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Outline

* Optimistic OMD

* Applications
e Small-Loss bound

e Gradient-Variance bound

* Gradient-Variation bound
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Part 1. Optimistic OMD

* Optimistic Online Learning Setting

* Optimistic OMD Framework
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Beyond the Worst-Case Analysis

* All above regret guarantees hold against the worst case

* Matching the minimax optimality

oblivious adversary

F

* The environment is fully adversarial

&
b Yo

examination

adaptive adversary
- .

oy

interview

* However, 1n practice:

* We are not always interested in the worst-case scenario

« Environments can exhibit specific patterns: gradual change, periodicity...

—> We are after problem-dependent guarantees.
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Beyond the Worst-Case Analysis

* Beyond the worst-case analysis, achieving more adaptive results.
(1) adaptivity: achieving better guarantees in easy problem instances;

(2) robustness: maintaining the same worst-case guarantee.

Be

! %Lj cautiously
[~ = £, optimistic
R
B 7\ Easy Data Redl el Worst-Case ¥ @

D
- [Slides from Dylan Foster, Adaptive Online Learning @NIPS’15 workshop]
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https://event.cwi.nl/easydata2015/slides/dylan.pdf

Towards a Unified Framework

* Previous small-loss bounds seem to be ad-hoc designed.

* Is there a unified framework to get problem-dependent bounds?

* A reflection: If we want to achieve adaptivity to the niceness of the
environments, what does a ‘“nice” environment mean?

—> The environment is “predictable” !
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Optimistic Online Learning

* Intuition: what if the environment is “predictable” ?

—> We can to some extent “guess” the next move.

__________________________________________________________________

Mon. Tues. Wed. Thurs. Fri.

= = = —> 2

e e e e e e e e e e e e e e e e e e e e e e e e e e e Ee e e e e e M e e e e e e e e e e e e e e e e e e e

If it is within the same season
and no extreme weather

Guess: It still seems to rain
on Friday?
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Optimistic Online Learning

* Standard (full-information) online learning protocol.

Ateachroundt=1,2,---
(1) the player first picks a model x; € X’;
(2) and simultaneously environments pick an online function f; : X — R;

(3) the player suffers loss f;(x:), observes V f;(x;), and then updates the

model.
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Optimistic Online Learning

* Standard (full-information) online learning protocol.

Ateachroundt=1,2,---
(1) the player first picks a model x; € X’;
(2) and simultaneously environments pick an online function f; : X — R;

(3) the player suffers loss f;(x;), observes V f,(x;), and further receives the

optimistic vector M1, and then updates the model.

* We need to encode “predictable” information in the update such that
the overall algorithm can adapt to the niceness of environments.
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Optimistic Online Mirror Descent

* Online Mirror Descent (OMD) provides a unified framework for online
learning under the worst-case scenarios.

OMD updates: x;y; = arg min, {m(vft(xt), X) + Dy (%, Xt)}

* Our previous mentioned algorithms can all be covered by OMD.

Online Mirror Descent

i . Regret
Algo. OMD/prox1mal form () e eetetT X1 = arg I}(lin {7715 (x, Vfi(xt)) + Dy(x, Xt)}
Xe
Df . 1
egnveir X4l = argelillnndxv Vi(xe)) + 5 lIx — xt|l3 1x]3 % O(T)
OGD for 1 , Theorem 4 (General Regret Bound for OMD). Assume 1) is A-strongly convex w.r.t. ||-||
strongly . | <+ = arg min 1 (6 V) + 5 e =xilly | [Ix]13 5 | O(3logT) and ny = n,Vt € [T]. Then, for all u € X, the following regret bound holds
ONS for _ : L 2 2 1 d T (u,x d
exp-concave Xet1 = arger;(unnt(x, Vi) + 2 I X/’HA‘ HXHAt v 0(7 log T) Z ft Xt Z ft = 1 g Z |Vft Xt H - Z Dw Xt+1, Xt)
—— ~ t=1 t=1 =
epéz OF Ixpy1 = aigeinNin (X, V fe (%)) + KL(x([x;) ; z;log m;\ /2 | O(V/Tlog N)
Advanced Optimization (Fall 2024) Lecture 6. Online Mirror Descent 45 Advanced Optimization (Fall 2024) Lecture 6. Online Mirror Descent 46
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Optimistic Online Mirror Descent

OMD updates: X1 = arg minyey {1 (Vfi(x1), %) + Dy (x, %) |

- &

Optimistic Online Mirror Descent
Xi41 = arg ming ¢ y {nt (Vfi(xt),%x) + Dy (x, ﬁt)}

X¢41 = arg ming - y {7715+1 <Mt+1a X> T Dw(X7§t+1)}

where M, | € R? is the optimistic vector at each round.
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Understanding Optimistic OMD

Xit1 = arg ming . {nt (Vfi(x¢),x) + Dy (x, 32,5)}

X411 = arg ming y {7715+1 <Mt+1, X> T Dw(xa§t+1)}
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Optimistic OMD: Regret Analysis

Theorem 4 (Regret for Optimistic OMD). Assume 1) is -strongly convex w.r.t.
| - ||, the regret of Optzmzstzc OMD w.r.t. any compamtor u € X is bounded as:

th Xt th <Z77t vat Xt) MtH2

________________________________________________

_________________________________________________

= = o e e e e e e = e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

The proof still relies on the stability lemma and the Bregman proximal inequality,
but now it requires taking the two-step updates (with optimism) into account.
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Proof

* The key is to have a proper regret decomposition.

* Due to the two-step updates, we need to incorporate optimism
and intermediate decision in regret analysis.

X; = arg min, . y {7715 (M, x) + D¢(X,§t)}

Xit1 = arg ming {77,5 (V fr(x4),x) + Dy (x, ﬁt)}

> fixe) = fe(w) <(Vfi(xe), % — u)

= (Vfu(x¢) = My, xp — Xpq1) + (M, x¢ — Xeg1) H(V fe(xe), Xeq41 — 11>J

\ 4 \ 4 \
~ ~ ~"

term (a) term (b) term (c)
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Proof

Proof. fi(x¢) — fi(u) < (Vfi(xe) — My, x¢ — Xpp1) + (My, X — Xp1) H(Vi(%¢), Xe 11 — 1)

\ 4 \ 4 \ J/

~ ~ ~"

tern (a) term (b) term (c)

For term (a), we use the stability lemma.

Lemma 2 (Stability Lemma). Consider the following updates:

{X1 = arg minye x (81, X) + Dy (%, )

Xo = arg Minge x (g2, x) + Dy (x, )
When the regularizer ¢ : X — R is a A-strongly convex function with respect to norm || - ||, we have

Alx1 —x2| < lg1 — g2H*-

term (8.) — <Vft(Xt) — Mt, Xt — §t+1>
<V foxe) = M, N = R |l < e 1V fi(xe) = My
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Proof

Proof. fi(x¢) — fi(u) < (Vfi(xe) — My, x¢ — Xpp1) + (My, X — Xp1) H(Vi(%¢), Xe 11 — 1)

\ 4 \ 4 \ J/
~ ~ ~"

tern (a) term (b) term (c)

For term (b), we adopt the Bregman Proximal inequality.

Lemma 3 (Bregman Proximal Inequality). Consider convex optimization problem with the

following update form min {{g:, x) + Dy (x, %)} .
XE

Then, it satisfies the following inequality for any u € X':

<gt7Xt+1 — 11> < Dw(ua Xt) — D¢(u, Xt—i—l) — D¢(Xt+1a Xt)-

Thus, according to update rule: x; = arg min, y {n: (M, x) + Dy (x, X¢) }

A 1 A A A A
term (b) = (M, x; — Xt11) < 77— <D¢(Xt—|—laxt) — Dy (Xt41,%t) — D¢(Xt,Xt)>
¢
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Proof

Proof. fi(x¢) — fi(u) < (Vfi(xe) — My, x¢ — Xpp1) + (My, X — Xp1) H(Vi(%¢), Xe 11 — 1)

\ 4 \ 4 \ J/
~ ~ ~"

tern (a) term (b) term (c)

For term (c), we also adopt the Bregman Proximal inequality.

Lemma 3 (Bregman Proximal Inequality). Consider convex optimization problem with the

following update form min {{g:, x) + Dy (x, %)} .
XE

Then, it satisfies the following inequality for any u € X':

<gt7Xt+1 — 11> < Dw(ua Xt) — D¢(u, Xt—i—l) — D¢(Xt+1a Xt)-

Thus, according to update rule: X;11 = arg miny ¢y {n:(V f1(x:), x)+Dy (%, X¢) }

AN 1 AN AN AN AN
term (c) = (V fi(x¢),X¢41 — 1) < 77— <D¢(u,Xt)—D¢(u,Xt_|_1)—D¢(Xt_|_1,Xt)>
t
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Proof

Proof. fi(x¢) — fi(u) < (Vfi(xe) — My, x¢ — Xpp1) + (My, X — Xp1) H(Vi(%¢), Xe 11 — 1)

\ 4 \ 4 \ J/

~ ~ ~"

tern (a) term (b) term (c)

Put the three terms together, we can finish the proof.

term (a) < n; |V fi(xs) — Mt”i

1 - N ~
term (b) < ” (DM — Dy (Xpy1,%X¢) — D¢<Xtaxt))
t

1 AN AN AN AN
term (c) < ” <D¢(U,Xt> — Dy(u,X¢11) — Dy Xt))
¢

> filxe) — fo(w) < e |V falxe) — My + %(D¢(u,§t) — Dw(ua§t+1))

t

1

—n—(Dw(ﬁtHaxt) +D¢(Xta§t>) []
!
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Example: Optimistic OGD

e Consider the Euclidean regularizer Dy (x,y) = =||x — y||

xeX

xcX

x; = arg minn (M;, X)

X1 = arg minn (V fi(x¢), X)

1

T §HX — ﬁtH%

_|_

1 N
i — %l

Advanced Optimization (Fall 2024)
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Example: Optimistic OGD

e Consider the Euclidean regularizer Dy (x,y) = %||x — y||3, i.e.:

. 1 ~
x; = arg minn (M;,x) + §HX — XtHg
xeX
. . 1 .
X¢r1 = arg minn (V f(x¢), x) + §”X — XtHg
xcX
d d L 2 Jlu— X1H2
> D b)) = D fe(w) <) IV Fil(xe) — Ml + - Z x40 —xl5
t=1 t—1 t=1
T , D2 5 S IV fr(xe)—Me)|2
< nz |V fe(xe) — My||5 + % <0 1+ Z |V fe(xe) — M5 is not available
t—1

- self-confident tuning
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Optimistic OMD: Regret Analysis

Theorem 4 (Regret for Optimistic OMD). Assume 1) is -strongly convex w.r.t.
| - ||, the regret of Optzmzstzc OMD w.r.t. any compamtor u € X is bounded as:

th Xt th <Z77t vat Xt) MtH2

________________________________________________

_________________________________________________

= = o e e e e e e = e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

* For problem-independent bounds, negative terms of OMD is usually dropped;
* For problem-dependent bounds, negative term could be extremely crucial.
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Part 2. Applications

 Small-Loss Bound

* Gradient-Variance Bound

 Gradient-Variation Bound

Advanced Optimization (Fall 2024)

Lecture 8. Optimistic Online Mirror Descent
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Part 2. Applications

 Small-Loss Bound

Advanced Optimization (Fall 2024)
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Small-Loss Bound

* Recall the guarantee of optimistic OGD:

X; = arg min, . y {77t (M, x) + D¢(x,§t)}

K141 = arg mingey {me (Vfi(x:), %) + Dy (x,%:) }

e Consider the Euclidean regularizer Dy (x,y) = 3||x — y||3, i.e.;

Mﬂ

I:> th Xt)

fit(u) <O (\ 1+ Z IV fe(xe) — Mt§>

Setting M; = 0 I:> th(xt) — th(U) <0 (J 1+ Z Vft(Xt)g)
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Small-Loss Bound

* Employing the self-bounding property of smooth and non-negative functions.

Corollary 1. For an L-smooth and non-negative function f : R? — R, we have that

IV(X)|2 < V2Lf(x), VxeEX.

Setting M; = 0 in Optimistic OMD (with Euclidean regularizer):

I:> th(xt) - th(u) <0 (J 1+ Z IV fi Xt)z) <0 (\l 1+ L th(xt)>

t=1

B

T
|:> Regret, = Z fr(x¢) —
t=1

t

fi(n) =0 (DJ L th(u) + 1+ G2> :
1 t=1 ]
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Small-Loss Bound

* Since we are using optimistic OMD with a fixed step size, the algorithm
requires Gy £ 3/ |V fi(x¢)||? when achieving small-loss bound.

* This is can be rectified by the self-confident tuning. We can use the
optimistic OMD with time-varying step sizes.

Theorem 6 (Small-loss Bound). Assume that (x) = 1||x||3 and f; is L-smooth and

non-negative for all t € [T, when setting 1, = \/127(% and M, = 0, the regret of Optimistic

OMD to any comparator u € X 1s bounded as

T

Regret,, = th(xt) — ET:ft(u) <O (\/ 1+ FT) ;

t=1

where Gy = . _ ||V fs(x5)||3 is the empirical cumulative gradient norm.
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Small-Loss Bound

M'ﬂ

Proof. " fi(x:) -

t=1

For term (a),

T
> eV fi(x)
t=1

— M2 =

e |V fe(xe) — M|

M'ﬂ

t=1

T
1 ~ ~
+ ; o, (Hu — X3 = [la— Xt+1|’3>
T
1 ~ ~
=37 o (1Rews =l + I — %013)
L

Z”vft Xt ”2 -I-G2 < 9D 1+ZT:||Vf (X)H2_|_G2
V1Tt Gy = £ I T2

T
<D\|1+2L)  fi(x) + G
t=1

Advanced Optimization (Fall 2024)
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Small-Loss Bound

Proof. term (b) =

IN

VAN
l\D

&

1 A AN
o (Hu—xtH% - ||u—Xt+1H§)
Ur:

T
— (Hu—ﬁt\l% _ Hu—ﬁm\I%)

t:1

t=1

l\D
p—t —t

77THu X1H2

T
D D
541+ 2L thl fe(x¢) + =

T T T
|:> RegretT:th(xt Z )< 3D 1+2Lth x;) +G* <O Lth(u)+1+G2
t=1 t=1 t=1 t=1
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Part 2. Applications

* Gradient-Variance Bound

Advanced Optimization (Fall 2024)

Lecture 8. Optimistic Online Mirror Descent
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Gradient-Variance Bound

Definition 3 (Gradient Variance). Let T be the time horizon and X C R? be

the feasible domain. For the function sequence fi,..., fr with f; : X — R for
t € [T, its gradient variance is defined as
T
Varr = sup Z |V fe(xe) — HT”%

{Xla“')XT}EX t=1

where pir £ arg min,, ZtT:1 IV fi(x:) — pll3 = % 23;1 Vfi(xe).

Implicit prior on the enviornment:

viD) there exists a latent mean gradient E|V fi(x;)].
/\I\/\I\ I\I\/\ AN N A livjl’(x)
VALY V\/\/\/V VV VR \/ =T e.g. SGD (sampled from a set of data)
ot e.g. Classification (sampled from training set)
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Gradient-Variance Bound

Definition 3 (Gradient Variance). Let T be the time horizon and X C R? be

the feasible domain. For the function sequence fi,..., fr with f; : X — R for
t € [T, its gradient variance is defined as
T
Varr = sup Z |V fe(xe) — IJ'T”;

{Xla“'aXT}E‘X t=1

where pp 2 arg min, Y2, [V fi(x) — ul3 = £ 5L, Vfilx).

Optimistic Online Mirror Descent

: 1 . 5
Xy = arg min, y {7715 (M, x) + §HX _ XtH%} How to choose M::

s (3 1 <
Xt41 — arg miny - y {7775 (Vfe(x¢),x) + §HX - Xt”%}
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Gradient-Variance Bound

Definition 3 (Gradient Variance). Let T be the time horizon and X C R? be

the feasible domain. For the function sequence f1,..., fr with f; : X — R for
t € [T, its gradient variance is defined as
T
Varr = sup Z |V fe(xe) — HT”%

{Xla“')XT}EX t=1

where p; = + Zthl V fi(x;) is the gradient mean.

Optimistic Online Mirror Descent | self-confident estimate
1 } of gradient mean:

x = arg mingey {m (M%) + X~ RB < p - 5 V)

s (3 1 <
Xt41 — arg miny - y {7775 (Vfe(x¢),x) + §HX - Xt”%}
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Gradient-Variance Bound

Theorem 5 (gradient-variance bound). Assume that 1)(x) = 3||x||3, when setting n; =

e gv and M, = p,_,, the regret of Optimistic OMD to any comparator u € X is
+Vary 1

bounded as

T T
Regret, = Z fe(x¢) — Z fi(u) <O (\/1 + VarT>
t=1 t=1

where Var,_1 = 22;11 |V fs(xs) — |5 is the self-confident estimate of variance Varr, and
pe =1 S Vfs(x,) is the empirical gradient mean.

T T T
Proof. 3" fix) = 3" Ailw) < S IV filx) — M + Z (%3 a1
t=1 t=1 t=1 =

1

- (IRess =13 + xRl

M’ﬂ

t=1 (negative term)
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Gradient-Variance Bound

Proof. For term (a),

T T
SOV i) — M2 = S 0 [V i) — gy || + G2
t=1 t=2

T T
< 227775 IV fie(xt) — l‘tHg + 227715 H,u,t - l‘t—le +G?
t=2

t=2
T B 2 T 2
<2DZ ||Vft(Xt) HtH2 _|_2DZ9G 4

SV VA —wlE S
T 2
o IV £ux) — ;

- — 6
=2 14 D IV Falx) — 1

Advanced Optimization (Fall 2024) Lecture 8. Optimistic Online Mirror Descent
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Gradient-Variance Bound

P - 2 d |V fi(xt) — Ht”% ) T 2
roof. Zﬁtvat(Xt)—MtHz SQDZ — > + 18DG ‘E+G
= =2 14+ 200 VA (x) — a2
Lemma 2. Let ay, a9, ..., ar be non-negative real numbers. Then

T

g 2 <4\Jl—|— E at+maxat
te[T)
t=1 \/1 T ZS 10’3

2

T T
> Y il Vfulxe) — My} < SD\ L+ Y IV ulxe) = w3 +8DG? +18DG? - - 4 G2

Recall that our goal is to obtain O (\/2le |V fe(x¢) — 1o Hg)
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Gradient-Variance Bound

2

T T
Proof. > mi||Vfi(x:) — Mi|l3 < SD\ 1+ IV filxe) — I3 + 8DG? + 18DG? - % e
t=1 t=1

We need to measure the gap between 3, ||V fy(x¢) — i[5 and 32, |V fu(x¢) — 11|

Let us consider another online learning process: the online function is h; : R? — R,

1
h(a) = 5 |V fu(xi) —all;.

which is evidently a 1-strongly convex function with respect to || - ||2.

Consider OGD over {h; }{_, with step size {n; }{_;, which updates by

A1 = At — Ucht(at) = a¢ — (at — vft(Xt)) = (1 — Ut)at + Utvft(Xt) (‘A’)
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Gradient-Variance Bound

2

T T
Proof. Zﬁt”vft(xt) — M5 < SD\ 1+ Z |V fr(x:) — utHg + 8DG? 4+ 18DG? - % 1+ G?

We need to measure the gap between 3, ||V fy(x¢) — i[5 and 32, |V fu(x¢) — 11|

Consider OGD over {h; }{_, with step size {n, }{_;, which updates by

agr1 = (L —me)ay + 10V fe(xe) (%)
On the other hand, by definition of gradient mean, we have
t—1
By = ——Hi 1T+ vft (x¢)

t

Thus,seta; =0, n; = %, then {at+1}t sequence is equivalent to {ut}t | sequence.

More specifically, we have a;;; = p, fort =1,...,7 — 1.
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Gradient-Variance Bound

t—1

1
e+ V)

1
PTOOf. hi(a) = 2 |V fe(x:) — aﬂga A1 (ﬁ) (1-ne)ag + eV fe(xe), M= +

Thus,seta; =0, n; = %, then {atH}t sequence is equivalent to {ut}t | sequence.

Since (¥) is essentially OGD for 1-strongly convex, whose guarantee is:

T-1
Regret({h; };— Z he(pey) Z he ()
t=1
1 5 1 2
= Z B IV fe(xe) — pell5 — Z 9 IV fi(xe) — prlls
t=1 t=1
< Q%4 - 1))

200
<2G*(1+1InT)
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Gradient-Variance Bound

1 t—1 1
Proof. hi(a) = IVfi(x) =all3s a2 (1-nday+ mVIi(x), = ——Heor + 3V Filx)

Thus,seta; =0, n; = %, then {atH}t sequence is equivalent to {ut}t | sequence.

Since (¥ ) is essentially OGD for 1-strongly convex, whose guarantee is:

T—-1 T-1

T—1
1 1
Regret({h:};_ Z he(pe) — > he(pr) = ) 5 IV fe(xe) = el — > 5 IV fe(xe) = prly; <2G*(1+1InT)
t=1

2

T T
> Y ml Vi) - M3 < SD\ L4+ Y IV filxe) = pill3 +8DG> +18DG” - - + G
t=1 =

2

T
<8D, (14 ) |V filxi) — prll; +4G?(1+InT) + 8DG? + 18DG? - % + G?

\
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Gradient-Variance Bound

Proof. We then analyze term (b) in the same way as before:

T
1 ~ ~
vorm () = 3 5 (I[u = el ~ flu ~ %eeal3)

= 2

i(l 1 )Hu 2B+ - %
— — — — X —[|u — x4

—~\2n,  2n T2

T

1 1 1

<) <— - ) D?>+ —D?

i—o 20 2m—1 2m

2 1 5 \/

<+ —D>< Z\/T+ Varg + =

2nr 2 2
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Gradient-Variance Bound

Proof. Finally, putting three terms together achieves

term (a) < 8D+/1 + Vary +4G2(1 +1InT) + (39D + 1)G?

D? 1 D D
t b) < D?2< =\/14+V —
erm()_2nT+2771 _2\/ + arT—|—2
term (c) > 0

|:> Regret, = term (a) + term (b) — term (c)
< 9D\/1 + Vary 14G2(1 +InT) + 39DG? + G2 = 6(\/1 n VarT).

Advanced Optimization (Fall 2024) Lecture 8. Optimistic Online Mirror Descent

41



Part 2. Applications

 Gradient-Variation Bound

Advanced Optimization (Fall 2024)
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Gradient-Variation Bound

Definition 3 (Gradient Variation). Let T be the time horizon and X C R? be
the feasible domain. For the function sequence f1,..., fr with f; : X — R for
t € [T, its gradient variation is defined as

— o XEeX

T
Vp =Y sup |[Vfi(x) = Vima(x)]5
t=2

Gradient variation characterizes online functions’ shifting intensity.

* Adaptivity: it can be small in slowly changing environments.

* Robustness: Vo < 4G?T in the worst case.
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Gradient-Variation Bound

Definition 3 (Gradient Variation). Let T be the time horizon and X C R? be
the feasible domain. For the function sequence f1,..., fr with f; : X — R for
t € [T, its gradient variation is defined as

— o XEeX

T
Vp =Y sup |[Vfi(x) = Vima(x)]5
t=2

V1 (4 Implicit assumption:
| /\/ Gradient (online function) shifts slowly
>t e.g., age forecasting by portraits
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Optimistic OMD for Gradient-Variation Bound

Optimistic Online Mirror Descent

. 1 ==
x; = arg mingey {m (Mr,%) + 5llx —%ell3}

S . 1 <
Xt++1 = arg Mily -y {7715 (V fe(x¢),x) + §HX — Xt”%}

Question: How to choose M, ?

:> Imposing a prior on the change of the online functions

setting M; as the last-round gradient M; =V f; 1(x;_1)
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Optimistic OMD for Gradient-Variation Bound

Optimistic Online Mirror Descent
1

x; = arg minn; (M, x) + §HX — ﬁtH%
xeX
A~ . 1 -
Xt+1 = arg T)I{Hl’l??t (Vfe(x¢), %) + §HX — XtH%
X

Optimistic OMD for Gradient-Variation Bound

. 1 ~
x; = arg minn; (V fr—1(x¢-1), %) + = ||x — X¢ |13
XEX 2
A~ . ]‘ -
Xt4+1 = arg I;llﬂ"?t <Vft(Xt)>X> =+ §HX — XtH%
XE
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Gradient-Variation Bound

Theorem 4 (Gradient Variation Regret Bound). Assume that (x) = %|x||3 and
fi is L-smooth for all t € [T'|, when setting n, = = min{ 2 N m} and M, =

V fi—1(x:—1), the regret of Optimistic OMD to any comparator u € X is

Regret, = ZT: fr(x¢) — i fi(u) <O (\/ 1+ VT)

where V,_{ = 22;12 |V fs(xs—1) — Vfs_1(Xs-1) Hg is the empirical estimates of V;.

T T T
Proof. 3~ fi6x) = 3" itw) £ 3 n [ i)~ il + Z (%3 a1
t=1 t=1 t=1
~ 2 ~ 12
— — | ||X — X¢llo T ||Xe — X
;m(n o1 =l + o = el

(negative term)
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Proof

Proof. Forterm 1,

T T
SV xe) = M3 < S 0 [V Filxe) — Vot (xem1) |2 + G
t=1

t=2

T T
< 227715 IV fe(xe) — Ve (xe—1)|5 + 227% IV fe(xem1) = Vi1 (xe—1) |5 + G
t=2

t=2

T T 2
Vit(Xi—1) — Vfi—1(Xi—
<23 L x| +2D Y IO ) Vb Dl g
= =2 14+ S IV fu(xemt) = Vot ()2
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Proof

Proof. For term (a),

T T
SV xe) = M3 < S 0 [V Filxe) — Vot (xem1) |2 + G
— t=2

T T
< 227715 IV fe(xe) — Ve (xe—1)|5 + 227% IV fe(xem1) = Vi1 (xe—1) |5 + G

t=2

T T 2
Vit(Xi—1) — Vi_1(x¢—
<23 L ey x| +2D Y IO D TVl Dl e
= =2 A1+ X IV (%emt) — Vfumt (xem1) 2
Lemma 2. Let ay, aqg, ..., ar be non-negative real numbers. Then
T
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Proof

T T
Proof. term (a) < 2 Z mL? ||xy —x,_1 |3+ 4D, |1 + Z IV fi(xio1) — Vimi(xi-1)|l2 + (4D +1)G?
t=2 t=2

T
<2) nL?|x¢ — xi_al; + 4D\/1 4+ Vp + (4D + 1)G?
t=2

This term depends on our algorithm,
how to deal with it?
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Proof

Proof. For the term (c), we have

term (c) =

1V

1V

G
l-';”_‘

1
2n)

]~

(Hm T ﬁtus)
1

~
I

]~
[\D’}_\

~

I

\)
N

(Hﬁt - Xt—l“% + ||1X¢ — XtHg)
t

% — Xt—l”i
Tt

~
I
\)

Does this term look familiar?
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Proof

Proof. We then analysis term (b),

term (b) =

IA

<

<

—1 U
i(l : )H Rel2+ ——u—%i
— — u—X —|jlu—X
—o 20 2me—q e 2m Hi2
T
1 1 1
z(__ >D2+—D2
— \21Mt  2Nt—1 2m
D2
27
1
5 max{4LD, D+/1+ Vr}
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Proof

Proof. Finally, putting three terms together yields

T
term (a) <2» nL 1|2 +4D\/1+ Vp + (4D 4+ 1)G?
t=2

1
term (b) < 5 max{4LD, D+/1+ Vr}

2 e 1 D
47775 —1H2 (m—mlﬂ{%am})

> Regret, = term (a) + term (b) — term (c)

<5D\1+Vr+ (4D +1)G*+2LD = O(v/1+ Vr).

]
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A Summary of Problem-dependent Bounds

: 1 ~
x; = arg minn (M;,x) + §HX — X5
xex 1 Different priors are imposed by designing
X1 = arg minn (V fi(x¢),x) + 5 1% — XI5 suitable M; for specific environments.
xeX
: Setting of : Problem-dependent
Assumption(s) Optimism Setting of 7, Regret Bound
Small-loss L-Smooth + B ~ D Pu—
Bound Non-negative M =0 V1tGy O ( L+ FT)
Variance o~ ~ D ~
Bound o Mt — MKt q \/1—|—Vart_1 O (\/1 + V&I'T>
Variati ~ D
oong” | Lsmooth My =V/iiba)| * e | OV V)
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Gradient-Variation Algorithm: Implications

By using algorithm for gradient-variation Bound (OMD with M; = Vf;_{(x:-1)):

T
ZHVft X¢t) = Vfeo1(xe-1) I3 <3Z\|Vft Xt) — el
+ 32 IV fr1(xe-1) — pyall3

T
+3 Z ey — /J’t—lH%
t=1

—> Optimistic OMD with last-round gradient as optimism (enjoying Vr-bound)
can also attain gradient-variance bound (scaling with Varr)
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Gradient-Variation Algorithm: Implications

By using algorithm for gradient-variation Bound (OMD with M; = Vf;_{(x:-1)):

||M@

\Vft x¢) = Vfi1(x¢1 ||2<22HVft X HQHZHW (%) |3
< 4LZ fe(x:) + 4LZ feo1(xe-1)
t=1 t=2

< 8LF;
further use converting trick to attain /' bound

—> Optimistic OMD with last-round gradient as optimism (enjoying Vy-bound)
can also attain small-loss bound (scaling with F7r-)
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Gradient-Variation Bound Reflection

Definition 3 (Gradient Variation). Let T be the time horizon and X C R? be
the feasible domain. For the function sequence f1,..., fr with f; : X — R for
t € [T, its gradient variation is defined as

T
Vp =Y sup |[Vfi(x) = Vima(x)]5
t=2

— o XEeX

* This gradient-variation notion tightly connects the offline optimization and
online optimization.

* The gradient variation reveals the importance of smoothness for the first-
order methods, as well as the crucial role of the negative term in analysis.
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Oftfline Scenario

* Online algorithm with gradient-variation regret bound:

T T
Regrety £ 3 fi(x;) —min Y fi(x) < O (\/1 n VT) .
t=1 t=1

* For an offline optimization problem minycy f(x)

When the function is convex and smooth, we can use this gradient-variation
algorithm to obtain an averaged model with error bound as

VI+Ve(fooo o )\ 1
41 (5] e 2o T of)
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Oftfline Scenario

* Online algorithm with problem-independent bound:

T
Regret, = Z fe(x¢) mm Z fe(x )
t=1

* For an offline optimization problem minycy f(x)

When the function is convex and Lipschitz, we can use this problem-independent
algorithm to obtain an averaged model with error bound as

er 2 ( Zm)—gg(l )<O<*/TT>0< %)
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History Bits: Gradient-Variation Bounds
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Abstract

We study the online convex optimization problem, in which an online algorithm has to
make repeated decisions with convex loss functions and hopes to achieve a small regret.
‘We consider a natural restriction of this problem in which the loss functions have a small
deviation, measured by the sum of the distances between every two consecutive loss func-
tions, according to some distance metrics. We show that for the linear and general smooth
convex loss functions, an online algorithm modified from the gradient descend algorithm
can achieve a regret which only scales as the square root of the deviation. For the closely
related problem of prediction with expert advice, we show that an online algorithm mod-
ified from the multiplicative update algorithm can also achieve a similar regret bound for
a different measure of deviation. Finally, for loss functions which are strictly convex, we
show that an online algorithm modified from the online Newton step algorithm can achieve
a regret which is only logarithmic in terms of the deviation, and as an application, we can
also have such a logarithmic regret for the portfolio management problem.

Keywords: Online Learning, Regret, Convex Optimization, Deviation.

1. Introduction

We study the online convex optimization problem in which a player has to make decisions
iteratively for a number of rounds in the following way. In round ¢, the player has to
choose a point z; from some convex feasible set X C RV and after that the player receives
x loss function f; and suffers the corresponding loss fi(z;) € [0,1]. The player
would like to have an online algorithm that can minimize its regret, which is the difference
between the total loss it suffers and that of the best fixed point in hindsight. It is known

a com

© 2012 C.K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin & S. Zhu
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optimization
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Abstract Recently, it has been shown that the regret of the Follow the Regularized Leader
(FTRL) algorithm for online linear optimization can be bounded by the total variation of the
cost vectors rather than the number of rounds. In this paper, we extend this result to general
online convex optimization. In particular, this resolves an open problem that has been posed
in a number of recent papers. We first analyze the limitations of the FTRL algorithm as
proposed by Hazan and Kale (in Machine Learning 80(2-3), 165-188, 2010) when applied
to online convex optimization, and extend the definition of variation to a gradual variation
which is shown to be a lower bound of the total variation. We then present two novel al-
gorithms that bound the regret by the gradual variation of cost functions. Unlike previous
approaches that maintain a single sequence of solutions, the proposed algorithms maintain
two sequences of solutions that make it possible to achieve a variation-based regret bound
for online convex optimization.

To establish the main results, we discuss a lower bound for FTRL that maintains only
one sequence of solutions, and a necessary condition on smoothness of the cost functions
for obtaining a gradual variation bound. We extend the main results three-fold: (i) we present
a general method to obtain a gradual variation bound measured by general norm; (ii) we ex-
tend algorithms to a class of online non-smooth optimization with gradual variation bound;

Editor: Shai Shalev-Shwartz.

Chiang et al., Online Optimization with COLT 2012 Yang et al., Regret bounded by gradual variation for
Gradual Variations. COLT 2012. pest student paper award online convex optimization. Machine Learning, 2014.
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History Bits: Optimistic OMD

Optimistic OMD Mirror Prox

Online Learning with Predictable Sequences

Alexander Rakhlin RAKHLINGWHARTON.UPENN.EDU
Karthik Sridharan SKARTHIKGOWHARTON. UPENN.EDU PROX-METHOD WITH RATE OF CONVERGENCE O(l/T) FOR
VARIATIONAL INEQUALITIES WITH LIPSCHITZ CONTINUOUS
MONOTONE OPERATORS AND SMOOTH CONVEX-CONCAVE
SADDLE POINT PROBLEMS
Abstract

ARKADI NEMIROVSKI*
We present methods for online linear optimization that take advantage of benign (as op-

posed to worst-case) sequences. Specifically if the sequence encountered by the learner is

described well by a known “predictable process”, the algorithms presented enjoy tighter Abst}‘act. We propose a plt:’)lx{Lype 1:0e1.h0d with e'ﬂiciency e'sl.i‘ma.te ,O{& ]J, ltor a}:)proximating

bounds as compared to the typical worst case bounds. Additionally, the methods achieve s:a‘.ddle ‘pomts c')f convex-concave 1tunc‘l.10m and soh{tlons of varl;'atmna.l lne({lla.lll.le-,s WILI} r?m?ml.(‘me

the usual worst-case regret bounds if the sequence is not bcnign.‘ Our approach can be Lipschitz coytmuous operal.o}ﬁ. Application examples 1nc|11fle matrix games, elgfzm-a.lue n'{mlmmatl‘on

seen as a way of adding prior knowledge about the sequence within the paradigm of online and computing I'Jova.qz capacity number ol‘a‘ graph and are illustrated by numerical experiments with

learning. The setting is shown to encompass partial and side information. Variance and large-scale matrix games and Lovasz capacity problems.

path-length bounds Hazan and Kale (2010); Chiang et al, (2012) can be seen as particular

examples of online learning with simple predictable sequences. Key words. saddle point problem, variational inequality, extragradient method, prox-method,
We further extend our methods to include competing with a set of possible predictable ergodic convergence

processes (models), that is “learning” the predictable process itself concurrently with using

it to obtain better regret guarantees. We show that such model selection is possible under AMS subject classifications. 90025, 90C47

various assumptions on the available feedback.

Rakhlin & Sridharan, Online Learning Nemirovski. Prox-Method with Rate of Convergence O(1/t) for
with Predictable Sequences, COLT 2013. Variational Inequalities with Lipschitz Continuous Monotone

Operators and Smooth Convex-Concave Saddle Point Problems.
SIAM Journal on OPT., 2004.
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Summary

Algorithmic framework

~ OPTIMISTIC OMD Regret analysis

ADAPTIVE ONLINE

CONVEX OPTIMIZATION

Small-loss bound

Gradient-variance bound

- | APPLICATIONS l

Gradient-variation bound

Q& A
Thanks!
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