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Outline
• Optimistic OMD

• Applications
• Small-Loss bound

• Gradient-Variance bound

• Gradient-Variation bound
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Part 1. Optimistic OMD
• Optimistic Online Learning Setting

• Optimistic OMD Framework
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Beyond the Worst-Case Analysis
• All above regret guarantees hold against the worst case

• Matching the minimax optimality
• The environment is fully adversarial

interview

adaptive adversaryoblivious adversary

examination
• However, in practice:

• We are not always interested in the worst-case scenario
• Environments can exhibit specific patterns: gradual change, periodicity…

We are after problem-dependent guarantees.
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Beyond the Worst-Case Analysis
• Beyond the worst-case analysis, achieving more adaptive results.

(1) adaptivity: achieving better guarantees in easy problem instances;

(2) robustness: maintaining the same worst-case guarantee.

[Slides from Dylan Foster, Adaptive Online Learning @NIPS’15 workshop]

https://event.cwi.nl/easydata2015/slides/dylan.pdf
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Towards a Unified Framework
• Previous small-loss bounds seem to be ad-hoc designed.

• Is there a unified framework to get problem-dependent bounds?

• A reflection: If we want to achieve adaptivity to the niceness of the 
environments, what does a “nice” environment mean?

The environment is “predictable” !
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• Intuition: what if the environment is “predictable” ?

Optimistic Online Learning

We can to some extent “guess” the next move.

?
Fri.Mon. Tues. Wed. Thurs.

Guess: It still seems to rain
on Friday?

If it is within the same season 
and no extreme weather
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Optimistic Online Learning
• Standard (full-information) online learning protocol.
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Optimistic Online Learning
• Standard (full-information) online learning protocol.

• We need to encode “predictable” information in the update such that 
the overall algorithm can adapt to the niceness of environments. 
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Optimistic Online Mirror Descent
• Online Mirror Descent (OMD) provides a unified framework for online 

learning under the worst-case scenarios.

OMD updates:
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Optimistic Online Mirror Descent

OMD updates:

Optimistic Online Mirror Descent
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Understanding Optimistic OMD

…
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Optimistic OMD: Regret Analysis

The proof still relies on the stability lemma and the Bregman proximal inequality, 
but now it requires taking the two-step updates (with optimism) into account. 

(negative term)

(telescoping term)

(quality of guess)
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Proof
• The key is to have a proper regret decomposition.

• Due to the two-step updates, we need to incorporate optimism 
and intermediate decision in regret analysis.

(convexity)
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Proof
Proof.  

For term (a), we use the stability lemma.
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Proof
Proof.  

For term (b), we adopt the Bregman Proximal inequality.
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Proof
Proof.  

For term (c), we also adopt the Bregman Proximal inequality.
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Proof
Proof.  

Put the three terms together, we can finish the proof.
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Example: Optimistic OGD

(negative term)

(telescoping term)

(quality of guess)
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Example: Optimistic OGD

(negative term)(quality of guess)

which is not available)

 self-confident tuning
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Optimistic OMD: Regret Analysis

• For problem-independent bounds, negative terms of OMD is usually dropped;
• For problem-dependent bounds, negative term could be extremely crucial.

(negative term)

(telescoping term)

(quality of guess)
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Part 2. Applications
• Small-Loss Bound

• Gradient-Variance Bound

• Gradient-Variation Bound
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Part 2. Applications
• Small-Loss Bound

• Gradient-Variance Bound

• Gradient-Variation Bound
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Small-Loss Bound
• Recall the guarantee of optimistic OGD:
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Small-Loss Bound
• Employing the self-bounding property of smooth and non-negative functions.

(self-bounding property)
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Small-Loss Bound
• Since we are using optimistic OMD with a fixed step size, the algorithm 

requires
• This is can be rectified by the self-confident tuning. We can use the 

optimistic OMD with time-varying step sizes.  
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Small-Loss Bound
Proof.  

For term (a), 

(self-confident tuning lemma)

(self-bounding property)



Lecture 8. Optimistic Online Mirror DescentAdvanced Optimization (Fall 2024) 28

Small-Loss Bound
Proof.  
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Part 2. Applications
• Small-Loss Bound

• Gradient-Variance Bound

• Gradient-Variation Bound
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Gradient-Variance Bound

e.g. SGD (sampled from a set of data)
e.g. Classification (sampled from training set)
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Optimistic Online Mirror Descent

Gradient-Variance Bound

How to choose Mt?



Lecture 8. Optimistic Online Mirror DescentAdvanced Optimization (Fall 2024) 32

Optimistic Online Mirror Descent

Gradient-Variance Bound

self-confident estimate
of gradient mean:
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Gradient-Variance Bound

Proof.  

(negative term)
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Gradient-Variance Bound
Proof.  For term (a), 
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Gradient-Variance Bound
Proof.  
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Gradient-Variance Bound
Proof.  
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Gradient-Variance Bound
Proof.  
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Gradient-Variance Bound
Proof.  
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Gradient-Variance Bound
Proof.  
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Gradient-Variance Bound
Proof.  We then analyze term (b) in the same way as before:
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Gradient-Variance Bound
Proof.  Finally, putting three terms together achieves
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Part 2. Applications
• Small-Loss Bound

• Gradient-Variance Bound

• Gradient-Variation Bound
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• Adaptivity: it can be small in slowly changing environments.
• Robustness: 

Gradient-Variation Bound

Gradient variation characterizes online functions’ shifting intensity.
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Gradient-Variation Bound

e.g., age forecasting by portraits

Implicit assumption:
Gradient (online function) shifts slowly
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Optimistic OMD for Gradient-Variation Bound

Question: How to choose 𝑀𝑀𝑡𝑡?

Optimistic Online Mirror Descent

Imposing a prior on the change of the online functions

setting 𝑀𝑀𝑡𝑡 as the last-round gradient
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Optimistic OMD for Gradient-Variation Bound
Optimistic Online Mirror Descent

Optimistic OMD for Gradient-Variation Bound
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Gradient-Variation Bound

Proof.  

(negative term)
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Proof
Proof.  For term 1, 
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Proof
Proof.  For term (a), 
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Proof
Proof.  

This term depends on our algorithm,
how to deal with it?
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Proof
Proof.  For the term (c), we have

Does this term look familiar?



Lecture 8. Optimistic Online Mirror DescentAdvanced Optimization (Fall 2024) 52

Proof
Proof.  We then analysis term (b),
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Proof
Proof.  Finally, putting three terms together yields
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A Summary of Problem-dependent Bounds 

Assumption(s) Setting of 
Optimism

Problem-dependent 
Regret Bound

Small-loss 
Bound

L-Smooth +
Non-negative

Variance 
Bound —

Variation 
Bound L-Smooth

Different priors are imposed by designing 
suitable 𝑀𝑀𝑡𝑡 for specific environments.
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Gradient-Variation Algorithm: Implications

By using algorithm for gradient-variation Bound (OMD with ):
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Gradient-Variation Algorithm: Implications

(self-bounding property)

By using algorithm for gradient-variation Bound (OMD with ):
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Gradient-Variation Bound Reflection

• This gradient-variation notion tightly connects the offline optimization and 
online optimization.

• The gradient variation reveals the importance of smoothness for the first-
order methods, as well as the crucial role of the negative term in analysis.
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Offline Scenario
• Online algorithm with gradient-variation regret bound:

• For an offline optimization problem 
When the function is convex and smooth, we can use this gradient-variation
algorithm to obtain an averaged model with error bound as  
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Offline Scenario
• Online algorithm with problem-independent bound:

• For an offline optimization problem 
When the function is convex and Lipschitz, we can use this problem-independent
algorithm to obtain an averaged model with error bound as  
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History Bits: Gradient-Variation Bounds

Chiang et al., Online Optimization with 
Gradual Variations. COLT 2012.

COLT 2012
best student paper award

Yang et al., Regret bounded by gradual variation for 
online convex optimization. Machine Learning, 2014.
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History Bits: Optimistic OMD

Rakhlin & Sridharan, Online Learning 
with Predictable Sequences, COLT 2013.

Nemirovski. Prox-Method with Rate of Convergence O(1/t) for 
Variational Inequalities with Lipschitz Continuous Monotone 
Operators and Smooth Convex-Concave Saddle Point Problems. 
SIAM Journal on OPT., 2004.

Optimistic OMD Mirror Prox 
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Summary

Q & A
Thanks!
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