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Part 1. Motivation

* Minimax Results
* Beyond the worst-case analysis

* Problem-dependent guarantees
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General Regret Analysis for OMD

Online Mirror Descent

X1 = arg min {m(x, Vfy(x)) + Dy (x,30) }
X<

Theorem 4 (General Regret Bound for OMD). Assume 1) is A-strongly convex w.r.t. || - ||
and n, = n,Vt € [T']. Then, for all u € X, the following regret bound holds

T T T
> hilx) = Y fulw) < PART QZW Sl ——Zm Xer1, %)
t=1 t=1 t=1 t 1
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Online Mirror Descent

minimax
» Our previous mentioned algorithms can all be cover€g optimal
Algo. OMD/proximal form P (-) yr Regret
OGD for : 1 5 )
Xi11 = a X, Vfi(x:)) + = |[x —x 2 —
convex t+1 I‘gef;lmﬁd fe(xe)) + 5 |l lz | 1x13 NG O(VT)
OGD f : 1
OT | x4 = arg minm (x, Vfi(xe)) + =[x —x/ ]2 | ||x]|2 L | O(LlogT)
strongly c. xEX 2
ONS for _ . L - 12 2 1 d
exp-concave Xi+1 = arg in ne(x, V fi(xt)) + 5 ==, | x5, > O(% logT)
Hedge for |y, | arg minn (x, Vfi(x)) + KL(x|x)  [S° 2;log iy /BX | O(y/TTog V)
PEA <A 2. wilog i/ 7y
Advanced Optimization (Fall 2024) Lecture 7. Adaptive Online Convex Optimization




Beyond the Worst-Case Analysis

* All above regret guarantees hold against the worst case

* Matching the minimax optimality

oblivious adversary

F

* The environment is fully adversarial

examination

adaptive adversary
- o

iy

interview

* However, 1n practice:

* We are not always interested in the worst-case scenario

« Environments can exhibit specific patterns: gradual change, periodicity...

— We are after problem-dependent guarantees.
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Beyond the Worst-Case Analysis

* Beyond the worst-case analysis, achieving more adaptive results.
(1) adaptivity: achieving better guarantees in easy problem instances;

(2) robustness: maintaining the same worst-case guarantee.

Be

! égj ,.i-ifr cautiously
/t\ /:\r> Z, optimistic X
RN

= Lasy Data Real world Worst-Case W
AL

D
- [Slides from Dylan Foster, Adaptive Online Learning @NIPS’15 workshop]
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https://event.cwi.nl/easydata2015/slides/dylan.pdf

Prediction with Expert Advice

* Recall the PEA setup

Ateachround¢t=1,2,---
(1) the player first picks a weight p, from a simplex Ay;

(2) and simultaneously environments pick a loss vector £, € RY;

(3) the player suffers loss f;(p;) = (p,, £;), observes £; and updates the model.

* Performance measure: regret

T
Regretr £ > (p;, &)

T
— min E C i
ot i1€[N] — ’ benchmark the performance

with respect to the best expert
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Part 2. Small-loss for PEA

* Refined Analysis for Hedge

* Self-confident Tuning
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Hedge: Regret Bound

Theorem 1. Suppose that ¥Vt € |T| and i € [N],0 < ¢, <1, then Hedge with
learning rate n guarantees

Regret, < IDTN +nT = O(\/TlogN),

minimax optimal

where the last equality is by setting n optimally as \/(In N ) /T.

e What if there exists an excellent expert? i.e., Ly ; < T holds for some i € [IV].

o Goal: can we achieve a “small-loss” bound? something like O(/ L7 ;- log N).

Advanced Optimization (Fall 2024) Lecture 7. Adaptive Online Convex Optimization 10



Small-Loss Bounds for PEA

Theorem 2. Suppose that ¥Vt € |T| and i € [N],0 < {¢,,; <1, then Hedge with
learning rate n € (0, 1) guarantees

T T
, 1 In NV
Z<pt7£t> —min » fy; < . ( ; + 77LT,7L*> :

by setting n = min {%, o

}, we have the following small-loss regret bound:

Regret = O (\/LT,Z'* log N + log N).

(1) adaptivity: when Lt ;» = O(1), the regret bound is O(log N), which is independent of T'!

(2) robustness: when Ly ;« = O(T), it can recover the minimax O(/T log N) guarantee.
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Improved Analysis for Small-Loss Bound

T
PTOOﬁ Z ptaet LT’L* <1n—N+nzzpt%£%z
t=1

t=1 1=1

T

e To get a small-loss bound, we improve the analysis to be:

T N
Uzzptszz Snzzptzgtz —nz pt7£t

t=1 1=1 t=1 =1

T
|:> Z<pt7£t LTZ*SIII—N_i_nZ pt7£t
t=1
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Improved Analysis for Small-Loss Bound

T

d In N
Proof. N R +1 ) Py, L)
t=1

t=1

i In N
(1—n) <Z (Dy> 1) — LT,i*) < BN + nLp -

T
1 In N
—> > (Put) — Lri- < ] ( + ﬁLT,i*)

n

Lemma 1. Let a,b > 0and zo > 0 be three positive values. Suppose that L < ax + 2 holds
for any = € (0, ). Then, by taking x* = min{+/b/a, ¢}, we have L < 2+/ab + %
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Improved Analysis for Small-Loss Bound

T
1 In N
PTOOf: :> Z <pt,£t> — LT,'L'* < 1 ( - —+ nLT,i*)
t=1

—-n Ui

Lemmal. Let a,b > 0and zo > 0 be three positive values. Suppose that L < ax + 2 holds
for any = € (0, ). Then, by taking x* = min{+/b/a, ¢}, we have L < 2+/ab + %

Proof. Suppose /b/a < zo, then z* = /b/a and we have L < az* + L = 2V/ab.
Otherwise, x* = 29 and we have L < az* + xi — axg + % Notice that in latter case

zo < y/b/a holds, which implies axgy < % and hence axg + % < % Combining two
cases ends the proof. [

Advanced Optimization (Fall 2024) Lecture 7. Adaptive Online Convex Optimization 14




Improved Analysis for Small-Loss Bound

T
1 In N
PTOOf: :> Z <pt,£t> — LT,'L'* < 1 ( - —+ nLT,i*)
t=1

—-n Ui

Lemmal. Let a,b > 0and zo > 0 be three positive values. Suppose that L < ax + 2 holds
for any = € (0, ). Then, by taking x* = min{+/b/a, ¢}, we have L < 2+/ab + %

Therefore, we get an O (/L ;~ log N + log N) small-loss regret

by setting the learning rate optimally as 7* = min {%, L“;N* } ]
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Learning Rate Tuning Issue

Therefore, we get an O (\/Lr ;- log N + log N) small-loss regret

by setting the learning rate optimally as 7* = min {%, L“;N* }

— However, this online algorithm is not legitimate, due to the requirement
of using L ;+ (the cummulative loss of the best expert) as the input.

C—> Fortunately, we can remedy it by the self-confident tuning framework.
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Self-confident Tuning Framework

e Recall the OGD algorithm for convex function:
Xep1 = Lo [x¢ — eV fi(x)]

which enjoys the following regret bound

T
th(Xt manft < —+77G2
=1

We can set nn = G—ﬁ to obtain an O(v/T) regret bound.

Question: can we remove the dependence of T when tuning the step size?

- D
—> A natural guess is to set n; = NG
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Self-confident Tuning Framework

* Self-confident tuning: utilize the available empirical quantities to
approximate the unknown ones.

> usern; = %% to approximate n* = GL\;T’ ensuring the same bound (in order).

Theorem 3. Suppose the diameter of non-empty closed convex set X is D and
|V fi(x)|| < G forany x € X. Then OGD with step size tuning n, = \f ensures
the following regret bound:

> filx) Z ) < GD\/_
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Self-confident Tuning Framework

Theorem 3. Suppose the diameter of non-empty closed convex set X is D and
IV fe(x)|| < G forany x € X. Then OGD with step size tuning n, = — f ensures

the following regret bound:
T

fr(x Z ) < GD\F

Mﬂ

~
I
—

PTOOf. th(xt) — fi(u)

IA
N | —
WM%

1 1
( ol + YoV

1 Nt MNt—1

2 11 G? <
(o) S E
=1 't Tl t=1
D2 GD <~ 1
-2 .25
2y 2 =Vt

DVT
< G 2\/_+GD\/_:2GD\/T

IA
v |
~
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Self-confident Tuning Framework

* Consider the small-loss bound for PEA problem.

Achieving small loss bound O (/L ;+ log N + log N') with 7 = min { e }

LT,i*

Goal: tuning n without the knowledge of L ;

Deploying self-confident tuning: how can we empirically approximate Ly ;?

T
t
A
.= Lk . A : .
L, E btis i* = arg min, ey L L = g ls,i, 17 = arg min;eny Ly g

t=1 s=1

I::> Key challenge: index i* and index sequence {i} }{_, can be highly different
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Self-confident Tuning Framework

* Consider the small-loss bound for PEA problem.

Achieving smallloss bound O (/L1 ;+ log N + log N) with = min { TRV e

3

We need to dive into the regret analysis. <{=> Denotedby Ly = 5., (p,, £;)

T _ —
Z (p,, €;) — Lpi» < In N 772 p,. L) we obtain Ly — Ly < 2\/(lnN)LT
t=1

- - Lemma. For x,y,a € R that satisfy
Z<Pt ) — Ly <2J In V) Zpt 2) r—y < yax, it impliesr —y < \/ay + a.
t=1 t=1 ~

—> Ly — Ly <2/(nN)Lz; +4In N

by setti = T _

y SEHE > i1 (pe,Ls) by resolving L.
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Self-confident Tuning Framework

* Consider the small-loss bound for PEA problem.

Achieving small loss bound O (/L ;+ log N + log N') with 7 = min { : L“;AZ }

More specifically, setting 7 = , /% =, ylelds

~ In N
LT_LTz < —‘|_77LT I:> LT_LTz <2\/ In N LT I:> LT_LT/L <O<\/(lOgN)LT’z* —I—IOgN)

While L, cannot be obtained ahead of time, a natural empirical approxiamtion is:

In N ~ |
Nt = nzt , where L, =Y. _,(p,, £) Pis1,i o< exp (—neLy ), Vi € [N]
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Self-confident Tuning Framework

Theorem 4. Suppose that ¥Vt € |T| and i € [N|,0 < ¥€,; <1, then Hedge with

lnN
L;+1

Regret, < 6\/(LT,Z-* +1)InN +36In N

= O(\/Lr-log N +1og N),

adaptive learning rate 1, = quarantees

where Ly = S (p,, L) is cumulative loss the learner suffered at time t.
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Proof

Proof. We again use ‘potential-based” proof here, where the potential is defined as

In (Zexp( nLt,i)>

®4(n) =
1=1

1
n
,L exp (—np—1 L4 ;
(I)t(nt—1> Dy 1(77t 1 1 —hmL, )
T 1 S exp (—m—1Li—1,)

eXp nt—lLt—l,i) eXp<—T]t_]_€t ))
) ,

77t 1 1exp( 77t—1Lt—1,7;

77t : In <Z Pr,i xp (—ne—14s z)) (update rule of p,)

(pt,i X €xXp <_77t—1Lt—1,i); Y1 € [ND
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Proof

Proof.

(I)t(nt—l) P 1(77t 1

77t1

77t1

77t1

g
ol

In (ZPMGXP —Ne—144 z))

=1

.

Zpt,z I —m— 1ftz‘|’77t 07 )

1=1

) (Vo >0,e7® <1 —x+ 2?)

I — Nt—1 pt7£t>+nt 12ptl€gz>

1=1

— (P ) + M1 Zpt,zf?,i

=1

(In(1+2z) < x)

Advanced Optimization (Fall 2024)

Lecture 7. Adaptive Online Convex Optimization 25



n =1

PI‘OOf @.(7) 2 2 1n (i exp (—nL,;)

Proof. Oy (1—1) — Po—1(me—1) < — (P, &) + me—1 Y _prili,

=1

N
> (P ) < i (mp—1) — Pe(mp—1) + e Zpt,if?,i

1=1
T T N T
> (py ) < Bo(no) — Pr(nr—1) + Y (77t—1 > peil; Z) +> ((Dt(ﬁt) D4 (1 1))
t=1 t=1 i=1 t=1
In N 1 d al d
< - In (exp(—nr—1L7,+)) + Z Ni—1 Zpt,igt,i + Z (Pe(ne) — Pe(ne—1))
Nr-i  1T-1 t=1 i=1 t=1
— T T
= \/(LTl + 1> InN + L + Zﬁt—l (P, L) + Z (Pe(ne) — Pe(ne—1))
t=1 t=1
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PI‘OOf @.(7) 2 2 1n (i exp (—nL,;)

n =1

T — T T
PTOOf. Z (py, £) < \/<LT_1 + 1) InN + Ly + Zm_1<pt,£t + Z (q)t ne) — Py (M 1))

t=1 t=1 t=1
To bound ZtT:1 (@t(nt) — <I>t(77t_1)>, we prove that ®,(7) is increasing w.r.t. n:

N N
, 1, 1 1> =1 Le,i exp(—nLy,;)
2(1) 2 —n(= —nL D)) — = =1 ) )
@4 (n) =1 ( 2 (5 ;eXp( nlei)) = S exp(nLe) >

N N
=InN — Zp?‘i‘l,i (ln (ZGXP(—nLt,j)) + nLt,i>

i=1 j=1
N N
> j—1 exp(—nLy,;)
=InN — | J ’
n Zpt+1,z n ( eXp(_nLt,z’)
T
=InN — Zptﬂ JIn—— >0 :> Z (q)t(nt) — (I)t(ﬁt—1)> <0
t—}—l 7 t=1
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Proof

Proof. From the potential-based proof, we already know that

Z (py, ) — Ly ix < \/LT 1+1)1nN+Z77t 1{py, Lt)
t—1

t=1

<\/LT 1+ 1) InN+vVInN Z\/Z Py, &)
3:1<p37£8> _|_ 1

How to bound this term?

—> A common structure to handle.

Advanced Optimization (Fall 2024) Lecture 7. Adaptive Online Convex Optimization
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Self-confident Tuning Lemma

Lemma 2. Let ay,aq,...,ar be non-negative real numbers. Then

T
O <9 1+Zat

;\/1+Zi1as i \

Lemma 3. Let ay,aq,...,ar be non-negative real numbers. Then

T

T T
Z 26 <4 1+Zat—|—maxat
t=1 \/1 + ZS Qg \ =1 telT]

The two lemmas are useful for analyzing algorithms with self-confident tuning.
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Proof

Lemma 2. Let ay,aq,...,ar be non-negative real numbers. Then
T T
3 &t <2, 14+ a
t—1 \/1 + 22:1% \ t—1

Proof. 1
f §a:§1—\/1—x,v$€[0,1]

Letag =1, by set x = a;/ Zi:o (g

A 7
t <1l-,/1- t
2 Zs:O Us Zs:O Us
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Proof

Proof. 2 Z?t 1 1o
s=0 Us

t t t—1
¢
S As — As — s
:> 2\/2220 Ag \ ; \ ; s=0
By telescopling from ¢ = 1to T~
< A — as — as <41+ > a
t=1 2\/1 +30 a, \ s=0 \ s=0 s=0 \ t=1 t
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Proof

Lemma 3. Let ay,aq,...,ar be non-negative real numbers. Then

T T
Z 26 <4 1+Zat—|—maxat
=1 \/1 + 23—1 Qg \ t=1 telT]

P1’00f. We define that maXge[r) at = B.
e Case1.If Y,  a, < B:

oa T
Z ¢ < Z a; < B, Lemma 2 is obviously satisfied.

tl\/l—l—zs_ls t=1
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Proof

T

Lemma 3. Let aq,aq,...

a¢

, a1 be non-negative real numbers. Then

2

t= 1\/1—|—ZS Qg

<4\ 1+Zat+£%at
t=1

P1’00f. We define that maXge[r) at = B.
e Case 2. If Zle a; > B, we define ty £ min {t : 22;11 s > B}:

T

07
;\/UFZS 10

d 07 d Qt
<B+ ) <B+>

t:to\/1—|—28 105 t:to\/1_|_zs 1as+at

Advanced Optimization (Fall 2024)
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Proof

T

2

t=1

Lemma 3. Let aq,aq,...

, a1 be non-negative real numbers. Then

a¢

<4 1+Zat—|—maxat
\/1_"23 1@s \ = el

P1’00f. We define that maXge[r) at = B.
e Case 2. If Zle a; > B, we define t; £ min {t : Zt_l Tg > B}:

s=1

T T 9 T
B+Z a <B+Z at < B+4 1—|—Zat

t=to \/1 _I_ Z8 1 as+at t=to \/1 —|— Zi:]. a/S \ t=1

Advanced Optimization (Fall 2024)
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Small-Loss bound for PEA: Proof

Proof. From previous potential-based proof, we already known that

T N L
Z ptagt LTz* < \/LT 1—|—]_ h’lN—I— In N Z pt7 t>
t=1

L/l

T

2

t=1

Lemma 3. Let aq,as,...

a¢

\/1+Zs 195

<4

, ar be non-negative real numbers. Then

\

T

1 a max a

:> ET—LT7,L'*§\/(ZT_1—|—1>1HN—|— VIDN(4\/1+ZT—|—1)
< 5\/(ET+ 1)InN 4+ VIn N

Advanced Optimization (Fall 2024)
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Small-Loss bound for PEA: Proof

Proof. —> Ly — Ly < 5\/(ZT + 1) InN++VInN

By the lemma, let x = ET + 1,y = Ly + 1:

Lemma. For x,y,a € R, that satisfy
r—y < yax, it impliesz —y < \/ay + a.

Ly +1) — Ly +1) <6y/(Ir + 1) o N

This implies that

(Lr+1) — (Lyge +1) <64/(Lye + )InN + 3610 N

—> Ly —Lr = O(y/IrlogN +log N). ]
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Part 3. Small-loss for OCO

* Small-loss quantity for OCO

* Small-loss OGD and self-confident tuning

Advanced Optimization (Fall 2024)
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Small-loss PEA to OCO

* We have obtained a PEA algorithm with small-loss bound.

Theorem 4. Suppose that ¥Vt € [T and i € [N|,0 < ¥€,,; <1, then Hedge with

lnN
L:+1

adaptive learning rate 1, = quarantees

Regret < 6\/(LT,@-* +1)InN +36In N

= O(\/Lr-1og N +1og N),

where Ly = S°'_ (p,, £,) is cumulative loss the learner suffered at time t.

* Can we further extend the result to more general OCO setting?
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Small Loss in General OCO Setting

Definition 4 (Small Loss). The small-loss quantity of the OCO problem (online
function f; : X — R) is defined as

T
Hp = )I(l’g(l ; fi(x)
e By taking fi(x) = (x,#£;) and X = Ay, we recover the definition of the small-loss
quantity of PEA problem:
T
FT:xréliAnN Xet Zetz _LTZ

Advanced Optimization (Fall 2024) Lecture 7. Adaptive Online Convex Optimization 39



Small Loss in General OCO Setting

Definition 4 (Small Loss). The small-loss quantity of the OCO problem (online
function f; : X — R) is defined as

Advanced Optimization (Fall 2024) Lecture 7. Adaptive Online Convex Optimization 40



Self-bounding Property

* We require the following self-bounding property to ensure the
small-loss bound for general OCO.

Lemma 4 (Self-bounding Property). For an L-smooth function f : R — R with
x* € arg min, cga f(v), we have that

IVf)ll2 < V2L(f(x) - f(x*)), Vx€X.

Corollary 1. For an L-smooth and non-negative function f : R? — R, we have that

IVf(x)|l2 < V2Lf(x), VxeX.

Advanced Optimization (Fall 2024) Lecture 7. Adaptive Online Convex Optimization
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Achieving Small-Loss Bound

* We show that under the self-bounding condition, OGD can
yield the desired small-loss regret bound.

Xt+1 = erX[Xt — ntvft(xt)]

Theorem 6 (Small-loss Bound). Assume that f, is L-smooth and non-negative for all t &

[T], when setting 1, = \/127@' the regret of OGD to any comparator u € X is bounded as
T T
Regret = th(xt) — Z fi(u) <O (\/1 + FT)
t=1 t=1

where Gy = S IV fs(x5)|13 is the empirical estimator of cumulative gradient Gr.
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Proof

Proof. z o) IV 10 +Z = (1l = xesa3)

IIMH
IIMH

V fi(x
Zmnvft X; ”2 _ Z H ft( t)||2 —|—G2<2D 1—|—Z||Vft Xt)H2—|-G2

t=1 t=2 \/1_|_Gt t=1

Lemma 2. Let ay,aq,...,ar be non-negative real numbers. Then

T

T
i <211+ @
;\/1+Zi_1as \ ; t
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Proof

Proof. th X;)

IIMH
IIMH

e [ £ 12 +Z (Hu—xtH% _ Hu—xtmr%)

V fi(x
Zntnvft Xy ||2_DZ H ft( t)||2 —|—G2<2D 1+Zl|vft Xt)H2_|_G2

t=1 t=2 \/1_|_Gt t=1

T
< QD\ 1420 fi(xe) + G

t=1
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Proof

Proof. th X;)

IIMH
IIMH

e [ £ 12 +Z (Hu—xtH% _ Hu—xtmr%)

Z??t”vft (x:)[3 < 2D 1+2Lth %) + G

t=1 t=1
1 D d
> o (u=xil — u=xiaalf) < 9y 14203 fix) + 3
t=1 t=1
T T
:> Regret, = Z fe(x¢) — Z fe(u) < 3D, |1+ 2LZ fi(x;) + G?
t=1 t=1 t=1
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Proof

T T T
PTOOf. RegretT = Z ft (Xt) — Z ft(U) < 3D, 1+ QLZ ft (Xt) + G2
t=1 t=1

t=1

Small-Loss bound for PEA: Proof

Proof. —> inLT.i.g\/(ZT+1)1nN+4\/1+ET+1

Remember how we solve a similar problem in PEA: Then we solve above inequality. Let £ Ly + 1

2 2
VInN 4+ 4 VInN 44
o= (VN + 4z < Lpg +2 [ (ﬁf%> gLMJerr( n N+ )

2

This implies that

2
= VN +4\°  VInN +4
\/LT—1<$LT¢‘+2+( “2+ ) YRy

2

C=> Ly <3N+ L +8,/(Lrs +1)InN = o(\/LTﬂ. log N +logN).
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T T
I::> Regret, = th(xt) — th(u) =0 | D,|L th(u) +1+G?
t=1 t=1
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Proof of Self-bounding Property

Lemma 4 (Self-bounding Property). For an L-smooth function f : R — R with
x* € arg min, cga f(v), we have that

IVf)l2 < V2L(f(x) - f(x*), Vx€X.

Proof. Bysmoothness over the entire R? space, we have for any x, § € R?
L
fx+8) < F(x) +(VF(x),0) + - [18]]5.

Choosing ¢ = —%(X) gives f (X — %(X)) < f(x) — HVJ;(;)”%.

Notice that f(x*) < f(x — %(X)) by definition, which implies

Flc) < f (3= V) < ) - 194005

Rearranging the above terms finishes the proof. []
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Several Remarks

* Remark 1: about the non-negative assumption

When the online functions are non-negative, it is possible to redefine the
small-loss quantity by incorporating each-round minimal function value.

* Remark 2: about the smoothness assumption

Smoothness is necessary to obtain small-loss regret bound by the first-order
method (can be proved by the online-to-batch conversion and existing lower
bounds for deterministic optimization).

* Remark 3: take care of the way dealing with variance term
In OGD here we use Lemma 1, while in Hedge for PEA we use Lemma 2.
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Summary

Beyond the worst-case analysis

[ MOTIVATION ] {

Problem-dependent consideration

ADAPTIVE ONLINE Improved analysis for small-loss bound
CONVEX OPTIMIZATION SMALL-LOSS BOUND FOR PEA

Self-confident tuning framework

SMALL-LOSS BOUND FOR OCO Self-bounding property

Q&A
Thanks!
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