —1 2
Proof:  fi(x:) — fi(u) < d 5 Ix; — ul]* — ntTHXtH —ul® + nt2
Summing from ¢ = 1 to 7T, setting ; = = (define nio = O)
T r 11 -
Qz<ft(xt)_ft(u)) gZth—uH < — —0) —|—G2277t
Pt 1 nt 77t—1 t—1
T
1
=0+G*) —
ot
t=1
G2
<—(1+1logT) ]
o
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Comparison of (Strongly) Convex Problems

Convex Problem Strongly Convex Problem
Property: f(x) > fu(y)+ Vi(y) (x—y)| | Property: fi(y) = fu(x) + V/i(x) " (v = x)
+ 2y x|
OGD: x¢4+1 = 1lx [Xt — %Vft(xt)] OGD: X171 = [ B —Vft %) ]
3 2
Regret, < §GD\/T Regret.. %(1 + log T

Can we explore broader function classes with a regret rate faster than v/717?
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OCO: Exponentially-concave Functions

Definition 2 (Exp-concavity). A convex function f : R? — R is defined to be
a-exp-concave over X C R4 if the function ¢ is concave, where g : X — R is

defined as

g(x) = e /),

Directly employ OGD: Regret bound O(v/T).

Convex

strongly "\ exp-concave
convex

But actually we can get a tighter bound!

Advanced Optimization (Fall 2024) Lecture 5. Online Convex Optimization 36



An Example for Exp-concave Learning

* Universal Portfolio Selection /.7

S e

e a total of d stocks in the stock market.
e ecach round, the player chooses stocks by a distribution x; € Ay.

e the market returns the price ratio 8, between iter t and ¢ + 1,

_ price of stock, at time ¢ + 1

0, (7
40 price of stock, at time ¢

T
which means that our final wealth W+ will be: Wy = Wj - H 9; Xt
t=1

—> Our goal is to maximize our wealth at time 7.
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An Example for Exp-concave Learning
* Universal Portfolio Selection /‘ﬁw

e
SS =
o=

e we hope to maximize the logarithm of Wr
W, T
WS ;log 0, x, fi(x) = log(8] x)

Ateachroundt=1,2,---

¢

i
i

e using OCO framework,

log

(1) the player first picks a model x; € Ay;

(2) and simultaneously environments pick an online function f; : ¥ — R;

(3) the player get a gain f.(x;) = log(@tT %), observes f; and updates the model.

T T
e Goal: RegretT — I*Heaii ft (X ) — ft (Xt) online function is exp-concave
RS t=1
Advanced Optimization (Fall 2024)
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Exponential-concave Function

Lemma 3 (Property of Exp-concavity). Let f : X — R be an a-exp-concave func-

tion, and D, G denote the diameter of X and a bound on the (sub)gradients of f respec-

1

G—D,Oé} andallx,y cX:

tively. The following holds for all v < % min {

F) = fO)+ VI T (x=y)+ S (x = y) VI V) (x - y).

Proof. Recall that f is a-exp-concave if and only if e~*/*) is concave.
As 2y < a, e~ 2/ (x) = (e—af (X))%/ “ is also concave and thus is 2v-exp-concave.

e 2 (x) _ o=27f(y) < <X —y, —276_2'7f(3’)Vf(y)> .
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Exponential-concave Function

Lemma 3 (Property of Exp-concavity). Let f : X — R be an a-exp-concave func-
tion, and D, G denote the diameter of X and a bound on the (sub)gradients of f respec-
tively. The following holds for all v < s min { =5, a} and all x,y € X :

F) = fO)+ VI T (x=y)+ S (x = y) VI V) (x - y).

PTOOf. Dividing e=27/(¥) at both sides achieves
1
fy) = J(x) < 5~ log (1 +27(y =%, Vf(}f)>>-

Our constructive condition v < £ min { 55, o} ensures [27(y —x, Vf(y))| < 1,

F(y) = Fx) S {y =%, V() = 20y =%, VI())’

(log(1+ z) <z — 12?) holds for (|z| <1) [
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A Comparison of Different Curvatures

e Convex
fx) > fy)+Viy)' (x—y)

* Strongly Convex
) 2 f(3) + Vi) (e = )45 x =yl
* Exponentially Concave

60 2 f) + V) (=) (x = 3) VIV (x ~ y)

N
= fiy)+Viy) ' (x— y)+g lx - YIS fp)v )T
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Exponential-concave Function

Lemma 3 (Property of Exp-concavity). Let f : X — R be an a-exp-concave func-
tion, and D, G denote the diameter of X and a bound on the (sub)gradients of f respec-
tively. The following holds for all v < s min { =, a} and all x,y € X :

Fx) = f@) + V) (x=y)+2(x =) V)V (x—y)

:
= f) + V) =)+ Ix =Ygy vre)

Algorithmic intuition:
 For convex loss, we use 2-norm to encode the structure of the space.

» Can we exploit local structures of exp-concave loss to improve the regret?
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Intuition

* Convex fr(x) > filxe) + Vfu(xe) " (x — %)

Xep1 = My [x¢ — eV fr(xyt)] OGD with n; = (9(1/\/%)

» Strongly convex f,(x) > fi(x¢) + Vfi(xe) " (x — Xt)"‘% Ix — x5

Xt+1 — HX [Xt — ntVft(Xt)] OGD Wlth Tt — O(l/t)

* Exp-concave £, (x) > fi(x;) + Vfi(xe) " (x — Xt)‘|’% 1% = X2l 1, )W o o)

—> We may still GD update, but the step size should be “data-dependent”.

Intuitively, step size should be stretched hetrogeneously in different directions,

being smaller when ¥V f;(x;)V fi(x;) " is “larger”.
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ONS for Exp-concave Function

Online Newton Step

Input: parameters v, ¢ > 0, matrix Ag = el
Ateachroundt=1,2,---
(1) the player first picks a model x, € X C R¢;

Update A, = A1 + Vft(Xt)vft(Xt)T

Update x;.1 = arg minyc |[x — (x — 24,1V ,(x,))]

(2) and simultaneously environments pick an exp-concave loss function f; : X — R;

(3) the player suffers loss f;(x;), observes the information (loss) f; and update:

2

Ay
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ONS: In a View of Proximal Gradient

Convex Problem
Property: f,(x) > fi(y)+ Vfi(y)' (x—y)

OGD: x¢4+1 =11y [Xt — %vft(xt)]

Exp-concave Problem

Property: fi(x) > fily)+ V/i(y)' (x—v)

Y 2
+§ HX o yHVft(Y)Vft()’)T

ONS: A;=A; 1+ Vft(Xt)vft(Xt)T

1 _
Xt+1 — H?f Xt — ;At 1vft(xt)

Proximal type update: Proximal type update:
: 1 2 : g 2
X441 = arg min(x, V fi(x¢)) + o [x — x5 X1 = arg min(x, V fi(xq)) + = [[x — x|y,
xEX Tt xEX 2
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ONS: In a View of Proximal Gradient

Proof.
At

Xt+1 = Hfét {Xt — Tgt] (g = V fi(x¢))

-

(- S
— arg min | X — x; + g | A |lx—x+
Y

xeX
-

A_l
= arg min (X —x; + = gt> (Atx — Ayxy + 5t
8

xeX

— arg min (x — x¢) | A (x — x¢) + (A

xeX

= arg min <X,gt> + % HX - Xt”it
xeX

g,

1, T

(x — xy)

gl

t

A—l

: gt)
~y

~

)

Exp-concave Problem
Property: fi(x) > fily)+ V/i(y)' (x—v)

Y 2
+5 X =¥lenmvam

ONS: A;=A; 1+ Vft(Xt)vft(Xt)T

1 _
Xt+1 — Hfét Xt — ;At 1vft(xt)

Proximal type update:

X1 = arg min(x, V f;(x¢)) + il

Ix — x|
xeX 2 ¢

Advanced Optimization (Fall 2024)
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ONS for Exp-concave Function

Theorem 5. Under Assumptions 1, 2 and 3, for a-exp-concave online functions, the
ONS algorithm with parameters v = 5 min{ gy, a} and € = —p5 (recall that the

initial matrix is Ay = €ly) guarantees
1
Regret < O ((— -+ GD)dlogT) = O(dlogT),
o

where d is the dimension of the feasible domain X C R<.
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Proof

oA, = A, 1+ Vft(xt)vft(xt)T

2
: 1 4-1
® Xy41 = arg Miny - y HX - (Xt - §At gt)HA
t

Extending the first GD lemma to exp-concave case:

Proof. We use norm induced by A; instead of 2-norm.
1 2
s = ul}, = 1 [ - 2490 -
Ay

1 2

Xi — ;At_lvft(xt) —u

IN

Ay

1, ! 1,
= (Xt — _At Vft(Xt) — 11> At <Xt — _At Vft(Xt) — 11)
Y Y

(xt —u-— iAt1Vft(Xt))T (At(Xt —u) — %Vft(xt))
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Proof

oA, = A, 1+ Vft(xt)vft(xt)T

2
. il =
® X; 11 = arg min, Hx — (xt — ;At gt)HA
t

Extending the first GD lemma to exp-concave case:

Proof.

]
Ixees — ull%, = (xt - %A;Wxt)) (At<xt ) - %foxt))

= (x¢—u) A (x¢ —u) - %Vft(xt)T(Xt —u) + %Vft(xt)TAflvft(Xt)

| DO

2
< |lx¢ — ‘1||At -

(fe(xe) = fr(u)) + % ||Vft(Xt)||,24;1

P

'V ix)V fi(xe) ' (% — )

_<Xt_
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Proof

Proof. |[xp+1 — ulf},

2 1
< lxe =l = = (filxe) = fr(w) = lxe = ullSp, oeyw e + =3 IV Fe0x)
N (xe)V i S t

8 Y 8
—> fe(x¢)—fi(u) < 5HXt—uHExt_§\\Xt+1—u\\?4t—§ %2 — uHVft(xt)Vft(xt)T+ vat(Xt)HA_

Summing from ¢ = 1 to 7, by telescoping:

T T
Y 2 2 1 2
> (felxe) = fulw) < 5 37 (Ipee =iy, = e =il ) #5- D2 IVAGIf
t=1

=1 =t
oy T
2
—_ — ||Xt - u”vf(xt)Vf(Xt)T ]
5_1: cancellation

At:At— 't t ‘t tT
< 5 ke =l +—Z|\Vft (el e
t 1
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By the definition that Ay = cly, e = 72—1172 and the diameter ||x; — ul|3 < D*:

1 T
S (o) — o) < 2 G~ )T Ao (1 — )+ 3= 2 IV AN
t=1 t=1

| A

—,YJF—ZHVft Xt HA L

Next, we bound the term Zthl |V f(x2) Hi—l.
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Proof

Proof. Next, we bound the term Zthl |V fi(x2) Hif—l.

Lemma 4 (Elliptical Potential Lemma). For any sequence {X1,...,Xr} € R,
suppose Uy = NI, Uy = Uy_1 + X X, , and || X4 ||, < L, then
T
L2T
2
> | Xelpy-r < dlog (1 + v)
=1
Proof. U_i=U, — XX, = U} (I _UTIX, X Ut‘ﬁ) U2
det(Uy 1) = det(Uy) det (T — U;%XtXtTU;?)
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Proof

Proof. Next, we bound the term Zthl |V fi(x2) Hif—l.

Lemma 5. For any v € R¢, we have

det (I — VVT) =1—|v|3

Proof.

i) (I—vv')v=(1-]v|3)v, therefore, v is its eigenvector with (1 — ||v||3)
as eigenvalue;
(ii) (I — VVT) vt = vi, therefore, v | v is its eigenvector with 1 as the

eigenvalue.
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Proof

Proof. Next, we bound the term Zthl |V fi(x2) Hif—l.

Lemma 4 (Elliptical Potential Lemma). For any sequence {X1,...,Xr} € R,
suppose Uy = NI, Uy = U1 + X X', and || X, < L, then

T
L2T
2
> | Xl < dlog (1 + )

t=1

1 1 _ 1 2
Proof. det(U,_,) = det(U;) det (1 ~U, 2 X, X, U, ) = det (Uy) <1 - ‘ Up * Xi 2)
_1 2 det(Ut_1)
X 21:HU 2 X, =1 —
:> H tHUt t t 5 det(Ut)
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Proof

Proof. Next, we bound the term Zthl |V fi(x2) Hif—l.

suppose Uy = NI, Uy = Uy_1 + X X, , and || X4 ||, < L, then

gy
LT
2
> | Xelpy-r < dlog (1 + v)

t=1

Lemma 4 (Elliptical Potential Lemma). For any sequence { X1, ...

7XT} < RdXT/

Proof.
T d det (U_1 —~ . det (Uy)
—> X, U7X, = 1— <31
Z L ;( det (Uy) ) 2; "% det (Ur_1)

det (Ur) L?T
=1 =dl 14+ ——
° det () Og( ' Ad)

—
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Proof

Proof. Next, we bound the term Zthl |V fi(x2) Hif—l.

Lemma 4 (Elliptical Potential Lemma). For any sequence {X1,...,Xr} € R,
suppose Uy = NI, Uy = Uy_1 + X X, , and || X4 ||, < L, then
T
LT
2
> | Xelpy-r < dlog (1 + v)
t=1
Therefore, by Lemma 4, we have
T
D?T
Z vat(xt)H?qt—l < dlog (1 T ) :
t=1 ¢
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Proof

Proof. To conclude

Z ft Xt
t=1

Recall that v = mm { GD,a} and ¢ =

G _ \
Y Y
d D?T
< 1 <—log< +
— 27 ¥ ed

1
~2D27

1
Regret < O ((—

8}

+ GD)dlogT) .
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Lower Bounds

* A natural question: whether previous regret can be improved?

* Lower bound argument:

minimax bound: smallest possible worst-case regret of any algorithm:

min max Regret
A b1, 6

Theorem 7 (Lower Bound for OCO). Any algorithm for online convex optimiza-
tion incurs Q(DG~/T) regret in the worst case. This is true even if the cost functions
are generated from a fixed stationary distribution.
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Lower Bounds

Theorem 7 (Lower Bound for OCO). Any algorithm for online convex optimiza-
tion incurs Q(DG~/T) regret in the worst case. This is true even if the cost functions
are generated from a fixed stationary distribution.

Proof Sketch.

Construct a “hard” environment:
* Binary classification, loss functions in each iteration are chosen at random

 Similar results can be obtained for strongly convex and exp-concave cases
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Comparison

Algorithm Upper Bound Lower Bound
Convex OGD @(\/T) 0 (\/T
o-Strongly Convex OGD O( loi I ) Q( 10% 4 )
a-Exp-concave ONS O( d lfxg I ) Q( d lzg T )
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Back to Exp-concave Learning

e Universal Portfo]

io Selection %=

N

Algorithm

Regret

Runtime (per round)

Universal Portfolios

dlog(T

d4T14

Online Gradient Descent
Exponentiated Gradient

GoV'T

d

Goor/Tlog(d d

Online Newton Step (ONS)
Soft-Bayes

d*+ generalized projection on A,
d

Ada-BARRONS
BISONS
AdaMix+DONS

d2.5T

poly(d)
d3

VB-FTRL

d*>T

Proceedings of Machine Learning Research vol 125:1-6, 2020 33rd Annual Conference on Learning Theory

Open Problem: Fast and Optimal Online Portfolio Selection

Tim van Erven

and Dirk van der Hoeven

Mathematical Institute, Leiden University, the Netherlands
Wojciech Kotlowski

Poznan University of Technology, Poland
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Wouter M. Koolen
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
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Editors: Jacob Abernethy and Shivani Agarwal

Abstract

Online portfolio selection has received much attention in the COLT community since its introduc-
tion by Cover, but all state-of-the-art methods fall short in at least one of the following ways: they
are cither i) computationally infeasible: or ii) they do not guarantee optimal regret: or iii) they as-
sume the gradients are bounded, which is unnecessary and cannot be euaranteed. We are interested
in a natural follow-the-regularized-leader (FTRL) approach based on the log barrier regularizer,
which is computationally feasible. The open problem we put before the community is to formally
prove whether this approach achieves the optimal regret. Resolving this question will likely lead
t0 new techniques to analyse FTRL algorithms. There are also interesting technical connections to
self-concordance, which has previously been used in the context of bandit convex optimization.

1. Introduction

Online portfolio selection (Cover, 1991) may be viewed as an instance of online convex optimization
(OCO) (Hazan et al., 2016): ineach of ¢ = 1,....T rounds. a learner has to make a prediction w;
ina convex domain W before observing a convex loss function f; : W — R. The goal is to obtain a
guaranteed bound on the regret Regrety: = 32{_; fi(w:) ~minwew 3¢y f¢(w) that holds for any
possible sequence of loss functions f;. Online portfolio selection corresponds to the special case
that the domain W = {w € RY | 2%, w; = 1} is the probability simplex and the loss functions
are restricted to be of the form fy(w) = —In(wTay) for vectors z; € RZ. It was introduced
by Cover (1991) with the interpretation that ¢ ; represents the factor by which the value of an
asset i € {1,...,d} grows in round ¢ and wy; represents the fraction of our capital we re-invest
sset 7 in round £. The factor by which our initial capital grows over T rounds then becomes
_ wla, = e~ Te=1 (@) Ap alternative interpretation in terms of mixture learning is given by
Orseau et al. (2017).

For an extensive survey of online portfolio selection we refer to Li and Hoi (2014). Here we
review only the results that are most relevant to our open problem. Cover (1991); Cover and Or-
dentlich (1996) show that the best possible guarantee on the regret is of order Regrety = O(dInT)
and that this is achieved by choosing w1 as the mean of a continuous exponential weights dis-
tribution d P, (w) x ¢~ %=1 f-()dx(w) with Dirichlet-prior rate 7 = 1). Un-
fortunately. this approach has a run-time of order O( T'%), which scales exponentially in the number

©2020°T. van Erven, D. van der Hoeven, W. Kotiowski & W.M. Koolen.

[COLT 2020 Open Problem)]

—> still an important open problem: efficiency and optimality
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Part 3. Connection with Offline Learning

 Application to Stochastic Optimization

 Online-to-Batch Conversion
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Application to Stochastic Optimization

* Consider the following convex optimization problem:

min f(x)

* Stochastic optimization method

Computational oracle: only access noisy gradient oracle, namely, g(x), such that
Elg(x)] = Vf(x), and E[||g(x)][I’] < G*

for some G > 0.

Example (large-scale opt.). Given dataset S = {(x1,41),-- -, (Xm, ¥m )}, ERM optimizes

™m

heH 1 stochastic method only uses a mini batch at each round

full gradient computation requires a pass of all data
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Stochastic Gradient Descent

* Consider the following convex optimization problem:

min f(x)

Algorithm 2 Stochastic Gradient Descent

Input: noisy gradient oracle g(-), step sizes {n; }

1

2
3
4.
5

. fort=1,...,T do

. |Obtain noisy gradient g(x;)
Update the model x;1 = Iy [x; — n
end for

. return X7 = & 3 x

g(x¢)

Elg(x)] = Vf(x)
Elllgx)]]]’] < G?
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History: SGD

Robbins—-Monro Method Kiefer—-Wolfowitz Method

A STOCHASTIC APPROXIMATION METHOD'

By HerBERT RoBBINS AND SuTToN MoONRO
University of North Carolina

1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M (x) is assumed to he a monotone function of z but is
unknown to the experimenter, and it is desired to find the solution z = 6 of the
equation M (z) = a, where a is a given constant. We give a method for making
successive experiments at levels z, , 2, , - - - in such a way that z, will tend to 6 in
probability.

2. Introduction. Let M (z) be a given function and « a given constant such
that the equation
(1 M) = o

has a unique root z = 0. There are many methods for determining the value of ¢
by successive approximation. With any such method we begin by choosing one or

more values 2y , - - -, , more or less arbitrarily, and then successively obtain new
values z, as certain functions of the previously obtained 2, , - - - , Za—1 , the values
M(x), - -+, M(%s-1), and possibly those of the derivatives M'(zy), - -+ , M'(z,..1),
ete. If
2) lim z, = 6,

frowest
irrespective of the arbitrary initial values z;, ---, 2,, then the method is

effective for the particular function M(z) and value . The speed of the con-
vergence in (2) and the ease with which the z, can be computed determine the
practical utility of the method.

We consider a stochastic generalization of the above problem in which the
nature of the function M (z) is unknown to the experimenter. Instead, we suppose
that to each value  corresponds a random variable ¥ = Y(z) with distribution
function Pr{Y(z) < 4] = H(y | %), such that

3 M) =[ ydH(y | )
is the expected value of Y for the given x Neither the exact nature of H(y | z)

nor that of M (z) is known to the experimenter, but it is assumed that equation (1)
has a unique root 6, and it is desired to estimate § by making successive observa-

tions on Y at levels z; , 2, - - - determined sequentially in accordance with some
definite experimental procedure. If (2) holds in probability irrespective of any
arbitrary initial values z;, - - - , 2, , we shall, in conformity with usual statistical

terminology, call the procedure consistent for the given H(y | z) and value a.

* This work was supported in part by the Office of Naval Research.
400

S
Herbert Ellis Robbins
(1915 - 2001)

STOCHASTIC ESTIMATION OF THE MAXIMUM OF A REGRESSION
FUNCTION!
By J. Kizéer anp J. WoLrowrTz
Cornell University

1. Summary. Let M (z) be a regression function which has a maximum at the
unknown point 8. M (z) is itself unknown to the statistician who, however, can
take observations at any level z. This paper gives a scheme whereby, starting
from an arbitrary point z;, one obtains successively 2, zs, - - - such that z,
converges to 8 in probability as n — «.

2. Introduction. Let H(y | z) be a family of distribution functions which
depend on a parameter z, and let

(2.1) M(z) = f_: ydH(y | 2).
‘We suppose that
(2.2) /_: - M@)dH(y|a) = §< =,

and that M (z) is strictly increasing for ¢ < 6, and M(z) is strictly decreasing
for z > 6. Let {a.} and {c.} be infinite sequences of positive numbers such that

(23) e — 0,
249 Dt = w,
(2.5) D anen < @,
(2.6) Ydhea’ < w.

(For example, a, = n, ¢, = n7%)
We can now describe a recursive scheme as follows. Let z be an arbitrary

number. For all positive integral n we have

@ Zati = 2n + @n (an = ns) ,

¢
where ya,—1 and . are independent chance variables with respective distribu-
tions H(y | 2. — ¢.) and H(y | 2. + c.). Under regularity conditions on M(x)
which we shall state below we will prove that z, converges stochastically to
0 (asn — o).
The statistical importance of this problem is obvious and need not be dis-
cussed. The stimulus for this paper came from the interesting paper by Robbins
and Monro [1] (see also Wolfowitz [2]).

1 Research under contract with the Office of Naval Research. Presented to the American

Mathematical Society at New York on April 25, 1952.

462

Jack Kiefer
(1924 - 1981)

Jacob Wolfowitz
(1910 - 1981)

Stochastic Estimation of the Maximum of a Regression Function
Jack Kiefer, Jacob Wolfowitz
Ann. Math. Statist. 23(3): 462-466 (September, 1952)

A Stochastic Approximation Method.
Herbert Robbins, Sutton Monro
Ann. Math. Statist. 22(3): 400-407 (September, 1951).
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History: SGD

/

Herbert Ellis Robbins
(1915 - 2001)

Statistical Science
1986, Vol. 1, No. 2, 276-284

The Contributions of Herbert Robbins to

Mathematical Statistics

Tze Leung Lai and David Siegmund

Herbert Robbins was born on January 12, 1915, in
New Castle, Pennsylvania. In 1931 he entered Har-
vard College at the age of 16. Although his interests
until then had been predominantly literary, he found
himself increasingly attracted to mathematics under
the influence of Marston Morse, who during many
long conversations conveyed a vivid sense of the in-
tellectual challenge of creative work in that field
(cf. Page, 1984, p. 7). He received the A.B. summa
cum laude in 1935, and the Ph.D. in 1938, also from
Harvard. His thesis, in the field of combinatorial
topology and written under the supervision of Hassler
Whitney, was published in 1941 [3]. (Numbers in
brackets refer to Robbins’ bibliography at the end of
this article.)

After graduation, Robbins worked for a year at the
Institute for Advanced Study at Princeton as Marston
Morse’s assistant. He then spent the next three years
at New York University as instructor in mathematics.
He became nationally known in 1941 as the coauthor,

North Carolina at Chapel Hill. Having read [7] and
[10], and greatly impressed by Robbins’ mathematical
skills, Hotelling offered him the position of associate
professor to teach measure theory and probability to
the graduate students in the new department. Robbins
accepted the position and spent the next six years at
Chapel Hill. During this relatively short period Rob-
bins not only studied and developed an increasingly
deep interest in statistics, but he also made a number
of profound contributions to his new field: complete
convergence [12], compound decision theory [25], sto-
chastic approximation [26], and the sequential design
of experiments [28], to name a few.

After a Guggenheim Fellowship at the Institute for
Advanced Study during 1952-1953, Robbins moved
from Chapel Hill to Columbia University as professor
and chairman of the Department of Mathematical
Statistics. Since 1953, with the exception of the three
years 1965-1968 spent at Minnesota, Purdue, Berke-
ley, and Michigan, he has been at Columbia, where he
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Stochastic Gradient Descent

Theorem 7 (Convergence of SGD). Suppose the domain X C R% has a diameter
D > 0, and the noisy gradient oracle is unbiased and variance bounded by G*. SGD

with step size 1, = 52 guarantees
3GD 1
o 36D (L
Bl — min flag) £ = = O ( ﬁT> ,

where xp 2 X 37| x, is the output of the SGD algorithm.
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Proof of SGD Convergence

Proof. First, we rephrase SGD from lens of online convex optimization.

To see this, we define linear function h;(x) = g,' x, where g; = g(x;).

Claim: deploying OGD over the online functions {h:(x)} is equiva-
lent to SGD proposed in the earlier page.

Algorithm 2 Stochastic Gradient Descent

Input: noisy gradient oracle g(-), step sizes {7}

OGD: Xt41 = 11y [Xt — ncht(Xt)] 1: fort=1,....T do

2.  Obtain noisy gradient g(x;)

= 1lx [Xt a Utg(Xt)] 3.  Update the model [x;+1 = Iy [x; — n:g(x¢)]
4: end for
5: return Xy = & Y, X
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Proof of SGD Convergence

T
Proof. - 1
f E[f(®r)] - f(x* =2 f(xt)] - f(x")
t=1
1 A
< K Z V()" (% - X*>]
t=1
1 A
— TE Zg;r (x4 — X*)]
| =1
Proof:
Theorem 3 (Regret bound for OGD). Under Assump- Define &, = V f(x;) — g- We know E[§, | x;] =
tion 1, 2 and 3, online gradient descent (OGD) with step We have E[V f (Xt) ¢ = [S , X¢] + ]E[g, X¢]
sizes = G for ¢ € [T guarantees: El¢, xi] = E[E[§, x¢ | x¢]] = E[E[E[E, | x] "x¢ | x:]] = 0.

T T
3
RegretT = Z ft (Xt) — I%lg(lz ft (X) S §GD\/T
t=1 * t=1

Therefore, we have proved that E[V f(x;) "

Similar argument shows E[V f(x;) " x] =

x;] = Elg, x4].
E[g, x] for any fixed x. []
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Proof of SGD Convergence

Proof E (%)) — f(x"

)<E

Theorem 3 (Regret bound for OGD). Under Assump-
tion 1, 2 and 3, online gradient descent (OGD) with step

sizes 0, = 527 for t € [T guarantees:

T T
3
RegretT = Z ft (Xt) — I%lg(lz ft (X) S §GD\/T
t=1 * t=1

1 — X

T ;f(xt)] - F(x)

= %E ;Vf(XQT (xt — X*)]
— %E ;g; (x4 — X*)]

_ %E ;ht(xt) _ ht(x*)]

3GD
2/T 0

IA
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Stochastic Gradient Descent

Theorem 7 (Convergence of SGD). Suppose the domain X C R has a diameter
D > 0, and the noisy gradient oracle is unbiased and variance bounded by G*. SGD

with step size n, = 52 guarantees

where Xp = + Zle x; s the output of the SGD algorithm.

e We define the linear function h,(x) = g,' x = g(x;) ' x and run OGD on {h;}._,.

* Note that function h; depends on the decision x;, which actually reveals that
OGD regret can hold even against adaptive adversary.
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More bits of OGD

e We define the linear function h,(x) = g,' x = g(x;) ' x and run OGD on {h;}._,.

e Note that function h; depends on the decision x;, which actually reveals that
OGD regret can hold even against adaptive adversary.

Ateachroundt=1,2,---

(1) the player first picks a model x; € X; oblivious adversary adaptive adversary

Fe— .
(2) and simultaneously environments pick an online % - g\ :

function f; : X — R; hﬁa , ‘&
(3) the player suffers loss fi(x;), observes some in- —_: - -

examination interview

formation about f; and updates the model.

The “simultaneously” requirement can be sometimes not necessary!

OGD for full-info OCO can handle the case when online functions depend on x; !
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Online-to-Batch Conversion

* An alternative way to solve statistic learning;:
* use the data in a sequential way
* run any online algorithm minimizing the regret
* return the final model as the average

Algorithm 1 Online-to-Batch Conversion

Input: Data {(x1,91), -, (Xr,yr)} 1.i.d. sampled from the distribution D, a
bounded loss function ¢ : Y x Y — |0, 1], an online learning algorithm .A
1: fort=1,---,7T do
2:  let w; be the output of algorithm A for this round
3:  Feed algorithm A with loss function f;(w) = £(w " x;, y:)
4: end for
5. return w = £ 3, w,
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Online-to-Batch Conversion

Theorem 2 (Online-to-Batch Conversion). If the risk R(w) is convex w.r.t. w with a bounded
loss function £ : Y x Y — [0, 1], and the data {(x1,y1),- - , (X7, yr)} are i.i.d. sampled from
the distribution D, then with probability at least 1 — 9, the excess risk of the output of Algorithm 1
satisfies

t 2log(2/0
R(w) — V{’Iél)glv R(w) < Regjl;e Lo 2\/ Ogjﬁ /)

where R(w) 2 E(x.,)~pll(h(w;x),y)] is the expected risk, and Regrety 2 S, fi(wi) —
minyew S, fi(W) is the regret of the online algorithm A after T rounds.
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Concentration Inequalities

Lemma 1 (Hoeffding’s inequality). Let Xi,..., X € |[—B, B]| for some B > 0 be
independent random variables such that E [ X,| = 0 for all t € |T'|, then forall § € (0,1),

T
1
Pr {th > B\/QTlng

t=1

<4

Lemma 2 (Azuma’s inequality). Let Xi,..., X € [—B, B] for some B > 0 be a
martingale difference sequence (i.e., vVt € [T|, E [ X | X¢—1,...,X1] =0), then V6 > 0,

T
1
Pr {th > B\/2Tlng

=l

<0
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Online-to-Batch Conversion

Theorem 2 (Online-to-Batch Conversion). If the risk R(w) is convex w.r.t. w with a bounded
loss function £ : Y x Y — [0, 1], and the data {(x1,y1),- - , (X7, yr)} are i.i.d. sampled from
the distribution D, then with probability at least 1— 9, the excess risk of the output of Algorithm 1
satisfies

weWw T T

where R(w) 2 By )~pll(h(w;x),y)] is the expected risk, and Regrety 2 S, fi(wi) —
minyew S, fi(W) is the regret of the online algorithm A after T' rounds.

R(W) — min R(w) < ~2&retr | 2\/21ﬂ(2/5)

Jensen’s inequality 7 Azuma’s inequality T 21 (2/5)
A 1 1 n
Proof Sketch. R(W) < 431 Rwi) < =T filwe)+ /220
Regret
Hoeffding’s inequality T

¢ n(2/d * .
R(w*) + /20200 > 15T f ) > Lmingew S0, fulw)
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Online-to-Batch Conversion

PTOOf. R(W) — E(X y)~D [f(h(VAV, X)v y)]
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Online-to-Batch Conversion

Proof.  R(w) < % tift(wt) + \/ZIng/(S)
— % ti £ow) Regjx;etT . \/QIH(T /6)
_ 1 ;T; £ (w) Reg;;etT \/Qm;?/é)
< R(w") Regjl;etT ) \/ng/a)
u
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History: Two-Player Zero-Sum Games

Theory of repeated games

N N

e
4 2N
2 ~‘-";:~,§ ,
R-" t
S » ‘)

James Hannan
(1922-2010)

Learning to play a game (1956)
Play a game repeatedly against a possibly suboptimal opponent

Zero-sum 2-person games played more than once

—_
(a5
—
—_
~
—
N—
o~
—
—_
~
N
—

@ Row player (player)
has N actions

@ Column player (opponent)
has M actions

David Blackwell
(1919-2010)

@ The player suffers loss {(i¢,yt¢)

For each gameround t =1,2, ...

@ Player chooses action i; and opponent chooses action y

(= gain of opponent)

Player can learn from opponent’s history of past choices y1,...,yt—1 J

N. Cesa-Bianchi (UNIMI)

N. Cesa-Bianchi (UNIMI)

Online Learning

Nicolo Cesa-Bianchi, Online Learning and Online Convex Optimization. Tutorial at the Simons Institute. 2017.
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History: Prediction with Expert Advice

Nick Littlestone *

Harvard Univ.

Abstract

We study the construction of prediction algo-
rithms in a situation in which a learner faces
a sequence of trials, with a prediction to be
made in each, and the goal of the learner is
to make fow mistakes. Wa are interested in the
case that the learner has reason to bebeve that
one of some pool of known algorithms will per-
form well, but the learner does not know which
one. A simple and effective method, hased on
weighted voting, is introduced for constructing
a compound algorithm in sech a circumstance.
We call this method the Weighted Ma jority Al-
gorithm, We show that this algorithm & ro-
bust w.r.t. errors in the data. We discuss var-
jons versions of the Weighted Majority Algo-
rithm and prove mistake bounds for them that
are closely related to the mistake bounds of the
best algorithms of the pool. For example, given
asequence of triak, if there is an algorithm in
the pool A that makes at most m mistakes then
the Weighted Majority Algorithm will make at

“Supparied by ONH grant NODI14-B5-KO445. Part
of thin reacarch was done while this suthor was i the
Univemity of Calil ai Samia Crus with support from
ONR grant NOD014-86- K-0454

'Supparied by ONR grani NO14-86-1-0454. Part
of tlis rmesch was dane whik ilis suthor was on
sabbaical 2t Aiken Computation Laboratory, Harvand,
with partial support from the ONR grania N 00014-85
K-0485 and NOODLA--K.0454

The Weighted Majority Algorithm

Aiken Computation Laboratory Dept. of Computer Sci.

Manfred K. Warmuth |

U. C. Santa Cruz

most elog| A| + m) mistakes on that sequence,
where ¢ is fixed constant.

1 Introduction

We study online prediction algorithms that
learn according to the following protocol.
Learning proceeds in a sequence of triak. In
each trial the algorithm receives an instance
from some fixed domain and is to produce a
‘binary pradiction. At the end of the trial the al
gorithm receives a binary reinforeement, which
«can be viewad as the correct prediction for the
instance. We evaluate such algorithms accord-
ing to how many mistakes they make as in
[Lit88,Lits0). (A mistake occurs if the predic-
tion and the reinforcement disagree.)

In this paper we investigate the situation
where we are given a pool of prediction algo-
rithms that make varying numbers of mista kes.
We aim to design a master algorithm that uses
the predictions of the pool to make its own pre-
diction. Ideally the master algorithm should
make wot many more mistakes than the best
algorithm of the pool, even though it does not
have any a priori knowledge as to which of the
algorithms of the pool make few mistakes for a
given sequence of trials.

The overall protocol proceeds as follows in
each trial: The same instance is fed to all al-
gorithms of the pool Each algorithm makes

Manfred Warmuth

UC Santa Cruz

CHZ806-8/8%0000/0256/501.00 © 1089 [EEE

Nick Littlestone and Manfred K. Warmuth.
"The Weighted Majority Algorithm." FOCS 1989: 256-261.
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AGGREGATING STRATEGIES

Volodimir G. Vovk’™
Research Council for Cybernetics
40 ulitsa Vavilova,
Moscow 117333, USSR

ABSTRACT

The following situation is considered. At each moment of
discrete time a decision maker, who does not know the current
state of Nature but knows all its past states, must make a
decision. The decision together with the current state of
Nature determines the 1loss of the decision maker . The
performance of the decision maker is measured by his total
loss. We suppose there is a pool of the decision maker'’s
potential strategies one of which is believed to perform well,
and construct an “aggregating" strategy for which the total
loss is not much bigger than the total loss under strategies in
the pool, whatever states of Nature. Our construction
generalizes both the Weighted Majority Algorithm of
N.Littlestone and M.K.Warmuth and the Bayesian rule.

NOTATION

IN, @ and R stand for the sets of positive integers, rational
numbers and real numbers respectively, B symbolizes the set
€0,1>. We put

= .

"= u BB = U B
i <n tSn

The empty sequence is denoted by o. The n)ouuon for logarithms
is 1n Cnaturald, 1lb Cbinary) and log)\ Cbase A). The integer

part of a real number t is denoted by |t]. For 4 € R?, con 4 is
the convex hull of 4.

1. UNIFORM MATCHES

We are working within Cthe finite horizon variant of >
A.P.Dawid’s “prequential” (predictive sequentiald framework
Csee (Dawid, 1988>; in detail it is described in (Dawid,
19883). Nature and a decision maker function in discrete time
€0,1,...,n-1>. Nature sequentially finds itself in states sor

B s comprising the string s = s_s. For

yreeer Spgy o 051" Spg-
simplicity we suppose s € B'. At each moment i the decision

maker does not know the current state s; of Nature but knows

*address for correspondence: 9-3-451 ulitsa Ramenki, Moscow
117607, USSR.
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Summary

Formulation

e [ PROBLEM SETUP ] { Performance measure

Convex loss function: OGD

ONLINE CONVEX Strongly convex loss function: OGD
PROPERTY OF ONLINE FUNCTION

OPTIMIZATION

Exponential-concave loss function: ONS

Application to SGD

\_ | CONNECTION TO OFFLINE | [
LEARNING L

Online-to-batch conversion

Q&A
Thanks!
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