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Part 1. Online Games

» Two-player Zero-sum Games
* Minimax Theorem
» Repeated Play

 Faster Convergence via Adaptivity
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Classic Game: Rock-Paper-Scissors game

* Rock-Paper-Scissors game

Rock Paper Scissors

Sctssor
B 0z Rock /0 1 1
ok Paper Paper —1 0 1
@ Scissors 1 —1 0

* Strategy

- Pure strategy: a fixed action, e.g., “Rock”.

- Mixed strategy: a distribution on all actions, e.g.,
(“Rock”, “Paper”, “Scissors”) = (1/3,1/3,1/3).
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Two-Player Zero-Sum Games

° Terminology Rock Paper Scissors
Rock 0 1 1
o game/payoff matrix A € [—1,1]"*" Paper 1 0 |

o two players Scissors 1 1 0

—player #1: x-player, row player, min player

— player #2: y-player, colume player, max player

Scissors
@ B @
KOCK Paper

o action set (focusing on mixed strategy) o
—player #1: Am = {p | Z:zl Pi — 1, and Pi > O,V? c [m]} @
—player #2: A, = {q | >.7_,¢; =1, and ¢; > 0,V € [n]}.
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Two-Player Zero-Sum Games

* The protocol:
- The repeated game is denoted by a (payoff) matrix A € [—1, 1]"*".
- The x-player has 1 actions, and the y-player has » actions.

- The goal of x-player is to minimize her loss and the goal of y-player
is to maximize her reward.

* Given the action (x,y) € A,, x A,,, the loss and reward are the same.
- expected loss of x-player is E[loss| = > ;o1 @i D icp YiAij = x ' Ay.

- expected reward of y-player is E|{reward| = Z@e[m] Ti ) jemn) Yidi; = x ' Ay.
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Two-Player Zero-Sum Games

* Best response:

- when x-player plays a strategy x € A,,,, the best response of y-player is
y! € arg maxy A x| Ay;

- when y-player plays a strategy y € A,,, the best response of x-player is
x" € argmin, .o x' Ay;
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Nash Equilibrium

* What is a desired state for the two players in games?

Definition 2 (Nash equilibrium). A mixed strategy (x*,y*) is called a Nash
equilibrium if neither player has an incentive to change her strategy given that
the opponent is keeping hers, i.e., forallx € A,, andy € A,,, it holds that

X*TAy < X*TAy* < XTAy*.
| |

y-player’s goal is to maximize her reward, changing from y* to y will decrease reward.

x-player’s goal is to minimize her loss, changing from x* to x will increase loss.

:> Does the Nash equilibrium always exist for zero-sum games?
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Von Neumann’s Minimax Theorem

* For two-player zero-sum games, minimax equals maximin.

Theorem 1. For any two-player zero-sum game A € [—1,1]"*", we have

min max x ' Ay = maxmin x ' Ay.

* Relationship between Nash equilibrium and minimax solution.

Theorem 2. A pair of mixed strateqy (x*,y*) is a Nash equilibrium of the

game A, if and only if it is also a minimax solution (the optimizer of problem
miny, maxy X' Ay = max, min, x' Ay), i.e.,

x* € argminmax x' Ay,y* € argmaxmin x ' Ay.
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Proof of Theorem 2

Theorem 2. A pair of mixed strateqy (x*,y*) is a Nash equilibrium of the
game A, if and only if it is also a minimax solution (the optimizer of problem
miny maxy x ' Ay = maxy Miny x ' Ay), i.e.,

Xx* € argminmax x' Ay,y* € argmaxmin x ' Ay.

Proof: (Nash = minimax solution)

Denote by (x*,y*) a Nash equilibrium, and we have

min max x ' Ay < max X*TAy :X*TAy* — min x' Ay* < maxminx' Ay

By Von Neumann’s minimax theorem, the above inequality is in fact an equality.
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Proof of Theorem 2

Theorem 2. A pair of mixed strateqy (x*,y*) is a Nash equilibrium of the
game A, if and only if it is also a minimax solution (the optimizer of problem
miny maxy x ' Ay = maxy Miny x ' Ay), i.e.,

Xx* € argminmax x' Ay,y* € argmaxmin x ' Ay.

Proof: (minimax solution = Nash)

Denote by (x',y") a minimax solution, we have

T T
minmax x' Ay = max x| Ay >x' Ay > min x' Ay’ = maxminx' Ay
X Yy y X y X

By Von Neumann’s minimax theorem, the above inequality is again an equality.
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Minimax Strategy and Maximin Strategy

* minimax strategy

x* € argmin, maxy x ' Ay

x-player goes first, and given x, the worst-case response of y-player is max, x ' Ay,
so the best way for x-player would be argmin, max, x' Ay.

* maximin strategy
y* € arg max, miny x| Ay

y-player goes first, and given y, the worst-case response of x-player is min, x ' Ay,
so the best way for y-player would be argmax,, miny, x ' Ay.
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Minimax Strategy and Maximin Strategy

* minimax strategy

* A natural consequence

X* € arg min, maxy x " Ay

x-player goes first, and given x, the worst-case response of y-player is max, x ' Ay,
so the best way for x-player would be argmin, maxy x " Ay.
. T . T
minmax X Ay > maxmin x Ay « maximin strategy

y* € arg max, miny x| Ay

y-player goes first, and given y, the worst-case response of x-player is miny, x " Ay,
so the best way for y-player would be argmax, min, x " Ay.

Intuition: there should be no
disadvantage of playing second

Proof: Define x* € arg min, max, x' Ay and y* € arg max, min, x' Ay.

: T T : .
minmax x' Ay = max x* ' Ay > x* Ay* > minx' Ay* = maxmin x' Ay.
X y y X y X
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Von Neumann’s Minimax Theorem

* For two-player zero-sum games, minimax equals maximin.

Theorem 1. For any two-player zero-sum game A € [—1,1]"*", we have

min max x ' Ay = maxmin x ' Ay.

We have proved the direction that miny max, x ' Ay > max, min, x ' Ay, whereas
the reverse direction is not straightforward.

The original proof relies on a fixed-point theorem (which is highly non-trivial), and we

here will present a simple and constructive proof from an online learning perspective.
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Connection with Online Learning

 Recall the OCO framework, regret notion, and the history bits.

Online Convi  Regret Meast = History: Two-Player Zero-Sum Games

* Requirements: * We use regret to m|

(1) feasible domain

Theory of repeated games Zero-sum 2-person games played more than once

(2) online functions Regret,

1 2 .. M N x M known loss matrix
1 f': i, |_] f': 2] caa @ Row player (player)
2| e2,1) £22) ... has N actions
Ateachround ¢t =1 ? : : : "o @ Column player (opponent)
? N has M actions

(1) the player first p

i '

James Hannan David Blackwell

* We hope the regre

2 d . @ Player chooses action i, and opponent chooses action y,
( ) and environmen (1922-2010) (1919-2010) e The player suffers loss {(iy,y,) (= gain of opponent)

(3) the player SLlffe Learning to play a game (1956) Player can learn from opponent’s history of past choices yy, ..., Y1 |

Regret’r Play a game repeatedly against a possibly suboptimal opponent
updates the moc ——— —0as
T
Henceforth, we use X Nicolo Cesa-Bianchi, Online Learning and Online Convex Optimization. Tutorial at the Simons Institute. 2017.

Advanced Optimization (Fall 2024) Advanced Optimization (Fall 2024) Advanced Optimization (Fall 2024) Lecture 5. Online Convex Optimization 79
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Constructive Proof of Theorem 1

* Our goal: to prove Von Neumann’s Minimax Theorem

Theorem 1. For any two-player zero-sum game A € [—1,1]™*", we have

min max x ' Ay = maxmin x ' Ay.

As the one side is trivial, we only need to prove

min max x' Ay < maxmin x' Ay

which can be realized by the repeated play.
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Online Games with Repeated Play

» Consider the following repeated play setting.

Ateachroundt=1,2,...,7T":
(1) x-player picks a mixed strategy x; € A,,
(2) simitaneously y-player picks a mixed strategy y, € A,
(3) x-player and y-player submit their strategies together

(4) x-player receives loss x, Ay, and observes Ay; y-player receives

loss —x, Ay, and observes — A ' x;

The online function that x-player receives is fX(-) = - ' Ay;. assume gradient feedback

—> y: candepend on xy, . .., X;_1, meaning that x-player is facing an adptive adversary.
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Online Games with Repeated Play

Deploying the no-regret online algorithm for two players
e denote by Reg? the regret suffered by the x-player
e denote by Reg?. the regret suffered by the y-player

. . 1 T T . . .
Key idea: use + ) , , x, Ay, as a bridge between miny, max, and maxy miny

1 L 1 I Re X
T Z Xt[ Ay, < min — Z XTAyt + ST
t=1 —

XGA'm T . T
Reg”
: T 4= T
— A
Regy

A

max min x ' Ay +
YEA, XCA,, T
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Online Games with Repeated Play

Deploying the no-regret online algorithm for two players
e denote by Reg? the regret suffered by the x-player
e denote by Reg?. the regret suffered by the y-player

. . 1 T T . . .
Key idea: use + ) , , x, Ay, as a bridge between miny, max, and maxy miny

I ¢ l « Reg>
_f fz;xrfly{ < min —? Z;X;Ay_F TT

yEA,
Reg?”.
= min —x, Ay + 5T
YEA, T
Reg” Reg¥
< max min —x' Ay + ST _ _ min max x ' Ay + ST
xeEA,, YyEA,, T xc€A,, YEA, T
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Online Games with Repeated Play

. . 1 T T , . . .
Key idea: use + ) , , x, Ay, as a bridge between miny, max, and maxy miny

-
1 Reg’;
- Z x, Ay, < max min x' Ay + o1 (1)

,-"_l yEA?l XGAT?’}. T

-
I «— ' Reg?
72X v S - iy mpexTay £ P @
(2) 1 Reg?, (1) Reg’.  Reg”
: T T T - T ik i
min max x Ay < — x, Av,+ < max min X Av-+ +
XeA'm, yEAn y o T ; ! Yt T o yEAn XEA'm, y T T

If Reg . and Reg?. are sublinear in 7', the gap becomes to 0 when 7" — oc.
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Nash Equilibrium Calculation

* How to compute an approximate a Nash equilibrium?

Ateachround ¢ =1,2,...,T:
(1) x-player picks a mixed strategy x; € A,,
(2) simitaneously y-player picks a mixed strategy y, € A,
(3) x-player and y-player submit their strategies together

(4) x-player receives loss x, Ay; and observes Ay;; y-player receives

loss —x, Ay, and observes —A ' x;

oo A1 T | T
Submit X0 = ) ,_ Xy, andyr = 5 , Y+
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Nash Equilibrium Calculation

* Duality Gap: measure the quality

DUAL-GAP(X7,y7) £ max X, Ay — min x' Ayp
yEAn XEA?TL

* From the previous analysis, we know that the algorithm ensures:

1 L 1 T Re X
7 ijﬂiyt < min — ZXT Ay, + &1
t=1 i

Reg” Reg?
. T A4 — T . T T
= min x A < max min x Ay +
xe€A,, T T xEA,, yT + T o yEAn xEA,, y T

I ¢ T I ¢ T Regy T Regy T Regy
—— x, Ay, < min —— X, Ay + = min —X,Ay + < max min —x Ay +

I ; !' = yEA, I ; t Y T yEA, I Y - xXEA, yeEA, Y T

Advanced Optimization (Fall 2024)
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Nash Equilibrium Calculation

- T T X X X
1 T .1 T Regy. : T A= Reg:; : T Reg’.
— x, Av, < min — x Avy; + — min x' A + < max min x Ay +
T ; tEYE S xeA,, T ; Yt T xEA,, YT T = yeA, xeA,, J T
LT L7 Regy T Regy T Regy
— x, Av, < min —— x, A — min —X Ay + < max min —x A
I ; t = yEA, I ; t Y - T yeA, T Y T - xX€EA,, yEA, Y i T
Reg”  Reg?
* 1 * . I gT gT
x* A < min x Avyr +
— Y = B X ATt Tt T
RegX  Reg?”
ye TL

T T
—> DUAL-GAP(X7,y7) =

max )_(;Ay— min XTASIT < Q(Reg? + Reg%/T
yEAn XEA'm, £ yi

Advanced Optimization (Fall 2024)
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Nash Equilibrium Calculation

e So far, we have

DUAL-GAP(Xp,y7) = max X Ay— min x' Ayp < 2(Regr + Reg?.) /T

yEAn EA'm,

This result implies a constructive algorithm for Nash equilibrium
calculation with a non-asymptotic guarantee.

—> | 1 x-player and y-player both run Hedge algorithm, then
¢ Regr = O(VT),and Reg). = O(VT),

e the convergence rateis O(7'/?).

Advanced Optimization (Fall 2024) Lecture 9. Optimism for Fast Rates
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Faster Convergence via Gradient Variation
e Can we do faster than the O(\/T) rate?

Yes! We can use the Optimistic Online Mirror Descent of the last lecture.

e Recall in gradient-variation regret, the negative term is crucial.

x; = arg minn (V fi_1(x¢—1),x) + 1HX — XI5
x€X : Gradient Variation
X1 = arg minn (V[ (x,),x) + = ||x — XI5
xeX 2
T T
—> D> filxi) Z ) < WZ IV fi(xi) = Vo (xi-1)[l5 + Z x40 = x5
=1 t=1 =

(negative term)
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Gradient-Variation Bound

Definition 3 (Gradient Variation). Let T be the time horizon and X C R? be

the feasible domain. For the function sequence f1,..., fr with f; : X — R for
t € |T), its gradient variation is defined as
T
Ve =) sup [Vfi(x) = Vi (0]
i XEX

Optimistic OMD for Gradient-Variation Bound

. . 1 N
x¢ = arg minn (V f;_1(x,-1),%X) + =[x — X¢||5
xeX 2

K1 = arg mingy (Vi(x)x) + 5 lx = %ell3
xeX 2
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Gradient-Variation Bound

Theorem 4 (Gradient Variation Regret Bound). Assume that ¢(x) = 3|/x||3 and
.. - . . _ e 1 _
ft is L-smooth for all t € [T, when setting n, min{ 77, \/T} and M, =

Vfi1(x¢ 1), the regret of Optimistic OMD to any comparator u € X is

iy iy
Regret = th(xt) — th(u) < O (\/1 4 VT)
t=1 t—=1

where V,_, = Zz;; |V fo(xs_1) — Vfs_1(x5_1) Hg is the empirical estimates of V.

T
SEDWALZINEL RS Z (1o %l3 - u -z

1
=3 o (1Ress =l + o - 113
Tt

t=1

||Mh-a

Proof. Z fi(x)

(negative term)
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Faster Convergence via Gradient Variation

e Can we do faster than the O(\/T) rate?

Yes! We can use the Optimistic Online Mirror Descent of the last lecture.

If x-player runs OOMD with NE-entropy and gradients g¥ = Ay, for ¢ € [T

T T
X 1 X 1
Regy = (Aye, x¢ — %) S XE"”} E |Ay: — Aytl?%[’]x

Similarly,

T & T
1 : 1 f
Regy = Z<_ATXtaYt_Y> S nyEH}y Z IA "% — ATXt1|ic—n_y Z lye — le}
t=2 t=2

t=1

RegX, + RegY, = O(1), which leads to a much faster O(7 ') convergence rate! []
&T &T 5
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History bits: Game Theory
* John von Neumann

John von Neumann was a Hungarian mathematician.

d He has been credited with founding game theory based on

his paper in 1928. John von Neumann

d In 1944, he wrote, alongside Oskar Morgestern, the seminal 1903-1957

book Theory of Games and Economic Behavior.
THEORY OF
[ Definitely, he also has a lot of other achievements in e

ECONOMIC
mathematics, computer science, and many other areas. sl IR

Advanced Optimization (Fall 2024) Lecture 9. Optimism for Fast Rates
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History bits: Game Theory

* John Forbes Nash Jr.

John Forbes Nash Jr., American mathematician who

was awarded the 1994 Nobel Prize for Economics.

John Forbes Nash Jr.

He submitted a paper to the Proceedings of 1928-2015

the National Academy of Sciences in 1949,
where he proved that an equilibrium exists

in every finite game. N
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History bits: Game Theory

CARNEGIE INSTITUTE OF TECHNOLOGY

SCHENLEY PARK
PITTSBURGH 13, PENNSYLVANIA

DEPARTMENT OF MATHEMATICS
COLLEGE OF ENGINEERING AND SCIENCE February 11, 1948

Professor S, Lefschetz
Department of Mathematics
Princeton University
Princeton, N, J,

Dear Professor Lefschetz:

This is to recommend Mr, John F, Nash, Jr,
who has applied for entrance to the graduate college
at Princeton,

Mr, Nash is nineteen years old and is
graduating from Carnegie Tech in June, He is a
mathematical genius,

b
Ja BEA}, rows sincerety,  He is a mathematical genius.
M s
Richard J, Duffin

RJD:hl
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History bits: Online Learning in Games

* Yoav Freund & Robert Schapire

Yoav Freund and Robert Schapire’s
seminal paper in 1999 reveals the
fundamental relationship between
game theory and online learning,
specifically, “a simple proof of the

min-max theorem™.

Games and Economic Behavior 29, 7T9-103 (1999)
Anticle 1D game. 1999.0738, available online at bup:iwww.idealibrary.com on 1DE %l‘

Adaptive Game Playing Using Multiplicative Weights
Yoav Freund' and Robert E. Schapire!

AT&T Labs, Shannon Laboratory, 180 Fark Avenue, Florham Fark,
New Jersey 07932-0971

E-mail: yoav@research.atl.com, schapire @research.att.com

Received July 15, 1997

We present a simple algorithm for playing a repeated game. We show that a
player using this algorithm sulfers average loss that is guaranteed 1o come close
the minimum loss achievable by any fived strategy. Our bounds are nonasymptotic
and hold for any opponent. The algorithm, which uses the multiplicative-weight
methods of Littlestone and Warmuth, is analysed using the Kullback-Liebler diver-
gence. This analysis yields a new, simple proof of the min-max theorem. as well as
a provable method of approximately solving a game. A variant of our game-playing
algorithm is proved to be optimal in a very strong sense, Jowrnal of Economic Lir-
eraiure Classification Numbers: C44, CT0, D83, © 199 Academic Press

. INTRODUCTION

‘We study the problem of learning to play a repeated game. Let M be a
matrix. On each of a series of rounds, one player chooses a row i and the
other chooses a column j. The selected entry M(, j) is the loss suffered by
the row player. We study play of the game from the row player's perspective,
and therefore leave the column player's loss or utility unspecified.

A simple goal for the row player is to suffer loss which is no worse than
the value of the game M (if viewed as a zero-sum game). Such a goal
may be appropriate when it is expected that the opposing column player's
goal is to maximize the loss of the row player (so that the game is in fact
#zero-sum), In this case, the row player can do no better than to play using a
min—max mixed strategy which can be computed using linear programming,
provided that the entire matrix M is known ahead of time, and provided
that the matrix is not too large. This approach has a number of potential

'httptfwww.research.att.comd~ {yoav, schapire}

Robert Schapire
1963-now

Yoav Freund
1961-now

Reference: Y. Freund and R. Schapire. Adaptive Game Playing Using Multiplicative Weights. Games and Economic Behavior, 1999.
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History bits: Pred

Yoav Freund

Robert Schapire

Goldel Prize 2003

This paper introduced AdaBoost, an

adaptive algorithm to improve the
accuracy of hypotheses in machine
learning. The algorithm demonstrated
novel possibilities in analyzing data and
is a permanent contribution to science
even beyond computer science.

iction with Expert Advice

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 55, 119-139 (1997)
ARTICLE No. S5971504

A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting*

Yoav Freund and Robert E. Schapire®

AT&T Labs, 180 Park Avenue, Florham Park, New Jersey 07932

Received December 19, 1996

In the first part of the paper we consider the problem of dynamically
apportioning resources among a set of options in a worst-case on-line
framework. The model we study can be interpreted as a broad, abstract
extension of the well-studied on-line prediction model to a general
decision-theoretic setting. We show that the multiplicative weight-
update Littlestone—Warmuth rule can be adapted to this model, yielding
bounds that are slightly weaker in some cases, but applicable to a con-
siderably more general class of learning problems. We show how the
resulting learning algorithm can be applied to a variety of problems,
including gambling, multiple-outcome prediction, repeated games, and
prediction of points in R”. In the second part of the paper we apply the
multiplicative weight-update technique to derive a new boosting algo-
rithm. This boosting algorithm does not require any prior knowledge
about the performance of the weak learning algorithm. We also study
generalizations of the new boosting algorithm to the problem of
learning functions whose range, rather than being binary, is an arbitrary
finite set or a bounded segment of the real line.  © 1997 Academic Press

converting a “weak” PAC learning algorithm that performs
just slightly better than random guessing into one with
arbitrarily high accuracy.

We formalize our on-line allocation model as follows. The
allocation agent 4 has N options or strategies to choose
from: we number these using the integers 1. .., N. At each
timestepr=1, 2, ..., T, the allocator 4 decides on a distribu-
tion p’ over the strategies; that is p! =0 is the amount
allocated to strategy i, and ¥ | p' = 1. Each strategy i then
suffers some /loss /! which is determined by the (possibly
adversarial) “environment.” The loss suffered by A is then
Yo pifi=p'- £, ie., theaverage loss of the strategies with
respect to A’s chosen allocation rule. We call this loss func-
tion the mixture loss.

In this paper, we always assume that the loss suffered by
any strategy is bounded so that, without loss of generality,
£7 e [0, 1]. Besides this condition, we make no assumptions

Reference: Y. Freund and R. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. JCSS 1997.
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History bits: Online Learning in Games

{3 2004 Sasicty for Industrisl and Applicd Muthormatics
Optimization, Learning, and Games with Predictable PROX-METHOD WITH RATE OF CONVERGENCE O(1/t)
Sequences FOR VARIATIONAL INEQUALITIES WITH
LIPSCHITZ CONTINUOUS MONOTONE OPERATORS AND
SMOOTH CONVEX-CONCAVE SADDLE POINT PROBLEMS®
ARKADI NEMIROVSKI
Abesander Rakhlin Karthik Sridharan
University of Pennsy lvania University of Pennsylvania
Abstract

ergodic conver

We provide several applications of Optimistic Mirmor Descent, an online learming
algarithm baced on the iden of peedictable sequences. First, we recover the Mir-
ror Prox algorithm for offline optimization, prove an extension 1o Holder-smocth
functions, and apply the results to saddie-point type problems.
that a version of Optimistic Mimor Descent (which has o tiom 1o the Ex- DOL 10.1137/3100
ponential Weights algorithm) can be used by two strongly-uncoupled players in
a finite soro-sum malrix game to comverge to the miniman cquilibrium ot the rate - - X A -
of Ok THT). This _:J,,,,..,WL_.qucEmumr Daskalakis :-41 al ). Fu . 1. Introduction. This paper is inspired by ar
comsider a partial information versin of te problem. We then apply the resulls which a new method for

AMS subjoet elassifications, 90025, 90047

[13] in

f over

i paper of Nes
it contimous fun

tinimizing s nonsmooth Lips

%0 comvex progranaiing and exhibiv's: slimplé goridins for the sppeckiniae Max 8 comvex compoct fnte-dimensional set X Is prope The characteristic feature
Flow problem. af method is that under favorable cir hibits nearly)
din depe (1/t)-rate of conveny £ = O{1/t). where
. xy is the appro n budlt after ¢ iterat is in sharp contrast
1 Introduction with the results of information-based complexity theory, which state in particulas
(see [11] r a “black-box-oriented” method {one which «
Heeently, no-regret algorithas have recgived ine wing aication i varkcl of communitics, in- and subs 7 only, without access to the “structure” of ¢
cluding theoretical compuler scie optinyizati md game theory | | The wide applicability N L
mumber of function evaluations required to baild an e-solution w

of these algorithms is arguably due 1o the black-box ns‘nl guarantees that bold for arbitrary se-
quences. However, sisch regnet guarantees can be looke if the sequence heing encountered is not
“worst-case”™, The neduction in “arbitrariness” of the sequence can arise from the panicular struc-
ture of the problem ot hand, and should be cxploited. For instance, n some applications of online apparent. *

Lipschitz continuc tant 1, funetion ¢

e |]:|- s NPT

methods, the sequence comes. from an additional computation done by the learner, this being far black wmed that the ‘,|,J
from artwtrary. .
¥ Y. cor in o specifie convex-con
One way 1o fomally capture the partially benign nature of data is trough a motion of predictable
sedquences [11]. We exhibit applications of this idea in several domains. First, we show that the (11 Slx) = maxe(r, ¥, B, y) =1 +axT Ay + 07y,
Mirrur Pron methisd | ], designedd for optimizing non-smooth structured saddle-point problens, can e
be viewed as an instance of the predictable sequence approach. Predictability in this case is due
precisely 1o smoothness of the inner optimization pan and the saddle-point stroctwne of the problem. w |||'| e ¥ s a convex |<||||||.||I set and g s oa O with Lipschits contimmons gra-
We extend the resalis 1o Hlder-smooth functions, interpoelating berween the case of well-predictable U When solving the J|u| lenn, we s given the

adienis Ape koow X and V', and are able

gradicnts and “unpredictable’ to compute the

v, we address the question raksed in [] about existence of “simple” algorithms that comerge
al the rate of SYT") when emploved in an uncoupled manner by players in a zero-sum finite

ient of g at a ]unl and (b} to multiply

rov states that mple en

matrix game, yet maintain the usual O "~ ) ke against arbitrary sequences. We give a positive then it is possible (o minimize the objective (1.1) with a
answer and exhibit a fully adaptive algorithim that does not requine the prios knowledge of whether
the other player is collshormting. Here. the additional prediciability comes from the fact that both r 5L ch 31, 2008 nceepted for publication (In revised form) March 1

players stiempt 1o comverge to the minimas value, We also tackle a partial information version of
the problem where the player has only sccess to the real-valued payoff of the mixed sctions played
!

by the two players on cach round rather than the eatire vecio N -
Y F 1 Institute of Technobogy,

Our thind spplication & o comves. programming: optimization of a linear function subject 1o convex
constraints. This problem often arises in theoretical compater science, and we show that the ides of

1),

Ty with

o g —

-] linear,

Nemirovski. Prox-Method with Rate of Convergence O(1/t) for Variational

. . Inequalities with Lipschitz Continuous Monotone Operators and Smooth
with predICtable sequences. NIPS 2013. Convex-Concave Saddle Point Problems. SIAM Journal on OPT., 2004.
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story bits: Online Learning in Games

Fast Convergence of Regularized Learning in Games
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Microsoft Rese
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Abstract

We show that natural classes of regularized leaming algorithms with a form of
e b Jreve fester converpence rufes Lo approxinte elliciency and o
s correlated equilibeiz in multiplyer normal fom pames. When each player
in a game uses an algorithm from our class, their individual regret decays s
T4, while the sum of utilitics converges 10 an approximate optimum at
T " j-an improvement upon the worst case OfT /) rates. We show a black-
l\:»& !\.duc(iom for any Jlgorillun in lhc 8 10 ;u:hiu«' Q1" 1/2) pates against an
>|||h|n~. n the class. !]ur

only mlw-.l two-phayer 2ero-sum gaes fov -..mul.. [ —r—

1 Introduction

1 happens when pi s inlernct with one another, all of them scling independs
and selfishly 1o maximize their own wtilities? If they are smart, we intuitively expect their atilities
— both individually and as a group — to grow, perhaps even to approach the best possible. We
also expect the dynamics of their behavior o eventually some kind of equilibriuom. Under
standing these dynamics is central 1o game theory as well 5 its varicus application arcas, including
ceomomics, network muting, suction design, und cvolutionary bislogy.

It is natural in this setting for the players to each make use of a no-regret Ic.nmmg algorithm for mak-
ing their decisions, an approach known as decemmralized no-regrer dvmamics. Mo-regret al gorithms
are a strong match for playing games because their regret bounds hold even in adversarial environ-
ments. As a benefit. these bounds ensure that each player's utility approaches optimality. When
plivyesd agained one another, it a1 e s that the sum of utilities approaches an approsimaile
optimum |2, 18], and the player strategics comverge to an equilibrium under appropriate condi-
tioms [6, 1, 8], at rates govemed by the regret bounds. Well-known familics of no-regrer algorithms
include multiplicat eights [13. 71, Mirror Descent [14], and Follew the RegularizedPerturbed
Leader [12] (See [3. 19] for excellent overviews.) For all of these, the average megret vanishes st
the worst-case rate of Of1 /T, which is unimprovable in fully adversarial scenarios.

However, the players in our sening an: facing other similar, predictable no-regret leaming algo-
rithms, a chink that hints at the possibility of improved convergence rates for such dynamics. This
was first observed and exploited by Daskalakis et al. [4]. For two-player aero-sum games, they de-
veloped o decentralized variant of Nesterow's acceleratied saddle point algoritham [ 15] and showed
thateach player's average regret comverges at the remarkable rate of O(1/T ). Although the resulting

Fast convergence of regularized
learning in games. NIPS 2015.

NIPS 2015
best paper award

No-Regret Learning in Time-Varying Zero-Sum Games

Mengxkao Ehang

Abstract

Learning from repested play in 3 fixed two-
rero-sum gome is o classic problem in gume the-
d online leaming. We consider a variant

changes over time, possibly in an
t present three performance measurcs

1) the well-siudied individual regrer, 2) an ex-
gap, and 3)

player’s payedl and the minimax game value.
Next, we develop a single parameter-free algo-
rithm that simultencowsly enjoys favorable guar
antees upder all CriOMMAnCe Measures.
These guarantees are alaplive to different nos-
wres of the payoff matrices and,

leaming over a group of black-box base-
sarisfying a cenain propemy, along with several
movel ingredients specifically designed for the
time-varying game seiing. Empirical resulis fur-
ther validate the effectiveness of our algorith

1. Introduction

od play in o fixed two-pl
| problem in the ineraction between game theory
and online leaming, has been extersively studied in recent
decades. In particular, many efforts have been devol

i 1 bath pliryers achicve
Merence between one’s
best fised action) while ar

1 rero-sum game, 4 fun-

small individual regret (that is,
cumulative payoff and that of the

"Equal contribution, in alphabesical order, 'L
Southem Califoria * National Key Laboratory for Novel Soft-
ware Techmodogy, N dence o

iversity of

Peng Fhao ™"

Haipeng Luo ' Zhi-Hua Zhou”

the zame time the dynramics of the plu\ ers” strategy leads 1o

2020; Wei
A21)

I conirsst o pe body of » : ning wver
a fived zero-sum game, repeated play over o sequen

scenasio in practice, is much less explored. W
ing individual regret still makes perfect sense in thi
is not immedintely ¢ lear what other desirable game-theoretic
penerilize the concept of appronching o
ame is fived. As far as we know,

Cardosn et al, (2006
problem. They proposed
megret (NE-regrer) as the performance measure, which
tifies the difference between the leamers” cumulative payof
smdd the minimax value of the cumulative payofl matric
The authors proposed an algorithm with /
after T rounds of play and, importantly, pros
rithm can simultaneously achieve sublinear NE-reg
sublinear individual regret for both players

Our work starts by questioning whether the NE
of Cardeso et al. (2019) is indeed a good performance mea-
sure for the problem of learning in time-varying g2

especially given its incompatibility with the arguably most
standard goal of having small individual regret. We then
discover that messuring performance with NE-regret can in
fact be highly unreasonable: we show an example (in See-
tion 3 where even the two players perform perfeetly (in the
hat they play the correspand h equilibrivm in
), the resulting B 3till fineewr in T!

sen

every -reg

Motivated by this bscrvation, we revisit the basic problem

vidual regret: 2 the direct gen-

Metighiao Zhang <iingaim. oz, Pong Zhao
<ihaop @ Lamda nju ks on>,

Proceedings of the 30" fare
Leaming. Baltimore, Maryland,
right 2022 by the authoris),

v gap from a fixed game (o
ving games and 3b o new measure called dvnamic NE-
regrer, which quantifies the difference between the leamer's
cumlative payofl and the cumualative minimax game value
(imstead of the minimax value of the cumulative payelf ma-

No-Regret Learning in Time-
Varying Games. ICML 2022.

Advanced Optimization (Fall 2024)

Lecture 9. Optimism for Fast Rates

35



Part 2. Accelerated Methods

» Weighted Online-to-Batch Conversion

» Accelerated Rates by Optimistic OMD
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Accelerated Methods

e Recall that accelerated rates can be achieved for smooth convex
optimization using Nesterov’s Accelerated GD.

Theorem 3. Let f be convex and L-smooth. Nesterov’s accelerated GD is configured
as

1
Xi41 =Yt — —Vf(}’t): Vit1 = Xe+1 + Be(Xep1 — X¢),

14+4/14+4X22_
5 ,and B, =
At 1

w2
flxr) — f(x*) < ”"X}Q <" _ o (11)

where \og = 0, \; = . Then, we have

In our previous lecture, we prove this accelerated rate by the generalized one-step
improvement property and a variety of algebraic tricks.
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Acceleration by Optimistic OMD

* We now present a new algorithm based on optimistic OMD
with an accelerated rate for smooth convex optimization.

Xt = arg miny . y {nt (M, x) + Dy (x, /X\t)} Xt+1 =Yt — %vf(Yf)

X¢41 = arg min, . {m (V fi(x¢),x) + Dy (x, it)} Yir1 = Xpp1 + Be(Xer1 — X¢)

%vf(YH- @
> ~

-
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Acceleration by Optimistic OMD

There are two key components:

* Weighted Online-to-Batch Conversion

This is used to reduce the offline optimization to online optimization, but now we need
a weighted version to achieve the potential acceleration.

* Optimism Design
This is used to achieve the desired vanishing regret in online optimization, in which the
optimism design is crucial. It is essential to leverage the special structure of the problem.
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Weighted Online-to-Batch Conversion

* Reducing offline optimization as an

Algorithm 1 Weighted Online-to-Batch Conversion Template

1: Online algorithm A, o, > 0.
2: fort=1,2,...,T do
3:  Obtain x; from A

|
4:  Submitx; = Z“"jf“"x‘“ with 4, £ 22:1 (Vg
5. Receive Vf(X;)
6:  Send o,V f(X;)as Vfi(x)to A
7: end for
oy ] eEe L A
> Vii(x¢) = o VI(Xy) >
Offline function Vf(x) Conversion V fi(xy) Online algorithm

Advanced Optimization (Fall 2024) Lecture 9. Optimism for Fast Rates
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Weighted Online-to-Batch Conversion

* Reducing offline optimization as an :

Lemma 1. Suppose f : X — R is a convex function with a convex and compact
set X. Then, for the following output with weighted average (regardless of how the
{x;}]_, are generated):

Y aux,

Xt = A
t

with A, £ 2221 as and o > 0, we have the following online-to-batch conversion:

T e - Al
f(Xr) — f(x*) < D=1V f(Xe), x¢ ) 2 Reg? ( )

AT AT
— N S X,
o T A
o V/i(xi) 2 V(%) >
Offline function Vf(X:) Conversion V fi(x¢) Online algorithm
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Weighted Online-to-Batch Conversion

Lemma 1. Suppose f : X — R is a convex function with a convex and compact
set X. Then, for the following output with weighted average (regardless of how the
{x;}]_, are generated): X, = A% S asX,, with Ay 2 3, and oy > 0, we

have the following online-to-batch conversion:

- T VI(R), x —x*) 5 Regy(x)
- Ar Ar

f(Xr) — f(x7)

e When o, = 1 for all ¢ € [T], it recovers the standard online-to-batch
conversion, with A = T..

e But we can set o, larger to make the denominator larger, such that we
may have a chance to achieve a faster rate than the standard O( =) one.
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Weighted Online-to-Batch Conversion

Lemma 1. Suppose f : X — R is a convex function with a convex and compact
set X. Then, for the following output with weighted average (regardless of how the
{x¢}{_, are generated): X, = 4= >, asx,, with Ay £ 37 o and oy > 0, we

have the following online-to-batch conversion:

< Z?;1<atvf(it)axt — X*) S Regﬁ(x*)

f(&r) — f(x7) A, A,
Proof:  First, by convexity we have
T T
S on(F®) — F) < 3wl VIR). X - x*)
t=1 t=1
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Weighted Online-to-Batch Conversion

Lemma 1. Suppose f : X — R is a convex function with a convex and compact
set X. Then, for the following output with weighted average (regardless of how the
{x¢}{_, are generated): X, = 4= >, asx,, with Ay £ 37 o and oy > 0, we

have the following online-to-batch conversion:

- Y (VS (Re),xe — x*) 5 Regy(x*)

f(Xr) — f(x7) A, A,

Proof:  First, by convexity we have
T

T
Y a(f(x) = f(x)) < Regp(x) + ) an(V (%), %1 — %)

t=1
Notice the following two facts
22:1 X = AiXy = A1 X + Xy

Zi:l MgXg — Zizll AsXg + e Xt — At—lit—l + Xy t( ¢ t) t 1( t—1 i)
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Weighted Online-to-Batch Conversion

Lemma 1. Suppose f : X — R is a convex function with a convex and compact

set X. Then, for the following output with weighted average (regardless of how the

T .= 1 t : A t
{xt}i—y are generated): Xy = = > . asx,, with Ay = ) | a5 and oy > 0, we

have the following online-to-batch conversion:

_ x* e A ~x*
f(Xr) = f(x¥) < e 1<Q*ng) = >éRgX; )

Proof:  Further using the convexity property, we get
T

Y au(f(®e) — f(x¥)) < Regy(x ZAf WV F(Re) R — Kioa)

t=1

< Reg/(x ZAf ) F(Xi—1))

This implies that A, (f(x7) — f(x*)) < Reg?(x*) ]
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Weighted Online-to-Batch Conversion

have the following online-to-batch conversion:

Lemma 1. Suppose f : X — R is a convex function with a convex and compact
set X. Then, for the following output with weighted average (regardless of how the

— t . A
{x:}{_, are generated): Xy = 53 . asxs, with Ay £ 37 a, and a; > 0, we

f(Xr) — f(x7) A,

< Z?;1<@tvf(it)axt — X*) S Regﬁ(x*)

t

Ar

Set weights o, = t for all t € [T, then Ar = O(T?).

We aim to use online algorithm ensuring O(1) regret.

:> Optimistic OMD with a suitable optimism design!

Theorem 3. Let f be convex and L-smooth. Nesterov’s accelerated GD is configured
as ;
Xt+1 =¥t — Evf(.Yt)a Vie1 = Xep1 + Be(Xep1 — X¢),

144/1+4X2 p _
where \g = 0, \; = s—=", and B, = 3=1. Then, we have

x; — x*||?
ser) - 6y« Z XL o (1),
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Accelerated Rates by Optimistic OMD

e Can we achieve an O(1) regret for [ nebmem | x

f() —— T

WV felx) 2f"rvf(ir) A

weighted online-to-batch conversion? || omencion "6 Comersion Sy ] Online algoritm

_ 1 t
A, 2us=1 ¥sXs

Yes! We can use the Optimistic Online Mirror Descent of the last lecture.

e Recall in gradient-variation regret, the negative term is crucial.

xi = arg ming (M,%) + 5 x — %
xeX )

Ry41 = arg minn (V f1(x1), %) + 5 [|x — %3
xeX 2

T T D2 I
—> D fikx) Z u) < 2_ Z”Vft x;) — Mll3 _—ZHXW -2

(negative term)
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Accelerated Rates by Optimistic OMD _ PR

e Can we achieve an O(1) regret for I B e )
. . . | Vi) 2aVi)
weighted online-to-batch conversion? || oo

Vix) Conversion V fi(xy) Online algorithm
Yes! We can use the Optimistic Online Mirror Descent of the last lecture.

Vfi(x:) = VI(Xy), M; = oV [(%X;), with x; to be determined:

T T T
D? 5 1
th(xt) - th(u) 3 Py UZ eV f(Xe) — ar V[ (Xe) |3 U Z |01 — xI3
(L-smoothness)
D? d 1 —
272 ~ 2
< 5yt et xRl — g 3 e —

Advanced Optimization (Fall 2024) Lecture 9. Optimism for Fast Rates 48



Optimism Design
i f(x) Z fi(u

=~ 277 +WZ@3L2 [ —XtHg ——ZHXtH — x5

* Optimism design: approximate x; as possible as we can

by def )_(t —

1
Ay o~ o
-~ _ :> Xt — Xt — —‘(Xt—Xt—l)
we set X; = A%(Zt_l (_ Xy 1) .

4
ensure that (m/_{f‘ — 4—”) <Owithay =t == n< 2

> Therefore, by setting 1 = -, we have RegT < 2D*L = O(1).

Advanced Optimization (Fall 2024)
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Accelerated Rates by Optimistic OMD

* Combining the weighted online-to-batch conversion and a careful
optimism design (for constant regret), we achieve the acceleration.

Lemma 1. Suppose f : X — R is a convex function with a convex and compact
set X. Then, for the following output with weighted average (regardless of how the
{x;}]_, are generated): X, = A% S asX,, with Ay 2 3, and oy > 0, we
have the following online-to-batch conversion:

— " Z?: (i Vf(X), X¢ —X*) A RegA(X*)
f(xr) — f(x) < : o = XT .

—> Reg? = O(1), A" = O(T~2), which leads to an O(T~?) convergence rate!
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Accelerated Rates by Optimistic OMD

* Combining the weighted online-to-batch conversion and a careful

optimism design (for constant regret), we achieve the acceleration.

Algorithm 2 Simple Accelerated Method based on Optimistic OMD

1: Initialization: Set o, = ¢, A, = >.._ | aq,n = 7.
2: fort =1,2,..., T do
.~ 1
3: [ Submit x; éﬁ% 22:1 VeXs + QX
Receive V f(x;), set M, = o,V f(x;)
Update x; = arg minyex 7 (My, X) + = ||x — X¢||3

Receive Vf(X;), set V fi(x;) = .V f(X})
Update X411 = argmingex 7 (V fi(x¢), X) + %HX — %13

4
5
6: [ Submitx; = A% Zi:l VX
7
8:
9: end for

Advanced Optimization (Fall 2024) Lecture 9. Optimism for Fast Rates

51



History bits: Optimism for Acceleration
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i that achicves neas-optimal raics for smooth stochastic comvex apt
o prior knowledge of problem parameters. This improves on peior work
distanee w optimality dp. Dar metbod, U-DoG

3 (Ivgi et al. [27]) with novel iterate stabilizath
wle, provides hi

We propose 3 meth sization

Abstract

sdaptive, accelerated algodithm foe the stochastic constrained
i wul. which is inspircd by the
sptimal rates for smoothfaon
les. This is done withous
any prior knowledge of the smoothness « propertics of the problem.
Tir the best of our knewledge, this is the first adaptive, unified algosithm that
achieves he optimal rates in the constrained setting. We demenstrate the practical
performance of vur framework through extensive numerical experiments.

1. Introduction

We eonsider the problem of minimizing a smooth convex function 1g access 1o an wnbiased
stochastic gradient orucle. This is o fundamental problem in machine learning, including m
portant special cases such as logistic and lincar regs . Morcover, the pti

crucial for developing one of the most widely used improvements for the classical gradient methosd:
Nesterov accelerati

1 Introduction

- ssks ften rely oa constrsining the st o
ple solutions in the form of low aorm of low entropy,
fion guaranie

onvergence for this problem b strongly

Speci! Lan [33), who first demonstrated the the-
of Nesterov acceberation on smooth srochastic convex functions, requires knowledge
 from the initial point (o the optimum, and a value
erated adaptive methods [14, 30] do not require

ch in trun enables 1o

w523 of non-smooth and smooth abjectives
cly; where T i the total number
4 th

of the smaothness parameter 4, the dis

o for which the noise is o-subd

sisy) gradicat queric:

stochastic gradient estimates, [7 is the effective diumeter of the decision set, and ' is a bound on tf knowledge of 9 and o, but assume knowledge of di. For mon-smoatl stochastic convex optimaz
ude of gradient estimates. These rates cannct be improved without additional assumptions. tiow, prarsmetersfree methods [e.g., 7,9, 16, 27, 28, 41, 49] require only koose kinowledge of problem
The optimal rate for the non-smooth case may be obtained by the current state-of-the-an optimization parameters 1o obtain near-optimal rates, ds for soonh stochastic
s, such as Stochastic Gradient Descent (SGDY. AdaGrad [ ‘m h;‘ 3 optimizaton is a longsanding open problem.
- in order 1o

and Ba, 2014), and AmsGrad [Reddi et
the smooth case, one is required o use more involved aeceleraied methods such o [Hu et
Lan, 2012, Xiao, 2010, Diakonkolss and Orecchia, 2017, Coben et al, 2015, De

Our contribution.  We solve this open problem, designing an accelersied parameter-free method
il UNIXGRAD-DOG, or U-DOG for short, U-DOG combi

es the “universal exiry

which we

GRrAD) frmework | 30] with the “distance over gradient”™ (DoG) wechnigue [27).

pricr knawh the smoothaess parame. gradient
r up busricr for their se in practice, As More specifically, we repla "
o in machine hearing caks. the maximum distance from the initial point, similar 1o the DoG step size numerator, Furthermore,
for SCO that chtains the optimal rates in bath smooth we e parameter o of UNIXGRAD,
rding the smoothness of the problem L. nor

¢ the domain diaumne

Din the UNINGRAD step size numerator

s well as the
sult, accelerated methands afe mk very |

s maximum distance 1o auo

"his work develops a new mniversal method ally tune the

and non-smooth cases, witkons any prior bnaviedge reg
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