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 Online Mirror Descent
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Part 1. Prediction with Expert Advice

* Problem Setup
* Algorithms

* Regret Analysis
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Motivation

* Consider that we are making predictions based on external experts.

A Chinese Odyssey Part Two - Oppenheimer Titanic
Cinderella
BEe OE= OE=
9.2/10 87%  7.8/10 8.8/10 93%  8.5/10 9.5/10 88%  7.9/10
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Prediction with Expert Advice

* Another Example: Universal Portfolio Selection

_____________________

» Universal Portfolio Selection

e a total of d stocks in the stock market.

e each round, the player chooses stocks by a distribution x; € Ag.
e the market returns the price ratio 8; between iter t and ¢ 4 1,

_ price of stock, at time ¢ + 1

0

price of stockl. at time ¢

T
which means that our final wealth W, will be: Wy = W; - H 9: Xt

—> Our goal is to maximize our wealth at time 7T'.

t=1

N o e o — — — —— — ———————————

\——————————————————————————————————————
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PEA Problem Setup

[ Question 1 ] [ Question 2 ]

)
—

Question 3

———————————

Expert

N o e o e o e e e e o e e e e e e = e -
— - — —

o & &

) [ Answer 1 ] [ Answer 2 ] [ Answer 3 ] """

i 1

Learner
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PEA: Formulization

* The online learner (player) aims to make the prediction based
by combining N experts” advice.

Ateachroundt=1,2,---
(1) the player first picks a weight p, from a simplex A y;
(2) and simultaneously environments pick a loss vector ¢, € R";

(3) the player suffers loss f;(p,) = (p,,£;), observes £; and updates the model.

The feasible domain is the (N — 1)-dim simplex Ay = {p € RY | p; > 0, Zfil p; =1}.

We typically assume that 0 < ¢, ; < 1 holds forallt € [T] and i € [N].
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PEA: Formulization

* The online learner (player) aims to make the prediction based
by combining N experts” advice.

Ateachroundt=1,2,---
(1) the player first picks a weight p, from a simplex A y;
(2) and simultaneously environments pick a loss vector ¢, € R";

(3) the player suffers loss f;(p,) = (p,,£;), observes £; and updates the model.

* The goal is to minimize the regret with respect to the best expert:
T T T T

Regret = Z (py, £:) — min (p, £y) = Z (Dy, Le) — mi]{} thﬂ;

cA
t—1 P==Ni T t—1
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A Natural Solution

 Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

prL = argmin (p, L;—1) = argmin L,_1 ;

PEAN ZE[N]

where L;_; € RY is the cumulative loss vector with Li 1, = 22;11 s i

T
© [l ot =] - Rosy = 3 )~ i S

:T—gzmﬂ

FTL achieves linear regret
in the worst case!
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A Natural Solution

 Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

prL = argmin (p, L;_1) = argmin L, 1 ;

PEAN ’LE[N]

where L; 1 € RY is the cumulative loss vector with Ly 1, £ Z’;; Us.i.

> Pitfall: online decision is made blindly based on the historical performance!

> | Replacing the “max” operation in FTL by “softmax”.
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Hedge: Algorithm

* Hedge: replacing the “max” operation in FTL by “softmax”.

Ateachroundt=1,2,---
(1) compute p, € Ay such that p, ; oc exp (—nL;_1 ;) fori € [V]
(2) the player submits p,, suffers loss (p,, £;), and observes loss £; € RY
(3) update L; = L,_; + ¢,

FTL update Hedge update
prL — argmax <p7 _Lt—1> Pt X €XP (—77Lt_1 7;), Vi € [N]
pEAN ) )
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Lazy and Greedy Updates

* Hedge algorithm

” lazy update
pe+1,i < exp (—nLy;), Vi € [N] Ly; = ng,ia Vi € [N]
s=1

* Another equivalent update (when the learning rate 7 is fixed)

greedy update

Pt+1,i X Pt €XP (—"ﬂt,i)/ Vi € [N]

where we set the uniform initialization as py ; = 1/N, Vi € [N].

|:> But the two updates can be significantly different when learning rate is changing.
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Hedge: Regret Bound

Theorem 1. Suppose that Vt € |T'| and ¢ € |[N|,0 < ¥;; <1, then Hedge with
learning rate n guarantees

Regret < % +nl' = (9(\/TlogN),

where the last equality is by setting n optimally as \/(In N)/T.

Proof. We present a “potential-based’ proof here, where the potential is defined as

ln <Zexp —nLy,; )
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Proof of Hedge Regret Bound

N
. —nLy ; Z
M\ iz exp (=1 Lli—1,)

i (stp(—nLtl,i) ) eXp(—nﬁt,i)>>

i=1 €XP (—nLi—1,

Z Pt,i €XP (_ngt,i)> (update step of p,)

IA

N
In (Zpt,i (1 T ngt,z =+ 772€2 )) (Vaj >0, e <1—x+ IQ)

N
1 —n(p;, ) +1° Zpt,z-ff,i)>

1=1
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Proof of Hedge Regret Bound

N
PTOOf. (I)t . (I)t—l _ 1 In ( Zi:l exXp (_nLt,z) )

U

N
zz‘:1 exXp (_77Lt—1,z')
< —(pp )+ 1) peils, (In(1+ @) < )
i=1
Summing over ¢, we have
T N
Z Dy, Et < Py — P + T Z Zpt zgfz b, = % In (Zi\;1 eXp (_TILt,z')>
t=1 t=1 =1
InN 1
_———111(6Xp nLTz +nzzptz€?z
"l d t=1 =1
T N
In N
< R + Ly +1 Z Zpt,q:fii
t=1 i=1
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Proof of Hedge Regret Bound

In N LY
(P be) < N + Lra 0 Y prili

1 t=1 =1

Proof.

E

t

Rearranging the term gives

E

T N
lnN
<pt7 £t> LT i < —— Z Zpt,igiz‘

In N
<n—+nT
Ui

Thus, setting n = /In N/T yields

In N
Regret, < il +nT =2VTInN.
Uy

t=1
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Lower bound of PEA

* As above, we have proved the regret bound for Hedge:

Regret < 2V T In N

* A natural question: can we further improve the bound?

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
SUp max ST > —.

TN L,-Ar A/TIn N — /2

Hedge achieves minimax optimal regret (up to a constant of ) for PEA.
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Lower bound of PEA

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
sup max 50T 2

TN 2Ly V/TInN — /2

Proof. We construct the ‘hard” instance by randomization. Let D be the
uniform distribution over {0, 1}. We have
max Regretr > E, iiay [REgret ]
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Lower bound of PEA

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
Sup max ST > —,

TN 2Ly V/TInN — /2

..... )
1 T t—1

- T
Proof. max Regret, > ZEgl ,,,,, to (P Eg, [0 | €1-1,...,61]) —Eg, . oy [min th,z']

T T
1
=T/2—-E min lri| = Ee, ... ma — —ly
/ 1. Ly [ie[lN]; ¢ 1. Ly zE[Z\}fi] 2 (2 £ )]
. T
— EO'l e O a (/ I
9 O [fél[]\}fc];gt ]

Rademacher random variables

Advanced Optimization (Fall 2024) Lecture 6. Online Mirror Descent 19



Lower bound of PEA

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
SUp max ST > —.

TN 2Ly V/TInN — /2

Proof.

T
1
max Regret- > —]K max O+ ;
oy, BT = 5B, o |:iE[N]t§_; t’z}

Rademacher random variables

Using the result from probability theory (Prediction, Learning, and Games, Chapter 3.7)
of Rademacher variables,
T
EO‘1,...,O'T |:maXiE[N] thl O-t,ii|

I:'> lim lim — /2. []
T—00 N—00 v T'In N
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Upper Bound and Lower Bound

learning rate 1 guarantees

Regret < lnTN +nT = O(\/TlogN),

where the last equality is by setting n optimally as /(In N)/T.

Theorem 1. Suppose that Vt € |T'| and ¢ € |[N|,0 < ¥;; <1, then Hedge with

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
SUp max ST > —.

TN LA /TIn N — /2
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Prediction with Expert Advice: history bits

Nick Littlestone *

Harvard Univ.

Abstract

We study the construction of prediction algo-
rithms in a situation in which a learner faces
a sequence of trials, with a prediction to be
made in each, and the goal of the learner is
to make few mistakes. We are interested in the
case that the learner has reason to believe that
one of some pool of known algorithms will per-
form well, but the learner does not know which
one. A simple and effective method, based on

The Weighted Majority Algorithm

Aiken Computation Laboratory Dept. of Computer Sci.

Manfred K. Warmuth

U. C. Santa Cruz

most c{log|.A| +m) mistakes on that sequence,
where ¢ is fixed constant.

1 Intreduction

We study on-line prediction algorithms that
learn according to the following protocol.
Learning proceeds in a sequence of triak. In
each trial the algorithm receives an instance
from some fixed domain and is to produce a

weighted voting, is i d for

a compound algorithm in such a circumstance.
We call this method the Weighted Ma jority Al
gorithm. We show that this algorithm is ro-
bust w.r.t. errors in the data. We discuss var-
ious versions of the Weighted Majority Algo-
rithm and prove mistake bounds for them that
are closely related to the mistake bounds of the
best algorithms of the pool Forexample, given
a sequence of triak, if there is an algorithm in
the pool A that makes at most m mistakes then
the Weighted Majority Algorithm will make at

*Supported by ON R grant N00014-85-K0445. Part
of this rescarch was dane while this author was at the
University of Calif st Samta Cruz with support from
ONR grant N00O14-86-K-0454

'Supported by ONR grant N0001 486 K-0454. Part
of this rmesrch was done whik this suthor was on
sabbatical at Aikes Computation Laboratory, Harvard,

' ial support from the ONR grants N 0001485
K-0445 and NOOO14-S6-K-0454

binary prediction. At the end of the trial the al
gorithm receives a binary reinforcement, which
can be viewed as the correct prediction for the
instance. We evaluate such algorithms accord-
ing to how many mistakes they make as in
[Lit88,Lit59). (A mistake occurs if the predic-
tion and the reinforcement disagree.)

In this paper we investigate the situation
where we are given a pool of prediction algo-
rithms that make varying numbers of mistakes.
‘We aim to design a master algorithm that uses
the predictions of the pool to make its own pre-
diction. Ideally the master algorithm should
make not many more mistakes than the best
algorithm of the pool, even though it does not
have any a priori knowledge as to which of the
algorithms of the pool make few mistakes for a
given sequence of trials,

The overall protocol proceeds as follows in
each trial: The same instance is fed to all al-
gorithms of the pool Fach algorithm makes

Manfred Warmuth
UC Santa Cruz

CH2B06-38%0000/0256/501.00 © 1089 IEEE

Nick Littlestone and Manfred K. Warmuth.
"The Weighted Majority Algorithm." FOCS 1989: 256-261.

FOCS 30-year
Test of Time Award!

AGGREGATING STRATEGIES

Volodimir G. Vovk™
Research Council for Cybernetics
40 ulitsa Vavilova,.
Moscow 117333, USSR

ABSTRACT

The following situation is considered. At each moment of
discrete time a decision maker. who does not know the current
state of Nature but knows all its past states, must make a
decision. The decision together with the current state of
Nature determines the loss of the decision maker. The
performance of the decision maker is measured by his total
loss. We suppose there is a pool of the decision maker's
potential strategies one of which is believed Lo perform well,
and construct an “aggregating™ strategy for which the total
loss is not much bigger than the total loss under strategies in
the pool, whatever states of Nature. Our construction
generalizes both the Weighted Majority Algerithm of
N.Littlestone and M.K.Warmuth and the Bayesian rule.

NOTATION

N, @ and R stand for the sets of positive integers, rational
numbers and real numbers respectively, B symbolizes the set
€0.1>. We put
g"= u B "= u B.
t<n tSn
The empty sequence is denoted by o. The notation for logarithms
is ln Cnatural, 1b Cbinary) and log, Cbase AJ. The integer

part of a real number ¢ is denoted by [t]. For A € R®, con 4 is
the convex hull of A.

1. UNIFORM MATCHES

We are working within C(the finite horizon variant of)
A.P.Dawid's “prequential” Cpredictive sequential) framework
Csee (Dawid, 1 in detail it is described in C(Dawid,
1988)). Nature and a decision maker function in discrete time
€0,1 .+n-1>. Nature sequentially finds itself in states Sor

comprising the string s = s, For

. . s R e
1 n=1 P 071 n-1
simplicity we suppose s €« B'. At each moment i the decision
maker does not know the current state s, of Nature but knows

"aadress for correspondence: ©9-3-451 ulitsa Ramenki, Moscow
117007, USSR.

Volodimir G. Vovk
Royal Holloway,
University of London

Volodimir G. Vovk. “Aggregating Strategies."

COLT 1990: 371-383.
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Prediction with Expert Advice: history bits

Yoav Freund

Robert Schapire

Goldel Prize 2003

........

This paper introduced AdaBoost, an

adaptive algorithm to improve the
accuracy of hypotheses in machine
learning. The algorithm demonstrated
novel possibilities in analyzing data and
is a permanent contribution to science
even beyond computer science.

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 55, 119-139 (1997)
ARTICLE NO. SS971504

A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting*

Yoav Freund and Robert E. Schapire®

AT&T Labs, 180 Park Avenue, Florham Park, New Jersey 07932

Received December 19, 1996

In the first part of the paper we consider the problem of dynamically
apportioning resources among a set of options in a worst-case on-line
framework. The model we study can be interpreted as a broad, abstract
extension of the well-studied on-line prediction model to a general
decision-theoretic setting. We show that the multiplicative weight-
update Littlestone-Warmuth rule can be adapted to this model, yielding
bounds that are slightly weaker in some cases, but applicable to a con-
siderably more general class of learning problems. We show how the
resulting learning algorithm can be applied to a variety of problems,
including gambling, multiple-outcome prediction, repeated games, and
prediction of points in R”. In the second part of the paper we apply the
multiplicative weight-update technique to derive a new boosting algo-
rithm. This boosting algorithm does not require any prior knowledge
about the performance of the weak learning algorithm. We also study
generalizations of the new boosting algorithm to the problem of
learning functions whose range, rather than being binary, is an arbitrary
finite set or a bounded segment of the real line.  © 1997 Academic Press

converting a “weak” PAC learning algorithm that performs
just slightly better than random guessing into one with
arbitrarily high accuracy.

We formalize our on-line allocation model as follows. The
allocation agent A has N options or strategies to choose
from; we number these using the integers 1, ..., N. At each
time stepz=1, 2, ..., T, the allocator 4 decides on a distribu-
tion p’ over the strategies; that is p/>0 is the amount
allocated to strategy i, and Y | p’= 1. Each strategy i then
suffers some /loss /! which is determined by the (possibly
adversarial) “environment.” The loss suffered by A is then
U pili=p"- (', ie, the average loss of the strategies with
respect to A’s chosen allocation rule. We call this loss func-
tion the mixture loss.

In this paper, we always assume that the loss suffered by
any strategy is bounded so that, without loss of generality,
/1 €[0, 1]. Besides this condition, we make no assumptions

Reference: Y. Freund and R. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. JCSS 1997.
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Why is PEA useful?

* Prediction with Expert Advice is essentially a meta-algorithm for
combining different experts, and the “expert” can be interpreted as
any learning model with a particular kind of expertise.

* It is used in a variety of algorithmic design (see HW1 for example).
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THEORY OF COMPUTING, Volume 8 (2012), pp. 121-164
www.theoryofcomputing.org

RESEARCH SURVEY

The Multiplicative Weights Update Method:
A Meta-Algorithm and Applications

Sanjeev Arora® Elad Hazan Satyen Kale

Reccived: July 22, 2008; revised: July 2, 2011; published: May 1, 2012.

Abstract:  Algorithms in varied fields use the idea of maintaining a distribution over a
certain set and use the multiplicative update rule to iteratively change these weights. Their
analyses are usually very similar and rely on an exponential potential function.

In this survey we present a simple meta-algorithm that unifies many of these disparate
algorithms and derives them as simple instantiations of the meta-algorithm. We feel that
since this meta-algorithm and its analysis are so simple, and its applications so broad, it
should be a standard part of algorithms courses, like “divide and conquer.”

ACM Classification: G.1.6

AMS Classification: 680Q25
Key words and phrases: algorithms, game theory. machine learning

1 Introduction

The Multiplicative Weights (MW) method is a simple idea which has been repeatedly discovered in fields
as diverse as Machine Leaming. Optimization, and Game Theory. The setting for this algorithm is the
following. A decision maker has a choice of n decisions, and needs to repeatedly make a decision and
obtain an associated payoff. The decision maker's goal, in the long run, is to achieve a total payoff which
is comparable to the payoff of that fixed decision that maximizes the total payoff with the benefit of

0205594

1012 Sanjeev Arora, Elad Hazan and Satyen Kale

@ Licensed under 2 Creative Commons A ttribution License DOL: 10.4086/oc 201 2 v0082006

*This project was supported by David and Lucile Packard Fellowship and NSF grants MSPA-MCS 0528414 and CCR-

={J] Applications

Learning a linear classifier: the Winnow algorithm

Solving zero-sum games approximately

Plotkin, Shmoys, Tardos framework for packing/covering LPs
Approximating multicommodity flow problems

O(log n)-approximation for many NP-hard problems
Learning theory and boosting

Hard-core sets and the XOR Lemma

Hannan's algorithm and multiplicative weights

Online convex optimization

Other applications

Design of competitive online algorithms

The multiplicative weights update method: a meta-algorithm

and applications. S Arora, E Hazan, S Kale.
Theory of Computing, 2012
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More Results on PEA

PRE

G.V=s

PREDICTION, LEARNING, AND GAMES

Nicolé Cesa-Bianchi Gabor Lugosi

Prediction, Learning and Games.

Nicolo Cesa-Bianchi and Gabor Lugosi.

Cambridge University Press, 2006.

Introduction

Prediction with expert advice 0
Tight bounds for specific losses

Randomized prediction

Prediction with limited feedback
Prediction and playing games
Absolute loss

Logarithmic loss

10 Sequential investment

11 Linear pattern recognition

12 Linear classification

® © O &)

Nalie BN He e R N S R

0 @

Nicold Cesa-Bianchi

Efficient forecasters for large classes of experts (3) (4)
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Part 2. OMD Framework

* Algorithmic Framework

* Regret Analysis

* Interpretation from Primal-Dual View

Advanced Optimization (Fall 2024)
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PEA vs. OCO

Ateachroundt=1,2,--- Prediction with Expert Advice
(1) the player first picks a weight p, from a simplex A y;

(2) and simultaneously environments pick an loss vector £, € RY;

(3) the player suffers loss f;(p,) = (p,, £:), observes £; and updates the model.

PEA is a special case
of OCO!

Ateachroundt=1,2,--- Online Convex Optimization

(1) the player first picks a model x; € &;

(2) and simultaneously environments pick an online function f; : ¥ — R;

(3) the player suffers loss f;(x;), observes f; and updates the model.
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Deploying OGD to PEA

* PEA is a special case ot OCO:

Why not directly deploy OGD (proposed in last lecture) to address PEA?

Theorem 4 (Regret bound for OGD). Under Assumption 1, 2 and 3, online gra-
dient descent (OGD) with step sizes 1, = GL\/Z for t € [T'] guarantees:

T T
RegretT = Z ft (Xt) — Hél;(l Z ft (X) < gGD\/T
=1 =T =

Regret guarantee: D = max |[x—yla=v2 G = max [[&],=VN

X7y€AN EtERN
T T

—> Regrety =} (P, &) — min » (p, &) < O(VTN)
t=1 Ni=1
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Deploying OGD to PEA

e OGD for PEA Problem:
D= max |[x—yl2=Vv2 G = max |4, = VN
X,yeAN EtERN
T T
—> Regret, = Z (py, Lt) — pIéliAIl Z (p, ) < O(VTN)
t=1 Ni=1

e A natural question: is the O(v/T'N) regret bound tight enough?
e recall that the lower bound of PEA is (/7 log N)

e OGD is not optimal with respect to N (number of experts)

Advanced Optimization (Fall 2024) Lecture 6. Online Mirror Descent
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Deploying OGD to PEA

* PEA is a special case ot OCO:
Why not directly deploy OGD (proposed in last lecture) to address PEA?

Theorem 4 (Regret bound for OGD). Under Assumption 1, 2 and 3, online gra-
dient descent (OGD) with step sizes 1, = GL\/Z for t € [T'] guarantees:

T T
RegretT = Z ft (Xt) — Hél;(l Z ft (X) < gGD\/T
=1 =T =

Regret guarantee: D = max |[x—yla =Vv2 |G = max [[&], = VN

X7y€AN EtGRN
T T

—> Regrety =} (P, &) — min » (p, &) < O(VTN)
t=1 Ni=1
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Why OGD Fails for PEA

* PEA has a special structure whereas general OCO doesn’t have.

Convex Problem PEA Problem
Domain: convex set X Domain: (simplex X = Ay
Online function: convex function f; Online function:linear f;(p) = (p, £;)
Lower Bound: Q(GD\/T) Lower Bound: €2(/1'log N)
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Why OGD Fails for PEA

* Remember that for the general OCO, we linearized the function
to analyze the first gradient descent lemma:

Ty [x; — eV f(xe)] — x*||°

%, — 0V f(x) — x|

x¢ — X*||* = 2 (Vf (x4), %0 — x*) + 07 [V f ()|
x¢ — XM * = 200 (f(x0) = f5) + 07 |Vf (o))

H'Xt+1 — X*HQ

IN

N

* So, linearized loss is not the essence, but the simplex domain of
the PEA problem is worthy specifically considering.
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Why OGD Fails for PEA?

* Recall that for general OCO, we update the model as follows:

General Online Convex Optimization

OGD: Proximal type update:

. 1
X¢p1 = lx [x¢ — 1V f(x4)] Xt41 — al'g r)r{nn {<X, neV fe(Xe)) + 9 |x — Xt”%}
X EC

* In PEA, is it proper to use 2-norm (ball) to measure distance?

(>

7

Ball Simplex

A ball is too pessimistic (loose)
to measure a simplex!
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Proximal View

* Recall that for general OCO, we update the model as follows:

OGD:

General Online Convex Optimization

Proximal type update:

xcX

1

Xi+1 = Hx [x¢ — eV f(x¢)] X;41 = arg min {<X, eV fi(xe)) + 5

2
Ix — 13}

* In PEA, is it proper to use 2-norm (ball) to measure distance?

—> We need to find an alternative distance measure

for the special structure in PEA.

Advanced Optimization (Fall 2024)
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Proximal View

—> We need to find an alternative distance measure
for the special structure in PEA.

* Intuitively, for Euclidean space, 2-norm is the most natural measure:
Ix —¥l3
* For PEA problem

= the decision can be viewed as a distribution within the simplex

= for two distributions P and Q, KL divergence is a natural measure:

i - o (12)
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Reinvent Hedge Algorithm

Theorem 3. Consider fi(p) = (p, €:). An online learning algorithm that updates
the model following

Py = 8Ig min {n{p, V f:(p,)) + KL(p|lp,) }
PEAN

is equal to Hedge update, i.e.,
D414 X priexp (—nly ;) for alli € [N].

Proof. Pit1 = argininmp, Vfi(p,)) + KL(p|lp;)
PEAN

= arg min7n(p, V fi(p,)) sz In (

PEAN

)
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Reinvent Hedge Algorithm

* Proximal update rule for OGD:

. 1
Xt41 = arg min {7715<X7 Vfi(xe)) + 9 |x — Xt”;}
XeX

* Proximal update rule for Hedge:

X411 = arg min {nt<x, Vfi(x:)) + KL(XHXt)}
xcX

* More possibility: changing the distance measure to a more general
form using Bregman divergence

i1 = arg min {m(x, Vfi(x:)) + Dy (x. ) |
xeX
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Bregman Divergence

Definition 1 (Bregman Divergence). Let ¢ be a strongly convex and differ-
entiable function over a convex set X, then for any x,y € &, the bregman
divergence D, associated to v is defined as

Dy(x,y) = ¥(x) —¥(y) — (VY(y), x — y).

* Bregman divergence measures the ditference
of a function and its linear approximation.

« Using second-order Taylor expansion, we know

1 ~
Dy(x,y) = §HX_YHQV2¢(£) sl

for some £ € [x,y].
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Bregman Divergence

Definition 1 (Bregman Divergence). Let ¢ be a strongly convex and differ-
entiable function over a convex set X, then for any x,y € &, the bregman
divergence D, associated to v is defined as

D¢(X7Y) — ¢(X) — w(Y) — <v¢(Y)7X — Y>'

Table 1: Choice of ¥(-) and the corresponding Bregman divergence.

P (x) Dy (x,y)
Squared Lo-distance |x][3 |x — yll5
Mahalanobis distance |x|% Ix -yl
Negative entropy > ;vilogz;  KL(x|y)
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Online Mirror Descent

Online Mirror Descent
Ateachroundt=1,2,---

xi+1 = arg min {7:(x, Vfi(x:)) + Dy (x, %) |
xeX

where Dy (x,y) = ¢¥(x) — ¢¥(y) — (V¥(y),x — y) is the Bregman divergence.

e ¢(-) is a required to be strongly convex and differentiable over a convex set X.

e Strong convexity of ¢ will ensure the uniqueness of the minimization problem,
and actually we further need some analytical assumptions (see later mirror
map defintion) to ensure the solutions’ feasibility in domain X'
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Online Mirror Descent

* So we can unity OGD and Hedge from the same view of OMD.

X;41 = arg min

{m e V() + Dy (x,31) |

XEX
Algo. OMD/proximal form () ul Regret
OGD | 31 = arg min {ny (e, Vfilx)) + 5 [ —xi[2}] 1x[3 = O(VT)
xeX 2
N
Hedge X1 = arg gnin {nt<x, Vfe(xt)) + KL(Xth)} 231 zilogx; |/ 1 O(/Tlog N)
XCEAN 1=

* We also learn ONS for exp-concave functions, can it be included?
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Recap: ONS in a view of Proximal Gradient

Convex Problem Exp-concave Problem
Property: fi(x) > fi(y) + V/fi(y)' (x—y)| | Property:fi(x) > fily)+ V/fi(y) (x—y)

5 I =311 v
1
OGD: x¢4+1 =11y [Xt — vat(xt)] ONS: A= Ai1 + Vii(x)VSir(xe)'

1 _
Xt4+1 — Hfgt Xt — ;At 1vft(Xt)

Proximal type update: Proximal type update:
. 1 :
X1 = arg min(x, V fi(x¢)) + o |x — Xt“g X441 = arg min(x, V fi(x¢)) + ! |x — Xt”ixt
xeX Tt xeX 2
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Online Mirror Descent

* Our previous mentioned algorithms can all be covered by OMD.

Algo. OMD/proximal form ¥(+) Mt Regretr
_ 1
OGDIor | 5 11 = arg minn (x, VAG) +5 %2 | [x|3 | & | oWT)
convex xcX
1
OGD fOr X¢41 = arg minm(x, Vft(xt)> + = HX_XtHg HXH% % O(%logT)
strongly c. xEX 2
1
ONS for X¢41 = arg minn.(x, V fi(x:)) + 5 Ix — Xt”ixt HXH?% % O(% logT)
exp-concave x€X
Hedge for _ : \V/ KL a In N
X1 = arg minny(x, V fi(x)) + KL(x||x;) > xilog x|/ B O(v/T'log N)
PEA XEAN i=1
45
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General Regret Analysis for OMD

Online Mirror Descent

X¢11 = arg min {nt<x, Vfi(x¢)) + D¢(X,Xt)}
xcX

Theorem 4 (General Regret Bound for OMD). Assume 1 is A-strongly convex w.r.t. ||- ||
and n, = n,Vt € [T]. Then, for all u € X, the following regret bound holds

T T T
S ik - Y fufu) < Del®x) §Z IV fuxo)2 = = Zm (Xe41, %)
t=1 t=1 t=1 t 1
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Proof of Mirror Descent Lemma

Lemma 1 (Mirror Descent Lemma). Let D, be the Bregman divergence w.r.t. v :
X — R and assume ) to be \-strongly convex with respect to a norm || - ||. Then,
Yu € X, the following inequality holds

1 . 1
fe(x¢) = fi(u) < —(Dw(u,xt)—Dw(u,xtH))Jr% vat(xtﬂﬁ_Epw(xt—klaxt)

Tt

bias term (range term) variance term (stability term) negative term

(V fi(x¢),x¢ — 1)
(Vfie(xt),x¢ — xet1) + (Vfie(Xt), X101 — 1)

IN

Proof. fi(x:) — f:(u)

VAN

We use stability lemma to analyze term (a), and use Bregman proximal inequality to analyze term (b).
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Stability Lemma

Proof. fir(xe) — fe(u) < (Vfe(xe),xe — Xe1) + (V fe(Xt), X1 — 1)

We introduce the following stability lemma to analyze term (a):

Lemma 2 (Stability Lemma). Consider the following updates:

{Xl = arg minke x (81, %) + Dy (x, C)

Xo = arg Minyecx (82,%) + Dy (x, c)

When the reqularizer 1) : X — R is a A\-strongly convex function with respect to norm || - ||, we have

MMix1 —x2| < |lg1 — g2, -
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

{Xl = arg minke x (g1, %) + Dy (x, C)

Xo = arg Minyex (g2,%) + Dy (x, )

When the reqularizer 1) : X — R is a A\-strongly convex function with respect to norm || - ||, we have

AMx1 —x2| < |lg1 — g2, -

Proof. For any convex function f, we have the first-order optimality condition:
f)<fly) VWyeX = Vfx)'(y—x)>0 VyedX
Therefore, for x; = arg minge x {(g2,x) + Dy (%, )}, we have

(g2 + Vip(x2) — V(c),u — x5) > 0 holds for Vu € X.
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

{Xl = arg minke x (g1, %) + Dy (x, C)

Xo = arg Minyex (g2,%) + Dy (x, )
When the reqularizer 1) : X — R is a A\-strongly convex function with respect to norm || - ||, we have

AMx1 —x2| < |lg1 — g2, -

Proof. (g2 + V(x2) — Vi(c),u — x2) > 0 holds for Vu € X.

By the first-order optimality conditions of x; and x,
(Vip(x1) — Vii(c) + g1, x2 —x1) > 0
(Vip(x2) = Vi(c) + g2, %1 — X2) 2 0

> (x2—%1,81 — 82) > (Vh(x1) — Vib(x2), X1 — X2) (1)
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

{Xl = arg minke x (g1, %) + Dy (x, C)

Xo = arg Minyex (g2,%) + Dy (x, )
When the reqularizer 1) : X — R is a A\-strongly convex function with respect to norm || - ||, we have

AMx1 —x2| < |lg1 — g2, -

Proof. Besides, by the strong convexity of ¢, we have
A
(Vip(1), 31 = x2) > (1) — P(x2) + 5 %1 — x|
A

(Vip(x2), %2 — x1) 2 (x2) = P(31) + 5 31 — x|
Summing them up, we get

<V¢<X1) - VTP(X2),X1 — X2> > A HX1 — XQH2 (2)
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

{Xl = arg minke x (g1, %) + Dy (x, C)

Xo = arg Minyex (g2,%) + Dy (x, )

When the reqularizer 1) : X — R is a A\-strongly convex function with respect to norm || - ||, we have

AMx1 —x2| < |lg1 — g2, -

Proof. (x2 —x1,81 — 82) = (Vih(x1) = Vih(x2), X1 — X2) (1)
(Vi (x1) = Vib(x2), %1 — X2) 2 A|x1 = x2]” (2
—> Alx1 — xa|* < (Vi) (x1) — Vb (X2) , X1 — Xa) < (X2 — X1, 81 — 82)
< |lx1 — %2/ [|g1 — 82/,
|:> Allx1 —x2f <[lg1 — g2, O
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Proof of Mirror Descent Lemma

Proof. fir(xe) — fe(u) < (Vfe(xe),xe — Xe1) + (V fe(Xt), X1 — 1)

We further introduce following lemma to analyze term (b).

Lemma 3 (Bregman Proximal Inequality). Let X' be a convex set in a Banach space 3. Let
f + X — Rbea closed proper convex function on X. Given a convex regularizer ¢ : X — R,
we denote its induced Bregman divergence by Dy (-, ). Then, any update of the form

X¢41 = argmin {(g, x) + Dy (X, X¢)}
xeX

satisfies the following inequality for any u € X’:

(8, Xt41 — 1) < Dy(u,x¢) — Dy(u,X¢41) — Dy (Xp41,X¢).

Crucial for analysis of first-order optimization methods based on Bregman divergence.
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Bregman Proximal Inequality

Lemma 3 (Bregman Proximal Inequality). The Bregman proximal update in the form of
X1 = argming . v {(&8:, X) + Dy (x, %)} satisfies

<gtaxt+1 — 11> < D¢(U,Xt) — D¢(uaxt+1) — D¢(Xt+1,Xt)-

Proof. Recall that for any convex function f, we have the following first-order
optimality condition:

f)<fly) VWyeX = Vfx)'(y—x)>0 VyedX
Therefore, for x;+1 = arg mingex {(g:, %) + Dy (X, %)}, we have

(g + Vi (x¢41) — V(x¢), 1 — x441) > 0 holds for any u € X.
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Bregman Proximal Inequality

Lemma 3 (Bregman Proximal Inequality). The Bregman proximal update in the form of
X1 = argming . v {(&8:, X) + Dy (x, %)} satisfies

<gtaxt+1 — 11> < D¢(U,Xt) — D¢(uaxt+1) — D¢(Xt+1,Xt)-

Proof. (gt + V(x411) — Vib(x¢),u — x441) > 0 holds for any u € X.
On the other hand, the right side of Lemma 3 is:

Dy(u,x;) — Dy (u,X¢41) — Dy (Xeg1,Xe)

=) — Pixe) — (VY (xe), 0 == —Ptu) + Y1) + (VP (Xe41), 0 — Xig1)
— Y(Xpp1) + Ple) + (Vo (xt), Xp1 =)

= (VY (xt+1) — VY(Xt), 0 — Xp41) -

Rearranging the terms can finish the proof.
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Proof of Mirror Descent Lemma

Proof. fir(xe) — fe(u) < (Vfe(xe),xe — Xe1) + (V fe(Xt), X1 — 1)

Lemma 2 (Stability Lemma).
Mx1 —xo| < [[g1 — g2,

= term (@) = (V/ulxe). X0 = Xer1) < Vil 2

Lemma 3 (Bregman Proximal Inequality).
<gt, Xt4+1 — 11> < Dw(ua Xt) — sz (u, Xt+1) — D¢ (Xt+1, Xt)

I:> term (b) < %(Dw(u X¢) — Dy (0, X¢41) — D¢(Xt+1,xt))

1 1
> fi(xt) = fr(u) < —(Dy(u, %) =Dy (0, x¢11)) + TN fo(xe) |2 = =Dy (xes1, %)
ul A ul [
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General Regret Analysis for OMD

Lemma 1 (Mirror Descent Lemma). Let D,, be the Bregman divergence w.r.t. ¢ : X — R
and assume 1 to be \-strongly convex with respect to a norm || - ||. Then, Vu € X, the
following inequality holds

fe(x¢) = fe(u) < l(D¢(u,Xt)—D¢(u,xt+1))+% vat(Xt)Hi—lpw(xtﬂaxt)

T)t Tt

Using Lemma 1, we can easily prove the following cumulative regret bound for OMD.

Theorem 4 (General Regret Bound for OMD). Assume v is A\-strongly convex w.r.t. |||
and n, = n,Vt € [T|. Then, for all u € X, the following regret bound holds

> i) =3 fulw < PR 1S

Ui

IIMﬂ
4
=
2
=,

|

I |~
]
3
<
2
T
¥
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General Regret Analysis for OMD

Theorem 4 (General Regret Bound for OMD). Assume 1) is A-strongly convex w.r.t. || ||
and n, = n,Vt € [T|. Then, for all u € X, the following regret bound holds

T T T
Dy(u,x1) 77
Y filx) =) filw) < +5 Z IV fi(x)ll; — = szb (X¢41,%¢)
t=1 t=1 t=1 =
Proof.
T T 1 1 T
D fix) =Y fi(w) <Y (= Dylu,x;) — —Dy(u,x¢41)) + Z IV fi(xa)l} — Dw (X415 %¢)
t=1 t=1 =1 't 77 t=1 =1 't
= Lpux) - 2Dy x )+2T:<i— 1>D(ux) Z”—fou—z D11,
m Py W &1 n Y (W AT+1 s ; -1 P\ Wy &g st \ t t ’gb t+1y ¢
Dy(u,x1) 7 a 1
< = XZHVft(Xt I = =D Dy(xes1,%0) O
n t=1 n t=1
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General Regret Analysis for OMD

Theorem 4 (General Regret Bound for OMD). Assume 1) is A-strongly convex w.r.t. || ||
and n, = n,Vt € [T|. Then, for all u € X, the following regret bound holds

T T T
Sk - Y fulw) < Pelnx) §Z IV ()12 = = Zm (Xet1, X¢)
t=1 t=1 t=1 t 1

With this general regret bound for OMD, it will become straightforward to
analyze OGD/Hedge/ONS in a unified way, which we previously analyzed
specifically for each algorithm.

Advanced Optimization (Fall 2024) Lecture 6. Online Mirror Descent 59



Implication: OGD for convex functions

Algorithm. With Theorem 3, it is straightforward to recover OGD:

OGD for convex X¢41 = arg min {(X, %vft(xt» + % |x — XtHg}

xeX
e (x) =3 HX”? is 1-strongly convex w.r.t. || - |2
e The dual norm of || - || is still || - |2
Regret Analysis
T T
— th(Xt th ) <> ( n—Hu—XtHz— —|\U—Xt+1\| +Z77t IV fe(x2) I3
B L g
2 2
= —lu-—x;— —[lu— +) (= - —x¢|[5 +
ol = el 3o - el Z 15201
D? D?
<= 4= 4 G? < 3DGVT
T ;m B O
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Implication: Hedge for PEA

Algorithm. With Theorem 3, it is straightforward to recover Hegde:

Hedge for PEA | X¢+1 = arg min {<X7 NV fi(x:)) + KL(XHXt)}

xeX

e Negative entropy is 1-strongly convex w.r.t. || - |1

e The dual norm of || - |1 is || - [|c

e We initialize the initial prediction x; = {%, e %}
Regret Analysis.

T T L(u||x1) In N
—> > filx) Z ; +772H5t\| s -t
t=1 t=1
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Implication: ONS for exp-concave functions

Algorithm. With Theorem 3, it is straightforward to recover ONS:

: 1 1
ONS for exp-concave | X1 = arg min {(X, ;Vft(xt» + 5 lx - XtHit}
XeE
e (x) = 2 HxHi5 is 1-strongly convex w.r.t. ||-||4, with Ay = eT+30 . V(%) V fo(xy) T
e The dual norm of || - || 4, is || - ||At_1
Regret Ana1y51s
T
|:> th Xt) th %Z (Hu —x¢[%, = lu— x5, — [lu— XtHVft(xt)Vft(xt)T) + 52 Zﬂvft Xt)HA !
t=1 t=1 t 1
T
= 2> (e =xill%,, =l =xesll%,) + 5= Zuwt (x) 1%
t=1 t—l
< u—x?, + iET:HVJ%(Xt)\Fl
2 T A7 O
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Implication: OGD for strongly convex functions

Algorithm. With Theorem 3, we can recover OGD for strongly convex function:

. 1 1 2
OGD for strongly convex | X¢+1 = arg min {(X, — Vfi(xe)) + 5 lx — Xt”2}
xeX ot 2
e (x) =1 |x||7 is 1-strongly convex w.r.t. || - [|2
e The dual norm of || - [[2is || - ||2
Regret Analysis.
a d 1 1 1 1
|:> PNACHED P AESSY) <— lu— x¢lf5 — — [lu = x¢ 1[5 — o [Ju— Xt”é) + > m IV fe(xe)l5
t=1 t=1 25\ " 24
T
L N T 2
2 ; (77t Tt—1 0) Ju =l + 2 ;ntG
IR S oY
B 2 ot U
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A Summary of OMD Deployment

* Our previous mentioned algorithms can all be covered by OMD.

Algo. OMD/proximal form ¥(+) Mt Regretr
_ 1
OGDIor | 5 11 = arg minn (x, VAG) +5 %2 | [x|3 | & | oWT)
convex xeX
| 1
OGD fOr X¢41 = arg mmm(x, Vft(xt)> + = HX_XtHg HXH% % O(%logT)
strongly c. xEX 2
| 1
ONS for X¢41 = arg minn(x, Vfi(x¢)) + = ||x — Xt”ixt IxI1% % O(5 log T)
exp-concave xEX 2 ¥ K
Hedge for _ : \V/ KL a In N
X1 = arg minny(x, V fi(x)) + KL(x||x;) > xilog x|/ B O(v/T'log N)
PEA XEAN i=1
64
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Another View for Mirror Descent

Theorem 5. The OMD update form

Xt+1 = arg mingc y {m(x, Vfi(xe)) + Dy(x,x¢)} (%)
is equivalent to the following two-step updates:

{ Vi(yit1) = Vp(xs) — 0V fi(x4)

Xt+1 — arg minxeX D¢ (X7 Yt—l—l) (©)

Proof. (o) Xt+1 = arg minyc y Dy (X, ye+1)
= arg min,c y Y(x) = Y(yr+1) — (VY (Y1) s X — Ye41)
= arg min, .y ¥(x) — (VY(yt+1),X)
= arg min, ¢ y Y(x) — (Vih(x¢) — 1V fo(x1), %)
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Another View for Mirror Descent

Theorem 5. The OMD update form

X1 = arg Minyey {7(X, Vfi(xe)) + Dy (3, %) }
is equivalent to the following two-step updates:

{ Vw(ym) — Vw(Xt) — eV fe(%¢)

X¢41 = arg min,ey Dy (X, yi41)

Proof. (x) Xuy1 = arg mineey {m (Vfe(xe),%) + Dy (x,%¢) |

= arg min, cy {n (Vfie(xe), %) + (%) — (x¢) — (Vip(xy),x — x¢) }

— arg mingy {1 (Vo) %)+ $(x) — (V) (x¢) , %) }
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Another View for Mirror Descent

* A two-step update for mirror descent

( Vi(yis1) = Vo(xe) — 0V fi(X¢)

| X¢+1 = arg mingcx Dy(X,yi41)

» The first step is somehow similar to a “gradient descent” step;

» The second step looks like a “projection” step.

|:> Key role in mirror descent: the operator V()
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Primal-Dual View for Mirror Descent

* Recall the gradient descent update
x =V f(x)

but this simply does not make sense for general non-Euclidean space...

* Bits in convex analysis

- consider a Banach space BB, whose dual space is denoted by B*

- x is in the primal space B, and V f(x) is in the dual space B*

—> asimple intuition: f(x + Ax) =~ (V f(x), Ax)
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Primal-Dual View for Mirror Descent

primal space

dual space

Vip(xy)

gradient step
(%)

®<«--
* Il

projection
.)

Vi (yisr)

) Vip(yii1) = Vib(xe) — nV f(x)

0) X¢41 € Hl;b( Vit1]

(I [y] = arg min,exqp Dy (X, ¥))

V) (-) is the mirror map to link two spaces

69
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Mirror Map

Definition 2 (Mirror Map). Let D C R" be a convex open set such that X’ is
included in its closure, thatis X C D, and X N D # (. We say that ¢ : D — R
is a mirror map if it safisfies the following properties:

(i) % is strictly convex and differentiable;
(ii) The gradient of v takes all possible values, that is V¢ (D) = R";
(iii) The gradient of ¥ diverges on the boundary of D, that is
Tim | Vi(x)| = +oc

See Chapter 4.1 of Bubeck’s book for rigorous discussions.
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Mirror Map Calculation

Vi(yit1) = Vp(xs) — 0V fir(x4)

Xt+1 = alg mianX D@D (Xa Yt—l—l)

equivalent Yit1 = V¢* (V@D (Xt) — ntvft (Xt))
— X¢+1 = arg minyc y Dy (X, yit+1)

e Here, V1" (-) is the Fenchel Conjugate of Vi (-).

Definition 3 (Fenchel Conjugate). For a function f : R? — [—o00, 0o], we define
its Fenchel conjugate f* : R — [—o0, oo] as

f*(g) = supycra {(g,y) — f(¥)}-
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Mirror Map Calculation

Proof. We first show for any convex and closed f, g = Vf(x) +<— x =V f*(g).

By the convexity of f (f(y) > f(x) + (g, y — x), Vy):

(g, x) — f(x) > (g,y) — f(¥),Vy

which means (g,y) — f(y) achieves its supremum in y at y = x. Thus, by the
definition of Fenchel Conjugate:

f(g)=sup(g,y) — fly) = (g,x) — f(x)

y R4
By taking the gradient w.r.t. g at both sides:

Vf*(g) =x
Therefore we have proved that g = Vf(x) < x = Vf*(g).
By setting f(-) = ¢ (-) and x = y+1, we finish the proof. ]
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Mirror Descent: history bits

PROBLEM COMPLEXITY AND
METHOD EFFICIENCY IN
OPTIMIZATION

A. S. NEMIROVSKY
Senior Scientific Fellow, State University of Moscow, USSR.

R B
£ % DAwsON, A. S. Nemirovski (1947 - D. B. Yudin (1919 - 2006)
i i e i | A.S. Nemirovski, D.B. Yudin, Problem Complexity and Method

Efficiency in Optimization. Wiley-Interscience Series in Discrete
Mathematics (A Wiley-Interscience Publication/Wiley, New York, 1983)

JOHN WILEY & SONS | 23. Nemirovskiy, A. S., and Yudin, D. B. (1979). Efficient methods of solving convex-
CHAIR = TIPSR © BN S T e programming problems of high dimensionality. Ekonomika i matem. metody, XV,
No. 1. (In Russian.)
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Mirror Descent: history bits

* Primal-Dual Interpretation and Proximal Interpretation

MDA: Start with y! € dom Vi/* and generate the

sequence {x*} € X via the iterations Mirror descent and nonlinear projected subgradient methods
* =V, (2.3) for convex optimization
P Tty — ), (2.4) Amir Beck, Marc Teboulle*
School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel
Xpp1 = v lﬂ*( yk+l ) Received 20 August 2002; received in revised form 28 October 2002; accepted 31 October 2002
= VY (Vi) — 6. /(")) (2.5) Abstract
where t; > 0 are appropriate step sizes. The mirror descent algorithm (MDA) was introduced by Nemirovsky and Yudin for solving convex optimization problems.

This method exhibits an efficiency estimate that is mildly dependent in the decision variables dimension, and thus suitable
for solving very large scale optimization problems. We present a new derivation and analysis of this algorithm. We show
that the MDA can be viewed as a nonlinear projected-subgradient type method, derived from using a general distance-like

Subgr adle_”f algorithm with ”_Onlmear Rk ecrions function instead of the usual Euclidean squared distance] Within this interpretation, we derive in a simple way convergence
(SANP): Given By as defined in (3.10) with s as and efficiency estimates. We then propose an Entropic mirror descent algorithm for convex minimization over the unit
above, start with x; € int X', and generate the sequence simplex, with a global efficiency estimate proven to be mildly dependent in the dimension of the problem.

{xk} via the iteration (© 2003 Elsevier Science B.V. All rights reserved.

1 Keywords: Nonsmooth convex minimization; Projected subgradient methods; Nonlinear projections; Mirror descent algorithms; Relative
x"‘+' = argmin <x, f ,(Xk)> o Bw (x,xk) . entropy; Complexity analysis; Global rate of convergence
xex Tk
t > 0. (3.11)

Amir Beck, Marc Teboulle. Mirror descent and nonlinear projected subgradient
methods for convex optimization, Operations Research Letters, 167-175, 2003.
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Part 3. Follow-the-Regularized Leader

* Algorithmic Framework
* Regret Analysis

* Interpretation from Primal-Dual View
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Another OCO Framework: FITRL

e Recall: Follow the Leader (FTL)

Select the expert that performs best so far, specifically,
FTL

Dy — argmin <p7 Lt—1>
PEAN

where L; | £ 22;11 2, € RY is the cumulative loss vector.

© [ >l tamt fie> 0] - Rosy = 3 )~ i S

----------- T
___________ ~ T -5 = O(T)

y .' |
/ b2 = 0'51/ = / f22=0 / = :/ faa =1 /: °°°°° FTL achieves linear regret

—————————— in the worst case!
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Another OCO Framework: FITRL

e Recall: Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

pi™t = argmin (p, L; )
PEAN

where L; | £ 22;11 2, € RY is the cumulative loss vector.

* As mentioned, FTL is sub-optimal due to its unstable nature.

> anatural idea: adding regularizers to stabilize the algorithm.
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Another OCO Framework: FITRL

Follow The Regularized Leader (FTRL)

xecX

X411 = arg min {Z fs(x) + i1 (x )}

where ¢, 1 : X — R is the regularizer at round ¢ + 1 update.

FTRL: essentially adding regularizer to stabilize the FTL algorithm.

We use time-varying regularizer to encode the potentially changing step sizes.

Advanced Optimization (Fall 2024)

Lecture 6. Online Mirror Descent

78




FTRL vs. OMD: Update Styles

* OMD update style:

xi11 = arg min { (x,1,V fy(x:)) + Dy (x, %) }
xeX

* FTRL update style:

X;11 = arg min {Zfs ) + e (x )}

xeX

Comparison:
— in OMD, x;,; depends on x; and f;(-);

— in FTRL, x4 1 depends on entire history {fs(-)}%_; and regularizer ;1.
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Linearization in FIRL

« FTRL update requires to store all the historical online functions.

X;q11 = arg min {Z fs(%) + a1 (x )}

xeX

* Surrogate optimization: maintain regret while achieving one-pass update
fe(xe) = fe(u) < (Vfe(xe), %0 —w) = Le(xe) — £e(u)

where we define the linear surrogate loss as /;(x) = (V fi(x;),x).

xcX

surrogate X411 = arg min < Zf ‘|' ¢t+1 )}

(¢
— arg min < Z<vfs (Xs), X> 4 ¢t+1(X)} It s_uff/ces to store

XEX \821

gradient vectors only.
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General Analysis of FTRL

Lemma 4 (FTRL Regret). We denote that F;(x) = 1 (x) + Zi;i fs(x). Thus, the
FTRL algorithm runs x; = arg min, » Fy(x). Then, for any u € X, we have

xcX

th(xt) — Z fr(u) = ¥ri1(u) — min ¢ (x)

+ XT: (Ft(xt) — Fyp1(Xe41) + ft(Xt))

+ Fri1(xr41) — Frii(u)
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General Analysis of FTRL ) .
Fi(x) = (%) + 2 _omn f5(%)

Y fexe) =) fr(w) = drya(u) — min g (x)

xcX

+ XT: (Ft(xt) — Fyp1(Xe41) + ft(Xt))

+ Fri1(xr41) — Frii(u)

Proof. The term Zf_l fi(x¢) appears at both side of the equality, thus we verify

_ Z fe(w) = Yr41(u)—min Pr(x)+) (Ft(Xt)—FtH(XtH))+FT+1(XT+1)_FT+1(‘1)°

t=1
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General Analysis of FTRL ) .
Fi(x) = (%) + 2 _omn f5(%)

Proof. The term Zthl fi(x¢) appears at both side of the equality, thus we verify

_th = Yri1(u)— )I(Ig(l%(X)JrZ (Ft(Xt)_Ft—l—l(Xt—l—l))+FT-|—1(XT-|—1)_FT+1(U')'

t=1

Recall that F; (x1) = minger 11 (x), telescoping over Zle (Ft(xt) — Fiq (Xt+1))

ZT: (Ft(Xt) — Ft+1(Xt+1)> = F1(x1) — Fry1(x741)

= =Y fi(w) =¢ri(u) = Fi(x1) + Fi(x1) = Frya(xr41) + Froa(xri1) — Proa(u)

= ¢ry1(u) — Fryi(u),
which is true by the definition of Fry1(x) £ ¢py1(x) + S0, fo(x). O
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General Analysis of FTRL

Lemma 4 (FTRL Regret). We denote that F;(x) = 1 (x) + Zi;i fs(x). Thus, the
FTRL algorithm runs x; = arg min, » Fy(x). Then, for any u € X, we have

xcX

th(xt) — Z fr(u) = ¥ri1(u) — min ¢ (x)

T
+ Z (Ft(Xt) _ Ft+1(Xt—|—1) + fi (Xt)) (stability term)
t=1

+ Fri1(xr41) — Frii(u)

* The first and third terms are similar to those in OMD regret analysis.

* The second term is the stability term, which is crucial for the regret analysis, and we
will explain why it’s called stability later.
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FTRL Stability F( ) A W ( )_|_ Zt_l f ( )

Lemma 5 (FTRL Stability). Assume that 1, is \;-strongly convex w.r.t. || - ||. Then,
the FI'RL update satisfies

2
Ft(Xt) — Ft—l—l(XH_l) + ft(Xt) < vat(xt)H*

+ e (Xpr1) — Vg1 (Xeg1)-

t

Proof. Fi(xi) — Fiy1(Xeq1) + fu(xe)

= Fy(x¢) + fr(x¢) — (Fe(Xer1) + [e(Xe01)) + e (Xer1) — Y1 (K1)

A
< AVE(%4) + Vi (%e)y Xt — Xe1) — = 1% = Xeqa || + e (%e1) — Y1 (Xe1)

2
At 2
1x¢ — Xeq1]|” + Ve(Xeg1) — Veg1 (Xe41)

< (Vfi(xe), X — Xeq1) — 5
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FTRL Stability F( ) A W ( )_|_ Zt_l f ( )

Lemma 5 (FTRL Stability). Assume that 1, is \;-strongly convex w.r.t. || - ||. Then,
the FI'RL update satisfies

|V fe(xo)ll

t

Fi(xt) — Fey1(Xer1) + fe(xe) <

+ e (Xpr1) — Vg1 (Xeg1)-

Proof. Fy(x¢) — Fyy1(Xe1) + fe(xe)

A
< (Vfe(xt),X¢ — Xpq1) — Et Ixe — X ||* + e(Xeg1) — Pepr (Xet1)
A
< vat(Xt)H* X — Xpp1 || — gt X — Xt+1H2 + Ve (Xe41) — Vi1 (Xeg1)
1 A
< — IV A = b =01 |7+ e (Xer1) — Py (xe11) []
Ay 4
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Regret Bound for FTRL . .
Fy(x) £ (%) + 023 fo()

Theorem 6 (Regret Bound for FTRL). Assume 1.(x) is \;-strongly convex on
domain X w.r.t. || - ||. We further assume that 1, (x) < ¢41(x) for t € |T|.Then, for
FTRL satisfies

T

T T T 1 ) )\t
> filx) = > fr(w) < Prga () + o IVA =)l - > 7 1% = X1
t=1 t=1 t=1 "t

t=2

xeX

T
Proof. ™ "(f,(x;) — fi(u)) = 4741 (u) — min ¢y (x)
t=1 T
+ Z (Ft(Xt) — Ft—|—1(Xt+1) + fi (Xt)> (stability term)

+ Fri1(xr11) — Frei(u)
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Regret Bound for FTRL . .
Fy(x) £ (%) + 023 fo()

Theorem 6 (Regret Bound for FTRL). Assume 1.(x) is \;-strongly convex on

domain X w.r.t. || - ||. We further assume that 1, (x) < ¢41(x) for t € |T|.Then, for
FTRL satisfies
T T T T
> felxe) Z u) < ¢riqi(u )+Z)\— IV fr(x)l —ZthXt—Xt—l\F-
t=1 t=1 t=1 "t t=2
Proof. T v
S Uelxe) — folw) < vra(w) + 3 (” O 1) - wm(xtm)
t=1 t=1

Z Z”Xt — X¢—1]

t=2

< Yryi(u

IIMﬂ
?
t’w
35
|
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FTRL can be equivalent to OMD

Claim 1. Under online linear optimization (OLO) setting, with the same con-
stant step size n > 0 and the same regularizer ¢ (which is required to be
strongly convex and a barrier function over X'), the OMD and FTRL algorithms
share the same output:

xEX s=1

X; = arg min {Z (ngs, %) + ¢(X)} ;

and

x; = arg min {(ng;—1,x) + Dy (X, X—1)} .
xcX
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FTRL vs. OMD: Equivalence Condition

Proof. For OMD, taking the gradient and setting it to 0 will lead to:
Ngi—1 + V(%) = Vi (xe-1) = 0

Telescoping from 1 to ¢ — 1, and define x¢ = arg min, . y 1 (x),

Vi (xi) = =1 ) & =

Advanced Optimization (Fall 2024) Lecture 6. Online Mirror Descent 90



FTRL as Dual Averaging

e Mirror Descent

Vi (Yir1) = Voe(xe) — 0V fe(%¢)

X¢+1 = arg mingc y Dy (X, yi+1)

* Dual Averaging (lazy mirror descent)

Vi (yie1) = VY (ye) — V(X)) averaging updates in dual space
X¢41 = arg min, ey Dy (X, yi41)
this is FTRL update

t—1
|:> Xt41 = arg minxeX {77 Z<Vf8 (XS), X> -+ ¢(X)} (consider fixed step size
s=1

for simplicity)
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FTRL as Dual Averaging

Dual Averaging Method for Regularized Stochastic Learning and
Online Optimization

Part of Advances in Neural Information Processing Systems 22 (NIPS 2009)

Bibtex Metadata Paper
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Lin Xiao
Abstract

We consider regularized stochastic learning and online optimization problems, where the objective
function is the sum of two convex terms: one is the loss function of the learning task, and the other is
a simple regularization term such as L1-norm for sparsity. We develop a new online algorithm, the
regularized dual averaging method, that can explicitly exploit the regularization structure in an online
setting. In particular, at each iteration, the learning variables are adjusted by solving a simple
optimization problem that involves the running average of all past subgradients of the loss functions
and the whole regularization term, not just its subgradient. This method achieves the opti
convergence rate and often enjoys a low complexit i
gradient method. Computational experiments are p
learning using L1-regularization.

Lin Xiao. Dual Averaging Method for Regularized
Stochastic Learning and Online Optimization. NIPS 20009.
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Primal-dual subgradient methods for convex problems
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Abstract In this paper we present a new approach for constructing subgradient
schemes for different types of nonsmooth problems with convex structure. Our methods
are primal-dual since they are always able to generate a feasible approximation to the
optimum of an appropriately formulated dual problem. Besides other advantages, this
useful feature provides the methods with a reliable stopping criterion. The proposed
schemes differ from the classical approaches (divergent series methods, mirror descent
methods) by presence of two control sequences. The first sequence is responsible for
aggregating the support functions in the dual space, and the second one establishes a
dynamically updated scale between the primal and dual spaces. This additional flexi-
bility allows to guarantee a boundedness of the sequence of primal test points even in
the case of unbounded feasible set (however, we always assume the uniform bounded-
ness of subgradients). We present the variants of subgradient schemes for nonsmooth
convex minimization, minimax problems, saddle point problems, variational inequali-
ties, and stochastic optimization. In all situations our methods are proved to be optimal
from the view point of worst-case black-box lower complexity bounds.

Dedicated to B. T. Polyak on the occasion of his 70th birthday

Y. Nesterov. Primal-dual subgradient
methods for convex problems, 2005.
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1 Introduction
1.1 Prehistory

The results presented in this paper are not very new. Most of them were obtained by
the author in 2001-2002. However, a further purification of the developed framework
led to rather surprising results related to the smoothing technique. Namely, in [11] it
was shown that many nonsmooth convex minimization problems with an appropriate

At that moment of time, the author got an illusion that the importance of black-box
approach in Convex Optimization will be irreversibly vanishing, and, finally, this ap-
proach will be completely replaced by other ones based on a clever use of problem’s
structure (interior-point methods, smoothing, etc.). This explains why the results in-
cluded in this paper were not published at time. However, the developments of the last
years clearly demonstrated that in some situations the black-box methods are irrepla-

ceable. Indeed, the structure of a convex problem may be too complex for constructing Yurii Nesterov
a good self-concordant barrier or for applying a smoothing technique. Note also, that 1956 —
optimization schemes sometimes are employed for modelling certain adjustment pro- UCLouvain, Belgium

cesses 1n real-life systems. In this situation, we are not free in selecting the type
of optimization scheme and in the choice of its parameters. However, the results on
convergence and the rate of convergence of corresponding methods remain interesting.
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FIRL vs. OMD

e FTRL and OMD frameworks can recover different OCO methods.

* They share many similarities in both algorithm and regret, but they
are fundamentally different in essence, especially when the step
size scheduling is time-varying.

* The dynamics of FTRL and OMD also exhibits great ditference
when considering beyond static regret minimization, such as in
dynamic regret minimization, or repeated game convergence.
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Summary

7 [ ALGORITHMIC FRAMEWORK ]

Bregman proximal inequality

ONLINE MIRROR DESCENT *’j Stability Lemma
i REGRET ANALYSIS

Implications

- | FTRLVSOMD H

Q&A
Thanks!
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