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Outline
• Prediction with Expert Advice

• Online Mirror Descent

• Follow-the-Regularized Leader
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Part 1. Prediction with Expert Advice
• Problem Setup

• Algorithms

• Regret Analysis
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Motivation
• Consider that we are making predictions based on external experts.

A Chinese Odyssey Part Two - 
Cinderella

Titanic

9.2/10 87% 7.8/10 9.5/10 88% 7.9/1093%8.8/10 8.5/10

Oppenheimer
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Prediction with Expert Advice
• Another Example: Universal Portfolio Selection

1

2

3

?
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PEA Problem Setup
Question 1 Question 2 Question 3

Advice1 1 Advice1 2 Advice1 3

Advice2 1 Advice2 2 Advice2 3

Advice3 1 Advice3 2 Advice3 3

Advice4 1 Advice4 2 Advice4 3

Experts

Learner Answer 1 Answer 2 Answer 3
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PEA: Formulization
• The online learner (player) aims to make the prediction based 

by combining N experts’ advice.
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PEA: Formulization
• The online learner (player) aims to make the prediction based 

by combining N experts’ advice.

• The goal is to minimize the regret with respect to the best expert:
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A Natural Solution
• Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

FTL achieves linear regret 
in the worst case!
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A Natural Solution
• Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

Pitfall: online decision is made blindly based on the historical performance!

Replacing the “max” operation in FTL by “softmax”.
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Hedge: Algorithm
• Hedge: replacing the “max” operation in FTL by “softmax”.

FTL update Hedge update
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Lazy and Greedy Updates
• Hedge algorithm 

• Another equivalent update (when the learning rate    is fixed)

lazy update

greedy update

But the two updates can be significantly different when learning rate is changing.
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Hedge: Regret Bound



Lecture 6. Online Mirror DescentAdvanced Optimization (Fall 2024) 14

Proof of Hedge Regret Bound
Proof.
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Proof of Hedge Regret Bound
Proof.
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Proof of Hedge Regret Bound
Proof.
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Lower bound of PEA
• As above, we have proved the regret bound for Hedge:

• A natural question: can we further improve the bound?

Hedge achieves minimax optimal regret (up to a constant of � �) for PEA.
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Lower bound of PEA

(conditional expectation decomposition)
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Lower bound of PEA
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Lower bound of PEA

Using the result from probability theory (Prediction, Learning, and Games, Chapter 3.7)
of Rademacher variables,
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Upper Bound and Lower Bound
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Prediction with Expert Advice: history bits

Volodimir G. Vovk. “Aggregating Strategies." 
COLT 1990: 371-383.

Nick Littlestone and Manfred K. Warmuth. 
"The Weighted Majority Algorithm." FOCS 1989: 256-261.

Volodimir G. Vovk
Royal Holloway, 

University of London

Manfred Warmuth

UC Santa Cruz

FOCS 30-year 
Test of Time Award!
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Prediction with Expert Advice: history bits

Reference: Y. Freund and R. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. JCSS 1997.

Robert SchapireYoav Freund 

Goldel Prize 2003

This paper introduced AdaBoost, an 
adaptive  algorithm to  improve  the 
accuracy of  hypotheses in machine 
learning. The algorithm demonstrated 
novel possibilities in analyzing data and 
is a permanent contribution to science 
even beyond computer science.
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Why is PEA useful?

• Prediction with Expert Advice is essentially a meta-algorithm for 
combining different experts, and the “expert” can be interpreted as 
any learning model with a particular kind of expertise.

• It is used in a variety of algorithmic design (see HW1 for example).
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The multiplicative weights update method: a meta-algorithm 
and applications. S Arora, E Hazan, S Kale. 

Theory of Computing, 2012
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More Results on PEA

Prediction, Learning and Games. 
Nicolò Cesa-Bianchi and Gabor Lugosi. 

Cambridge University Press, 2006. Nicolò Cesa-Bianchi Gabor Lugosi
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Part 2. OMD Framework
• Algorithmic Framework

• Regret Analysis

• Interpretation from Primal-Dual View
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PEA vs. OCO

PEA is a special case
of OCO!

Prediction with Expert Advice

Online Convex Optimization
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Deploying OGD to PEA
• PEA is a special case of OCO:

Why not directly deploy OGD (proposed in last lecture) to address PEA?

Regret guarantee: 
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Deploying OGD to PEA
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Deploying OGD to PEA
• PEA is a special case of OCO:

Why not directly deploy OGD (proposed in last lecture) to address PEA?

Regret guarantee: 
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PEA Problem

Lower Bound: 

Domain:

Online function:

Why OGD Fails for PEA
• PEA has a special structure whereas general OCO doesn’t have.

Convex Problem

Lower Bound: 

Domain:

Online function:
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Why OGD Fails for PEA
• Remember that for the general OCO, we linearized the function 

to analyze the first gradient descent lemma:

(Pythagoras Theorem)

(GD)

• So, linearized loss is not the essence, but the simplex domain of 
the PEA problem is worthy specifically considering.
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• Recall that for general OCO, we update the model as follows:

Why OGD Fails for PEA?

Ball Simplex

A ball is too pessimistic (loose)
to measure a simplex!

• In PEA, is it proper to use 2-norm (ball) to measure distance?

General Online Convex Optimization
Proximal type update:OGD: 
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• Recall that for general OCO, we update the model as follows:

Proximal View

• In PEA, is it proper to use 2-norm (ball) to measure distance?

We need to find an alternative distance measure
 for the special structure in PEA.

General Online Convex Optimization
Proximal type update:OGD: 



Lecture 6. Online Mirror DescentAdvanced Optimization (Fall 2024) 37

Proximal View

• Intuitively, for Euclidean space, 2-norm is the most natural measure:

We need to find an alternative distance measure
 for the special structure in PEA.

• For PEA problem
▪ the decision can be viewed as a distribution within the simplex
▪ for two distributions P and Q, KL divergence is a natural measure:



Lecture 6. Online Mirror DescentAdvanced Optimization (Fall 2024) 38

Reinvent Hedge Algorithm

Proof.

(definition of KL divergence)
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Reinvent Hedge Algorithm
• Proximal update rule for OGD:

• Proximal update rule for Hedge:

• More possibility: changing the distance measure to a more general 
form using Bregman divergence
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Bregman Divergence

• Bregman divergence measures the difference 
of a function and its linear approximation.

• Using second-order Taylor expansion, we know
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Bregman Divergence
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Online Mirror Descent

Online Mirror Descent
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Online Mirror Descent
• So we can unify OGD and Hedge from the same view of OMD.

OGD

Hedge

OMD/proximal formAlgo.

• We also learn ONS for exp-concave functions, can it be included?
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Recap: ONS in a view of Proximal Gradient

Convex Problem
Property:

Proximal type update:

OGD: 

Exp-concave Problem
Property:

Proximal type update:

ONS: 
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Online Mirror Descent
• Our previous mentioned algorithms can all be covered by OMD.

OGD for 
convex

OGD for 
strongly c.

ONS for 
exp-concave

Hedge for 
PEA

OMD/proximal formAlgo.
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General Regret Analysis for OMD

Online Mirror Descent
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Proof of Mirror Descent Lemma

Proof.

term (a) term (b)

We use stability lemma to analyze term (a), and use Bregman proximal inequality to analyze term (b).

bias term (range term) variance term (stability term) negative term



Lecture 6. Online Mirror DescentAdvanced Optimization (Fall 2024) 48

Stability Lemma
Proof.

We introduce the following stability lemma to analyze term (a):

term (a) term (b)
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Stability Lemma

Proof.
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Stability Lemma

(1)

Proof.
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Stability Lemma

(2)

Proof.
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Stability Lemma

(2)

(1)

(Hölder’s inequality)

Proof.
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Proof of Mirror Descent Lemma
Proof.

We further introduce following lemma to analyze term (b).

term (a) term (b)

Crucial for analysis of first-order optimization methods based on Bregman divergence.
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Bregman Proximal Inequality

Proof.
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Bregman Proximal Inequality

Proof.



Lecture 6. Online Mirror DescentAdvanced Optimization (Fall 2024) 56

Proof of Mirror Descent Lemma
Proof.

term (a) term (b)

(negative term, usually dropped; 
but sometimes highly useful)
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General Regret Analysis for OMD

Using Lemma 1, we can easily prove the following cumulative regret bound for OMD.



Lecture 6. Online Mirror DescentAdvanced Optimization (Fall 2024) 58

General Regret Analysis for OMD

Proof.
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General Regret Analysis for OMD

With this general regret bound for OMD, it will become straightforward to 
analyze OGD/Hedge/ONS in a unified way, which we previously analyzed 
specifically for each algorithm.
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Implication: OGD for convex functions
Algorithm. With Theorem 3, it is straightforward to recover OGD:

OGD for convex

Regret Analysis.
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Implication: Hedge for PEA
Algorithm. With Theorem 3, it is straightforward to recover Hegde:

Hedge for PEA

Regret Analysis.
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Implication: ONS for exp-concave functions
Algorithm. With Theorem 3, it is straightforward to recover ONS:

ONS for exp-concave

Regret Analysis.
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Implication: OGD for strongly convex functions
Algorithm. With Theorem 3, we can recover OGD for strongly convex function:

OGD for strongly convex

Regret Analysis.
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A Summary of OMD Deployment
• Our previous mentioned algorithms can all be covered by OMD.

OGD for 
convex

OGD for 
strongly c.

ONS for 
exp-concave

Hedge for 
PEA

OMD/proximal formAlgo.
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Another View for Mirror Descent

(definition of Bregman divergence)

Proof.
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Another View for Mirror Descent

Proof.

(definition of Bregman divergence)
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Another View for Mirror Descent
• A two-step update for mirror descent

Ø The first step is somehow similar to a “gradient descent” step;
Ø The second step looks like a “projection” step.
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Primal-Dual View for Mirror Descent
• Recall the gradient descent update

but this simply does not make sense for general non-Euclidean space…

• Bits in convex analysis
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Primal-Dual View for Mirror Descent

gradient step

projection
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Mirror Map

See Chapter 4.1 of Bubeck’s book for rigorous discussions. 
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Mirror Map Calculation

equivalent
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Mirror Map Calculation
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Mirror Descent: history bits

A. S.  Nemirovski (1947 - D. B. Yudin (1919 - 2006)

A.S. Nemirovski, D.B. Yudin, Problem Complexity and Method 
Efficiency in Optimization. Wiley-Interscience Series in Discrete 
Mathematics (A Wiley-Interscience Publication/Wiley, New York, 1983)
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Mirror Descent: history bits
• Primal-Dual Interpretation and Proximal Interpretation

Amir Beck, Marc Teboulle. Mirror descent and nonlinear projected subgradient 
methods for convex optimization, Operations Research Letters, 167-175, 2003.

https://www.sciencedirect.com/science/article/pii/S0167637702002316
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Part 3. Follow-the-Regularized Leader
• Algorithmic Framework

• Regret Analysis

• Interpretation from Primal-Dual View
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Another OCO Framework: FTRL
• Recall: Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

FTL achieves linear regret 
in the worst case!
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Another OCO Framework: FTRL
• Recall: Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

a natural idea: adding regularizers to stabilize the algorithm.

• As mentioned, FTL is sub-optimal due to its unstable nature.
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Another OCO Framework: FTRL

Follow The Regularized Leader (FTRL)

FTRL: essentially adding regularizer to stabilize the FTL algorithm.

We use time-varying regularizer to encode the potentially changing step sizes.
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FTRL vs. OMD: Update Styles
• OMD update style:

• FTRL update style:

Comparison: 
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Linearization in FTRL
• FTRL update requires to store all the historical online functions.

• Surrogate optimization: maintain regret while achieving one-pass update

surrogate

It suffices to store 
gradient vectors only. 
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General Analysis of FTRL

(range term)

(stability term)



Lecture 6. Online Mirror DescentAdvanced Optimization (Fall 2024) 82

General Analysis of FTRL

(range term)

(stability term)

(negative term)
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General Analysis of FTRL
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General Analysis of FTRL

(range term)

(stability term)

• The first and third terms are similar to those in OMD regret analysis.
• The second term is the stability term, which is crucial for the regret analysis,  and we 

will explain why it’s called stability later.
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FTRL Stability

Proof.

(strong 
convexity)
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FTRL Stability

Proof.

(Hölder’s inequality)
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Regret Bound for FTRL

Proof. (range term)

(stability term)
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Regret Bound for FTRL

(stability)Proof.
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FTRL can be equivalent to OMD



Lecture 6. Online Mirror DescentAdvanced Optimization (Fall 2024) 90

FTRL vs. OMD: Equivalence Condition

Proof. For OMD, taking the gradient and setting it to 0 will lead to:

On the other hand, for FTRL, setting the gradient to zero will lead to:
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FTRL as Dual Averaging
• Mirror Descent

• Dual Averaging (lazy mirror descent)

averaging updates in dual space

this is FTRL update
(consider fixed step size 

for simplicity)
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FTRL as Dual Averaging

Lin Xiao. Dual Averaging Method for Regularized 
Stochastic Learning and Online Optimization. NIPS 2009.

NIPS 2019 ten-year 

Test of Time Award!

Y. Nesterov. Primal-dual subgradient 
methods for convex problems, 2005.
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Yurii Nesterov
1956 –  

UCLouvain, Belgium
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FTRL vs. OMD
• FTRL and OMD frameworks can recover different OCO methods.

• They share many similarities in both algorithm and regret, but they 
are fundamentally different in essence, especially when the step 
size scheduling is time-varying.

• The dynamics of FTRL and OMD also exhibits great difference 
when considering beyond static regret minimization, such as in 
dynamic regret minimization, or repeated game convergence.



Lecture 6. Online Mirror DescentAdvanced Optimization (Fall 2024) 95

Congrats to Nemirovski and Nesterov 
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Congrats to WLA Prize (actually)

2023年11月6日
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Summary

Q & A
Thanks!
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