
Advanced Optimization (2024 Fall)

Homework #1

Student ID, Name, Email

November 1, 2024

Evaluation: There is a problem section (in total 5 problems, 270pts) and a bonus

section (5pts), and your score is the sum of the problem section and the bonus

section. The scoring method for the problem section is as follows: Problem 1 (70pts)

is asked to solve. Choose 3 of the remaining 4 problems (each with 50pts) to finish.

There are two options for the final score evaluation of the problem section:

1. (recommended) If you choose 4 problems (Problem 1 + 3 selected ones, totally

220pts), you can obtain the full score (200pts) once you achieve at least 200pts.

2. If you choose 4 problems (totally 220pts) and finish the remaining one (50pts):

(a) If you haven’t achieved 200pts on the chosen 4 problems, back to Case 1.

(b) If you obtain (245 +X)pts (X ≥ 0), the final score will be (200 +X)pts.

Attention: You are requested to indicate selected problem ids clearly.

My selected problem ids: 1,x,x,x.

% replace x,x,x by selected ids (e.g., 2,3,4,5)

% x,x,x = 2,3,4 by default if not explicitly specified

1

1 [70pts] APG Analysis and Implementation

Consider the following unconstrained composite optimization:

min
x∈Rd

F (x) ≜ f(x) + h(x),

where both f(·) and h(·) are convex. The function f(·) is L-smooth, whereas h(·) is not.
Proximal Gradient (PG) updates as xt+1 = PhL(xt) ≜ prox 1

Lh
(xt − 1

L
∇f(xt)), where

prox is the proximal mapping. PG achieves an O(1/T) convergence rate; however, this

rate is suboptimal, analogous to the suboptimality of Gradient Descent (GD) in smooth

optimization settings. A natural approach to improve the convergence rate in composite

optimization is to extend Nesterov’s Accelerated Gradient Descent (AGD) method, leading

to the development of the Accelerated Proximal Gradient (APG) algorithm:

xt+1 = PhL(yt), yt+1 = xt+1 + βt(xt+1 − xt),

where βt > 0 is a time-varying weight of the “momentum” term (xt+1 − xt).

(1) [15pts] Try to design βt and prove the convergence rate of APG:

F (xT)− F (x⋆) ≤ O
(

1

T 2

)
.

(2) [10pts] For Lipschitz convex functions, we know that the Gradient Descent (GD)

algorithm achieves a convergence rate of O(1/
√
T). Given the strong performance

of the APG method, one may wonder if we can “hack” the APG to obtain a faster

convergence rate for Lipschitz convex functions.

Specifically, for the convex and Lipschitz optimization minx∈Rd h(x), we can rewrite

it as a composite optimization minx∈Rd f(x) + h(x), where f(x) = 0 is convex and

0-smooth function, satisfying the requirements of APG. As such, it seems that the

result of APG directly implies an O(1/T 2) convergence rate for Lipschitz convex

function h(x). Even L = 0 may cause trouble in the proximal mapping, we can

add a small ε to rectify the issue. Is this idea correct? Give your answer, and

briefly provide the reason.

(3) [5pts] To further understand the APG, let us consider a practical application: back-

ground modeling from videos. Suppose we are given a data matrix D ∈ Rm×d, which

is expected to be decomposed as

D = L0 + S0,

where L0 ∈ Rm×d has low rank and S0 ∈ Rm×d is sparse. For example, if the data

matrix D represents a sequence of frames from a monitoring video, the background

2

variations L0 can be modeled as a low-rank structure because of the correlation across

frames, while moving foreground objects S0 can be represented as sparse components.

To achieve this goal, we formulate the following optimization problem:

min
L,S∈Rm×d

1

2
∥D − L− S∥2F + µ∥L∥∗ + λ∥S∥1, (1.1)

where µ, λ > 0 are hyperparameters, ∥A∥∗ =
∑

i σi(A) = tr(
√
A⊤A) denotes the

nuclear norm to impose the low-rank requirement on the matrix A, and ∥A∥1 =∑
ij |Aij | denotes the ℓ1-norm to impose the sparsity requirement on the matrix A.

To solve (1.1), we can convert it into a composite optimization problem, where the

optimization variable is X ≜ (XL, XS) ∈ Rm×d × Rm×d and the corresponding com-

posite functions are f(X) = 1
2
∥D−XL−XS∥2F and h(X) = µ∥XL∥∗ + λ∥XS∥1. Now

the optimization problem becomes

min
X∈Rm×d×Rm×d

f(X) + h(X).

Note that both f(·) and h(·) are convex, and f(·) is Lf -smooth w.r.t. the ∥·∥ norm

(i.e. ∥X∥ ≜
√
∥XL∥2F + ∥XS∥2F).

Compute the smoothness parameter Lf of f(·) in this problem.

(4) [40pts] We can further use the APG algorithm to solve the background modeling

from the video problem. Implement the PG and APG algorithms, compare the loss

curves of PG and APG and attach the figure here. Detailed instructions are available

in the AOpt-Lab1/AOpt-Lab1.ipynb jupyter notebook. Please make sure to export

the completed ipynb file as an HTML file. Ensure that your outputs can be seen in

the HTML file, and submit the HTML file along with your homework .

Solution. Give your answers here. (中英文均可)

3

2 [50pts] Non-convex Opt for Smooth Functions

We consider the unconstrained non-convex optimization problem minx∈Rd f(x), where

we assume f(·) is L-smooth. In class, we consider the convergence rate to a minimum to

evaluate algorithms’ performances. However, for non-convex functions, finding an exact

optimal point is often challenging. Thus, we instead focus on the convergence rate to an

ε-stationary point. Formally, we call x an ε-stationary point if the following is satisfied:

∥∇f(x)∥2 ≤ ε.

In the subsequent subproblems, we will analyze the gradient descent (GD) algorithm,

prove the O(1/
√
T) convergence rate to an ε-stationary point with deterministic feedback,

and the O(1/T 1/4) convergence rate with stochastic feedback.

In (1) and (2) subproblems, we will analyze GD with deterministic feedback, where

the gradient ∇f(xt) at each point xt can be fully observed and GD updates as:

xt+1 = xt − η∇f(xt). (2.1)

(1) [10pts] Design an appropriate step size η (L is known), and prove that with the

designed step size, GD in (2.1) satisfies:

f(xt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥22.

(2) [10pts] Prove that, GD in (2.1) with η designed in subproblem (1) guarantees:

T∑
t=1

∥∇f(xt)∥22 ≤ O (L∆) ,

where ∆ ≜ f(x1)−minx∈Rd f(x). Furthermore, let x̃ be a decision uniformly selected

from x1, . . . ,xT , then, with the designed step size, prove that:

E [∥∇f(x̃)∥2] ≤ O

(√
L∆√
T

)
,

i.e., the convergence rate to an ε-appropriate point is O(1/
√
T).

In (3) and (4) subproblems, we will analyze GD under stochastic feedback, where at

each round t, the algorithm provides a decision xt, and only a noisy gradient gt ∈ Rd

can be observed. We assume that the noisy gradient is:

(i) unbiased: E [gt] = ∇f(xt); (ii) variance-bounded: E
[
∥gt −∇f(xt)∥22

]
≤ σ2.

Additionally, we assume (iii) the evaluations of gradients are independent across

iterations. Accordingly, GD updates as:

xt+1 = xt − ηgt. (2.2)

4

(3) [15pts] Prove that GD in (2.2) satisfies:

E[f(xt+1)] ≤ E[f(xt)] +
(
Lη2

2
− η
)
E[∥∇f(xt)∥22] +

Lη2

2
σ2,

where the expectation is taken with respect to the randomness of stochastic gradients.

(Hint: The stochastic gradient is unbiased.)

(4) [15pts] Prove that when η ≤ 1
L
, GD in (2.2) satisfies:

E

[
T∑
t=1

∥∇f(xt)∥22

]
≤ O

(
∆

η
+ ηLTσ2

)
.

Let x̃ be a decision uniformly selected from x1, . . . ,xT . Then, try to design a step size

η (L, σ, ∆ and T are known), and prove that, with the designed step size:

E[∥∇f(x̃)∥2] ≤ O

(√
L∆√
T

+

√
σ
√
L∆

T 1/4

)
,

which indicates that the convergence rate to an ε-appropriate point is O(1/
√
T +

√
σ/T 1/4), and when σ = 0, i.e., there is no randomness, the above result recovers the

O(1/
√
T) convergence rate with deterministic feedback.

(Hint: You may need to consider a case-by-case analysis for step size tuning.)

Solution. Give your answers here. (中英文均可)

5

3 [50pts] OMD with Time-Varying Comparators

In this problem, we are interested in benchmarking the performance of Online Gradient

Descent (OGD) against time-varying comparators:

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut),

where u1,u2, . . . ,uT ∈ X are arbitrary comparators in the feasible domain. By choosing

u1 = · · · = uT = x⋆, where x⋆ ∈ argminx∈X
∑T

t=1 ft(x), this measure recovers the standard

regret discussed in the class. While the flexibility in choosing u1, . . . ,uT allows for the

algorithm to handle more complex settings.

During the subsequent subproblems, our analysis will be centered on OGD:

xt+1 = ΠX [xt − η∇ft(xt)] . (3.1)

We assume that the domain diameter is bounded by D, i.e., supx,y∥x− y∥2 ≤ D, and

the gradient norm is bounded by G, i.e., ∥∇ft(x)∥2 ≤ G,∀t ∈ [T],x ∈ X . For simplicity,

we assume ft(x) ∈ [0, GD],∀x ∈ X , t ∈ [T].

(1) [5pts] Try to prove the following property:

∥x− y∥22 − ∥x− z∥22 ≤ 4D∥y− z∥2,∀x,y, z ∈ X .

(2) [10pts] Try to prove that OGD in (3.1) satisfies the following regret bound:

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
4DQT +D2

2η
+
ηG2T

2
, (3.2)

where we introduce QT =
∑T

t=2∥ut − ut−1∥2 in above, a quantity measuring the

changing degree in the comparators.

(3) [20pts] If we could know the exact value of QT in advance, by setting η = O
(√

1+QT

T

)
,

we can obtain the regret bound ofO(
√
(1 +QT)T). However, as we expect our method

to hold consistently for any u1, . . . ,uT , assuming the knowledge of QT is unrealistic.

Instead of tuning a single algorithm, we can estimate the value of QT and run multiple

instances of the OGD algorithm to offset the uncertainty. At last, we will combine

the decisions from different instances via Hedge. We describe this method in below:

H =

{
ηi = 2i−1 · D

G
√
T

: i ∈ [N]

}
(3.3)

xt+1,i = argmin
x∈X

{
⟨∇ft(xt,i),x⟩+

1

2ηi
∥x− xt,i∥22

}
, ∀i ∈ [N] (3.4)

pt+1,i ∝ exp
(
− ε

t∑
s=1

fs(xs,i)/GD
)
,p1 =

1

N
· 1 ∀i ∈ [N]. (3.5)

6

xt+1 =
N∑
i=1

pt+1,ixt+1,i (3.6)

In above, N = ⌈ 1
2
log2(1 + 4T)⌉ denotes the number of running OGD instances. (3.3)

is the possible step sizes, and for each ηi ∈ H, we employ an OGD with the specific

step size ηi, as presented in (3.4). Eq. (3.5) calculates the weights for combining via

Hedge taught in the class. Finally, in Eq (3.6), xt+1 is the final decision we submit.

(3.i) [5pts] The ideal step size for Eq. (3.2) is:

η⋆ =

√
4DQT +D2

G2T
.

Prove that given any arbitrary comparators u1, · · · ,uT , there exists ηi⋆ ∈ H,
such that the following inequality holds:

ηi⋆ ≤ η⋆ ≤ 2ηi⋆ .

(3.ii) [5pts] Design the learning rate ε in (3.5) and prove that:

T∑
t=1

ft(xt)−
T∑
t=1

ft(xt,i) ≤ O
(√

T
)
,∀i ∈ [N],

where in above, we treat doubly-logarithmic factor O(log log T) as a constant.

(3.iii) [10pts] Prove that, with the learning rate ε satisfying the requirement in problem

(3.ii), decisions {xt}Tt=1 generated by (3.6) guarantee:

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

(1 +QT)T
)
,

for any arbitrary comparators u1, . . . ,uT ∈ X .

(4) [15pts] Method described from (3.3) to (3.6) requires multiple queries of gradients

(∇ft(xt,i)) and function values (ft(xt,i)) at each time. Can you improve this method

and develop a more efficient one that only queries one gradient ∇ft(xt) at each time?

Present your method in a format similar to Eq. (3.3) to Eq. (3.6), specifying the

corresponding step sizes and learning rate. Highlight how you will analyze the regret

from the combination and the regret for the running instance.

Solution. Give your answers here. (中英文均可)

7

4 [50pts] Learning Rate Tuning in (Adaptive) Hedge

Consider the Prediction with Experts’ Advice (PEA) problem, where we denote ℓt ∈
[0, 1]N to be the loss vector at time t ∈ [T], and the domain is the simplex ∆N . One of the

classic PEA algorithms is Hedge, which updates the weights as follows,

pt+1,i ∝ exp(−ηLt,i),∀i ∈ [N], (4.1)

where Lt,i =
∑t

s=1 ℓs,i is the cumulative loss of the i-th expert.

(1) [10pts] Prove that the Hedge algorithm with the learning rate η ensures that:

T∑
t=1

⟨pt, ℓt⟩ − LT,i⋆ ≤
lnN

η
+ η

T∑
t=1

⟨pt, ℓt⟩,

where LT,i⋆ = mini∈[N] LT,i. Then further prove that the regret can be bounded by

O(
√
T logN) with the optimal tuning η when T is given.

(2) [15pts] The Hedge algorithm achieves a regret bound of O(
√
T logN) with optimal

tuning of η, provided that T is known in advance. However, what if the total iterations

T are unknown? One of the approaches to address it is to employ time-varying learning

rates. However, this approach requires a new analysis and redesign of the algorithm

itself. In the following, we instead aim to develop a tuning strategy that leverages the

results studied so far in a black-box manner to overcome it, without the need for the

time-varying learning rates design.

The approach is to start with an initial guess for T , and whenever the actual number of

iterations exceeds this guess, we double the guess and restart the algorithm. The main

idea is summarized in Algorithm 1 (with 0 being the all-zero vector). Two blanks,

(i) and (ii), remain for you to fill in. Then try to prove that Algorithm 1 ensures

O(
√
T logN) for all T .

(Hint: Consider the regret between two resets and take the summation of them.)

Algorithm 1 Hedge with Black-box Tuning

1: Initialization: Set L0 = 0, T0 = 1, η =
√

(lnN)/T0.

2: for t = 1, 2, . . . do

3: Compute pt by (4.1)

4: Play pt and receive ℓt

5: Lt = Lt−1 + ℓt

6: if t = T0 then

7: Lt = 0, η = (i)

8: T0 ← (ii)

9: end if

10: end for

8

(3) [15pts] Beyond achieving the regret bound of O(
√
T logN), we are interested in

obtaining a more adaptive bound that replaces the dependence of T by LT,i⋆ . This type

of bound in O(
√
LT,i⋆ logN) is known as “small-loss” bound, where the algorithm’s

performanc scales with the cumulative loss of the best expert i⋆.

Prove that Hedge with fixed learning rate η ensures that

T∑
t=1

⟨pt, ℓt⟩ − LT,i⋆ ≤
1

1− η

(
lnN

η
+ ηLT,i⋆

)
,

where the tuning η = min{ 1
2
,
√

(lnN)/LT,i⋆} achieves O(
√
LT,i⋆ logN+logN). How-

ever, the quantity LT,i⋆ is unknown in advance; nonetheless, one can still use the same

tuning idea presented previously to achieve the same bound.

Try to design a tuning strategy similar to the spirit of subproblem (2), such that the

bound O(
√
LT,i⋆ logN + logN) can be obtained without knowing LT,i⋆ , T and i⋆ in

advance.

(4) [10pts] Try to prove the regret bound O(
√
LT,i⋆ logN + logN) of the method you

have designed in subproblem (3).

Solution. Give your answers here. (中英文均可)

9

5 [50pts] OMD with a Stabilizer

The classic Online Mirror Descent (OMD) algorithm follows the below update formula:

xt+1 = argmin
x∈X

{
ηt⟨∇ft(xt),x⟩+Dψ(x,xt)

}
. (5.1)

A similar online algorithm, Follow the Regularized Leader (FTRL), updates as:

xt+1 = argmin
x∈X

{
ηt

t∑
s=1

⟨∇fs(xs),x⟩+ ψ(x)
}
. (5.2)

During the course, we studied that OMD and FTRL are equivalent under certain

conditions when employing the same fixed step size. However, in general, they are different

particularly when the step size can change over time, and we now investigate the difference.

(1) [10pts] We set the regularizer ψ(x) = 1
2
∥x − x1∥22, and corresponding step sizes

ηt+1 ≤ ηt,∀t ∈ [T] for OMD and FTRL in (5.1) and (5.2). Under these conditions, try

to prove that OMD presented in (5.1) guarantees that:

T∑
t=1

ft(xt)−
T∑
t=1

ft(x⋆) ≤ O

(
maxt∈[T]∥xt − x⋆∥22

ηT
+

T∑
t=1

ηt∥∇ft(xt)∥22

)
,

where x⋆ ∈ argminx∈X
∑T

t=1 ft(x).

Additionally, prove the following regret bound for FTRL presented in (5.2):

T∑
t=1

ft(xt)−
T∑
t=1

ft(x⋆) ≤ O

(
∥x1 − x⋆∥22

ηT
+

T∑
t=1

ηt−1∥∇ft(xt)∥22

)
.

(2) [10pts] In subproblem (1), we notice that the regret bound for OMD depends on

the factor maxt∈[T]∥xt − x⋆∥22, which is challenging to analyze further and could be

arbitrarily large in some cases. While for FTRL, the factor ∥x1 − x⋆∥22 shown in the

bound is irrelevant to the decision process, and could be small if we choose a good

starting point with prior knowledge. Next, we consider a specific setting where this

point could lead to significantly different results.

Consider the Prediction with Experts’ Advice (PEA) setting, where the domain is

X = ∆N . We often choose ψ as the negative entropy function, and in this case the

induced Bregman divergence Dψ(·, ·) becomes the well-known KL-divergence. We set

the starting point as x1 = [1/N, . . . , 1/N]. With this setup, try to prove that:

sup
x∈X
Dψ(x,x1) ≤ lnN, sup

x,y∈X
Dψ(x,y) = +∞.

(3) [15pts] We expect that OMD can exhibit similarly desirable properties as FTRL. For

this purpose, we consider the following modified OMD under a simpler OCO setting:

10

xt+1 = argmin
x∈X

{
ηt⟨∇ft(xt),x⟩+

1

2
∥x− xt∥22 +

(ηt
ηt+1

− 1
)
∥x− x1∥22

}
.

In above, we introduce a stabilizer (the last term in above) to the update formula.

In a sense, if ηt = ηt+1, which recovers to the fixed step size setting, this regularizer

becomes zero. However, if the step sizes decrease too rapidly, then ηt
ηt+1
− 1 > 0 will

become larger and the stabilizer will “drag” the decision closer to x1.

Try to prove the following inequality:

⟨∇ft(xt),xt − x⋆⟩ ≤
1

2ηt

(
∥xt − x⋆∥22 − ∥xt+1 − x⋆∥22 − ∥xt − xt+1∥22

)
+ ⟨∇ft(xt),xt − xt+1⟩+ ϕ(x⋆)− ϕ(xt+1),

where we define ϕ(x) = (1
ηt+1
− 1

ηt
)∥x− x1∥22.

(Hint: ϕ(x) is convex.)

(4) [15pts] Assume that ηt+1 ≤ ηt,∀t ∈ [T], prove that the following regret bound for

OMD with stabilizer:

T∑
t=1

ft(xt)−
T∑
t=1

ft(u) ≤ O

(
∥x1 − x⋆∥22

ηT+1

+
T∑
t=1

ηt∥∇ft(xt)∥22

)
.

(Hint: Think about which terms contribute to maxt∈[T]∥xt − x⋆∥22.)

Solution. Give your answers here. (中英文均可)

11

6 [5pts] Bonus (Lecture Slides 1-7)

You can earn bonus points by pointing out errors in the lecture slides 1-7 on the course

website. Specifically, consider the following three types of errors:

(A) Technical errors (e.g., incorrect coefficients in formulas), 1pts each.

(B) Serious typo in presentation (e.g., AB but actually A⊤B, xA but actually

x⊤A), 0.5pts each.

(C) Typos in formula/statement (e.g., writing vector xt as xt; grammar/spelling

errors), 0.25pts each.

(D) Other suggestions: like how to better organize the proofs or alternative simpli-

fied proofs..., up to 1.5pts each.

List the errors in lecture slides 1-7 and state the way to correct. Please clearly indicate

which type each error belongs to, with a total score not exceeding 5pts.

For example,

(1) [(A) Technical errors] Lecture X. Page2. xxx

(2) [(B) Serious typo in presentation] Lecture Y. Page4. yyy → zzz

(3) [(C) Typos in formula/statement] Lecture W. Page6. www → vvv

(4) [(D) Other suggestions] Lecture V. Page8. It would be better...

Solution. Give your answers here. (中英文均可)

12

Acknowledgements

The homework bearing your name must represent your individual contribution. While

discussions during the completion of the assignment are permissible, they are conditioned

upon the fact that none of the participating individuals have completed the discussed topics.

We emphasize that the implementation of key ideas within the assignment must be done

independently. You should extend your acknowledgments to those individuals

who have participated in the discussions here.

This course adopts a zero-tolerance policy toward plagiarism. The grades of students

found to have engaged in plagiarism without providing proper citations or acknowledgments

will be annulled. In cases of mutual plagiarism, the grades of both the plagiarizer and

the plagiarized will be annulled.

13

	[70pts] APG Analysis and Implementation
	[50pts] Non-convex Opt for Smooth Functions
	[50pts] OMD with Time-Varying Comparators
	[50pts] Learning Rate Tuning in (Adaptive) Hedge
	[50pts] OMD with a Stabilizer
	[5pts] Bonus (Lecture Slides 1-7)

