
Advanced Optimization (2024 Fall)

Homework #2

Student ID, Name, Email

December 1, 2024

Evaluation: There is a problem section (in total 5 problems, 270pts) and a bonus

section (5pts), and your score is the sum of the problem section and the bonus

section. The scoring method for the problem section is as follows: Problem 1 (70pts)

is asked to solve. Choose 3 of the remaining 4 problems (each with 50pts) to finish.

There are two options for the final score evaluation of the problem section:

1. (recommended) If you choose 4 problems (Problem 1 + 3 selected ones, totally

220pts), you can obtain the full score (200pts) once you achieve at least 200pts.

2. If you choose 4 problems (totally 220pts) and finish the remaining one (50pts):

(a) If you haven’t achieved 200pts on the chosen 4 problems, back to Case 1.

(b) If you obtain (245 +X)pts (X ≥ 0), the final score will be (200 +X)pts.

Attention: You are requested to indicate selected problem ids clearly.

My selected problem ids: 1,x,x,x.

% replace x,x,x by selected ids (e.g., 2,3,4,5)

% x,x,x = 2,3,4 by default if not explicitly specified
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1 [70pts] OOMD for Game and Implementation

We consider a three-player game, where the strategies of three players are represented

by x,y and z. We consider the game repeated T times. In round t, after all three

players simultaneously submit their strategies (xt,yt, zt), each player’s individual cost

is calculated using their own cost function. For example, x-player’ cost function is denoted

as Gx : (x,y, z) 7→ R, and Gy : (x,y, z) 7→ R for y-player, Gz : (x,y, z) 7→ R for z-player.

Let G(·) ≜ Gx(·) + Gy(·) + Gz(·) denote the total cost for the three players. Ideally, we

hope all players can cooperate to achieve the minimum total cost GMin ≜ minx,y,z G(x,y, z).
However, a more likely scenario is that each player selfishly tries to minimize their own cost

during the game. In this problem, we focus on a quantity: the average total cost of all

players, i.e., GT ≜ 1
T

∑T
t=1 G(xt,yt, zt), and are concerned with the following question :

What condition can a game satisfy to ensure GT isn’t much worse than GMin?

We focus on the smooth games defined as follows for simplicity.

Assumption 1 (Smooth Games). For the game G, it is called a (λ, µ)-smooth game

with λ > 0 and µ < 1, if there exists a strategy profile (x⋆,y⋆, z⋆) such that the

following holds for any strategies (x,y, z):

Gx(x⋆,y, z) + Gy(x,y⋆, z) + Gz(x,y, z⋆) ≤ λ · GMin + µ · G(x,y, z). (1.1)

Intuitively, in smooth games, any player using her optimal strategy continues to do

well, irrespective of other players’ strategies.

In the following problems, define Regx
T ≜ maxx

∑T
t=1

(
Gx(xt,yt, zt) − Gx(x,yt, zt)

)
,

Regy
T ≜ maxy

∑T
t=1

(
Gy(xt,yt, zt)− Gy(xt,y, zt)

)
, and Regz

T is similarly defined.

(1) [10pts] With (1.1), try to prove the following guarantees:

1

T

T∑
t=1

G(xt,yt, zt) ≤
λ

1− µ
GMin +

1

(1− µ)T

(
Regx

T +Regy
T +Regz

T

)
,

which means with sublinear regrets, we have the guarantee limT→∞ GT ≤ λ
1−µ

GMin,

thereby answering the question posed above.

(2) [10pts] In the class, we have learned that Optimistic Online Mirror Descent (OOMD)

can lead to fast-rate convergence for two-player zero-sum games. We now consider

the three-player game in this problem and assume that each player picks a mixed

strategy from ∆d. Each player has her own tensor to measure cost, that is, x-

player has Gx ∈ [0, 1]d×d×d, y-player has Gy ∈ [0, 1]d×d×d, and z-player has Gz ∈
[0, 1]d×d×d. For the tensor G ∈ Rd×d×d and three vectors x,y, z ∈ Rd, We abbrevi-

ate
∑d

i=1

∑d
j=1

∑d
k=1 Gi,j,kxiyjzk as G[x,y, z]. Then, the cost functions for the three

players are specified as:

Gx(x,y, z) ≜ Gx[x,y, z], Gy(x,y, z) ≜ Gy[x,y, z], Gz(x,y, z) ≜ Gz[x,y, z].
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In round t, after the three players submit their strategies xt,yt and zt, they can

observe the gradient of their own cost functions, which is ∇xGx(xt,yt, zt) for x-player,

∇yGy(xt,yt, zt) for y-player, and ∇zGz(xt,yt, zt) for z-player.

Design an OOMD algorithm with NE-entropy for each of the three players, prove that:

Regx
T ≲

1

ηx
+ ηx

T∑
t=2

∥∇xGx(xt,yt, zt)−∇xGx(xt−1,yt−1, zt−1)∥2∞ − 1

ηx

T∑
t=2

∥xt − xt−1∥21,

Regy
T ≲

1

ηy
+ ηy

T∑
t=2

∥∇yGy(xt,yt, zt)−∇yGy(xt−1,yt−1, zt−1)∥2∞ − 1

ηy

T∑
t=2

∥yt − yt−1∥21,

Regz
T ≲

1

ηz
+ ηz

T∑
t=2

∥∇zGz(xt,yt, zt)−∇zGz(xt−1,yt−1, zt−1)∥2∞ − 1

ηz

T∑
t=2

∥zt − zt−1∥21,

where ηx, ηy and ηz are the constant step-sizes for each of the three algorithms. We

use ≲ to denote “asymptotically smaller than” by dropping constant factors.

(3) [10pts] Prove the following inequality:

∥∇xGx(xt,yt, zt)−∇xGx(xt,yt−1, zt)∥2∞ ≤ ∥yt − yt−1∥21.

Then design the step-sizes ηx, ηy, ηz, and prove the following guarantee:

Regx
T +Regy

T +Regz
T ≤ O(1).

(4) [40pts] Implement the OMD and OOMD algorithms to solve the game mentioned

above, and attach the figure comparing the average total cost curves of the two algo-

rithms here. Detailed instructions are available in the AOpt-Lab2/AOpt-Lab2.ipynb

jupyter notebook. Submit AOpt-Lab2.ipynb file along with your homework. Make

sure the results can be checked.

Solution. Give your answers here. (中英文均可)
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2 [50pts] Accelerated Composite Optimization

Consider the following composite optimization within a bounded domain:

min
x∈X

F (x) ≜ f(x) + h(x),

where both f(·) and h(·) are convex, and f(·) is L-smooth w.r.t. ∥·∥2, whereas h(·) is not.
We assume that the domain diameter is bounded by D, i.e., supx,y∈X∥x− y∥2 ≤ D.

In class, we have learned a simple accelerated method for smooth convex optimization

building on the general framework of optimistic online learning. Can the same approach be

applied to the composite optimization?

More specifically, we consider the following weighted online-to-batch conversion:

xt =
1

At

t∑
s=1

αsxs, with At =
t∑

s=1

αs and αt > 0,∀t ∈ [T ]. (2.1)

(1) [10pts] Try to prove that (2.1) ensures the following reduction:

F (xT )− F (x⋆) ≤
∑T

t=1

(
⟨αt∇f(xt),xt − x⋆⟩+ αth(xt)− αth(x

⋆)
)

AT

. (2.2)

(2) [20pts] The inequality (2.2) allows us to reduce offline optimization as an online one.

Define the online function as Ft(x) ≜ ft(x)+ht(x), where ft(x) ≜ ⟨αt∇f(xt),x⟩, ht(x) ≜

αth(x). To this end, we design the following optimistic online learning algorithm:

xt = argmin
x∈X

{
η
(
⟨Mt,x⟩+ ht(x)

)
+

1

2
∥x− x̂t∥22

}
(2.3)

x̂t+1 = argmin
x∈X

{
η
(
⟨∇ft(xt),x⟩+ ht(x)

)
+

1

2
∥x− x̂t∥22

}
(2.4)

(2.i) [10pts] Prove the stability property for the updates (2.3) and (2.4), that is

∥xt − x̂t+1∥2 ≤ η∥∇ft(xt)−Mt∥2.

(2.ii) [10pts] Prove the Bregman proximal inequality for the update (2.4):

η⟨∇ft(xt) +∇ht(x̂t+1), x̂t+1 − x⋆⟩ ≤ 1

2
∥x⋆ − x̂t∥22 −

1

2
∥x⋆ − x̂t+1∥22 −

1

2
∥x̂t+1 − x̂t∥22.

(3) [10pts] Try to prove that, the algorithm using (2.3) and (2.4) satisfies:

T∑
t=1

(
Ft(xt)− Ft(x

⋆)
)
≤ ∥x⋆ − x̂1∥22

2η
+ η

T∑
t=1

∥∇ft(xt)−Mt∥22 −
1

4η

T∑
t=2

∥xt − xt−1∥22.

(4) [10pts] Design the weights αt, the step size η and the optimism Mt, prove that:

F (xT )− F (x⋆) ≤ O
(
L · 1

T 2

)
.
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Solution. Give your answers here. (中英文均可)
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3 [50pts] Two-Point Bandit Convex Optimization

We consider Bandit Convex Optimization (BCO) with two-point feedback. At each

round t, the online learner can query two points x1
t ,x

2
t ∈ X ⊆ Rd , and observe the function

values ft(x
1
t ) and ft(x

2
t ). The online functions {ft}Tt=1 are supposed to be G-Lipschitz. The

objective is to minimize the following expected regret over T rounds:

E [RegT ] = E

[
T∑

t=1

1

2

(
ft
(
x1
t

)
+ ft

(
x2
t

) )]
−min

x∈X

T∑
t=1

ft(x) (3.1)

Building on the two-point feedback, we aim to refine the Bandit Gradient Descent algorithm

introduced in the course. At each round, we use the observed information to estimate a

gradient g̃t and then use it to perform gradient descent:

yt+1 = Π(1−α)X [yt − ηg̃t]

where Π(1−α)X denotes the projection onto the shrunk set (1− α)X .

(1) [10pts] A basic idea for gradient estimation is: first uniformly sample from a unit

vector st ∈ S ≜
{
x ∈ Rd | ∥x∥2 = 1

}
at random and submit the following queries:

x1
t = yt + δst and x2

t = yt − δst; and then use the observed values ft(x
1
t ) and ft(x

2
t )

to construct the following gradient estimator

g̃t =
d

2δ
(ft (yt + δst)− ft (yt − δst)) st,

(1.i) [5pts] Please prove that the gradient estimator still satisfies the unbiasedness

condition:

f̂t(yt) = Ev∈B[ft(yt + δv)], Es∈S[g̃t] = ∇f̂(yt),

where B =
{
x ∈ Rd | ∥x∥2 ≤ 1

}
is the unit ball and S is the unit sphere. Note

that it is allowed to directly use Lemma 1 in Lecture 11 (unbiasedness of gradient

estimator in one-point BCO).

(1.ii) [5pts]Please prove that, the gradient estimator has bounded norm: ∥g̃t∥2 ≤ Gd.

(2) [15pts] Now we aim to analyze the regret of the refined BGD algorithm. Based on

the analysis in question (1), we know that the gradient estimator satisfies Es∈S[g̃t] =

∇f̂(yt). This implies that the refined BGD algorithm is performing online gradient

descent (as if with full information) on the function f̂t, restricted to the convex set

(1− α)X . Thus, when analyzing the regret (3.1), we aim to relate it to the regret of

OGD on f̂t, namely,
T∑

t=1

f̂t(xt)−
T∑

t=1

f̂t((1− α)x).
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We first consider the single-round regret 1
2
(ft(x

1
t ) + ft(x

2
t ))−ft(x), this regret can be

decomposed into five components, each capturing a specific aspect of the algorithm:

1

2

(
ft(x

1
t ) + ft(x

2
t )
)
− ft(x) =

1

2

(
ft(x

1
t ) + ft(x

2
t )
)
− ft(yt)︸ ︷︷ ︸

term (a)

+ ft(yt)− f̂t(yt)︸ ︷︷ ︸
term (b)

+ f̂t(yt)− f̂t((1− α)x)︸ ︷︷ ︸
term (c)

+ f̂t((1− α)x)− ft((1− α)x)︸ ︷︷ ︸
term (d)

+ ft((1− α)x)− ft(x)︸ ︷︷ ︸
term (e)

.

(2.i) [5pts]Please explain the meaning of each of these 5 terms. What specific impact

does each term represent?

(2.ii) [10pts] Given that ∥x∥2 ≤ D and ft is G-Lipschitz, use the above decomposition

to prove that the following regret bound holds for all x ∈ X ,

T∑
t=1

1

2

(
ft
(
x1
t

)
+ ft

(
x2
t

))
−

T∑
t=1

ft(x) ≤
T∑

t=1

f̂t (yt)−
T∑

t=1

f̂t((1−α)x)+3TGδ+TGDα.

(3) [10pts] We define ht(x) ≜ f̂t(x) +
(
g̃t −∇f̂t (yt)

)⊤
x, it is easily seen that ht(x) is

also convex with ∇ht(yt) = g̃t, which means the refined BGD algorithm is performing

deterministic OGD on the function ht restricted to the convex set (1− α)X .

(3.i) [5pts] Please prove that:

T∑
t=1

ht (yt)−
T∑

t=1

ht((1− α)x) ≤ D2

2

1

ηT
+

G2d2

2

T∑
t=1

ηt.

(3.ii) [5pts] Based on the results in (2.ii) and (3.i), please further prove that: (Hint:

E[ht(x)] = f̂t(x))

E

[
T∑

t=1

1

2

(
ft
(
x1
t

)
+ ft

(
x2
t

))
−

T∑
t=1

ft(x)

]
≤ D2

2

1

ηT
+
G2d2

2

T∑
t=1

ηt+3TGδ+TGDα.

(4) [10pts] Assume rB ⊂ X ⊂ DB, Please design the learning rate ηt, δ, α to make sure

each step x1
t ,x

2
t ∈ X and prove the following regret bound.

E

[
T∑

t=1

1

2

(
ft
(
x1
t

)
+ ft

(
x2
t

))
−

T∑
t=1

ft(x)

]
≤ 3DGd

2

√
T + 3G+

GD

r
.

(5) [5pts] Notice that in the course, we introduced BCO with single-point feedback,

which achieves a regret of O(T
3
4 ). Please explain how two-point feedback provides

advantages over single-point feedback, enabling us to achieve a regret of O(
√
T ).

Solution. Give your answers here. (中英文均可)
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4 [50pts] Efficient Stochastic Logistic Bandits

We consider the Stochastic Logistic Bandits (LogB) problem. The reward satisfies

rt = µ(X⊤
t θ∗) + ηt, where µ(z) = (1 + exp(−z))−1, and the noise ηt follows a Bernoulli

distribution such that P(rt = 1 | Xt) = µ(X⊤
t θ∗) and P(rt = 0 | Xt) = 1 − µ(X⊤

t θ∗). The

learner’s goal is to minimize the regret:

RegT = max
x∈X

T∑
t=1

µ(x⊤θ∗)−
T∑

t=1

µ(X⊤
t θ∗).

To simplify the analysis, we assume that the feasible set and the unknown parameter

are bounded: for all X ∈ X ⊂ Rd, ∥X∥2 ≤ 1, and ∥θ∗∥2 ≤ S. Furthermore, µ(z) is

L-Lipschitz on z ∈ [−S, S], and its derivative satisfies infz∈(−S,S) µ
′(z) = κ.

To estimate the unknown parameter θ∗ in LogB, a common approach is to replace the

least squares estimator used in LinUCB with the maximum likelihood estimator (MLE) or

the following to minimize negative log-likelihood:

θ̂t = argmin
∥θ∥≤S

t∑
s=1

ℓs(θ),

where −ℓs(θ) = rs logµ
(
X⊤

s θ
)
+ (1− rs) log

(
1− µ

(
X⊤

s θ
))
.

However, MLE poses a significant computational challenge in this context, as it does

not support online updates. As a result, each decision-making round requires costly re-

computation using all past data, leading to scalability issues. To address this, recent ad-

vancements suggest modeling the problem as an OCO problem by incrementally feeding

the loss functions {ℓs(θ)}ts=1 into an online learner B. Based on the output θs from B at

each round, we construct a virtual linear reward zs = X⊤
s θs. Using these, we compute the

least squares estimator θ̂t over the historical data pairs {Xs, zs}ts=1. This approach allows

for efficient online updates at every round. Next, we will prove that this method achieves

reliable estimation error guarantees and a favorable regret bound.

(1) [10pts]Assume that the online learner B satisfies the following regret bound: ∀θ, ∥θ∥2 ≤
S, ∀t ≥ 1,

∑t
s=1 ℓs(θs) − ℓs(θ) ≤ Bt. To construct the UCB for the online estimator,

we need to relate the parameter estimation error with the regret Bt. Please prove the

following result: (Hint: Taylor’s theorem over ℓs(θ).)

t∑
s=1

(
X⊤

s (θs − θ∗)
)2 ≤ 2

κ
Bt +

2

κ

t∑
s=1

ηs
(
X⊤

s (θs − θ∗)
)
. (4.1)

(2) [15pts] For Eq (4.1), the term
∑t

s=1 ηs
(
X⊤

s (θs − θ∗)
)
exhibits a structure similar to

the self-normalized concentration inequality introduced in the lecture. Hence, we aim

to apply the self-normalized concentration inequality to handle this term.
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(2.i) [5pts] Note that the self-normalized concentration inequality requires the noise

to be sub-Gaussian. Please prove that the noise ηt = rt − µ(X⊤
t θ∗) is R-sub-

Gaussian where R ≤ 1
2
. (Hint: Use Hoeffding’s lemma.)

(2.ii) [5pts] Now we know that the noise ηt is R-sub-Gaussian, try to prove that, with

probability at least 1 − δ, the following holds for any t ∈ [T ]: (Hint: convert

self-normalized concentration into 1-dimensional version.)

t∑
s=1

ηs
(
X⊤

s (θs − θ∗)
)

≤ R

√√√√√(2 + 2
t∑

s=1

(X⊤
s (θs − θ∗))

2

)
· log

1

δ

√√√√1 +
t∑

s=1

(X⊤
s (θs − θ∗))

2

.

(2.iii) [5pts] Substitute the above inequality into (4.1), and further prove that, with

probability at least 1 − δ, the following holds for any t ∈ [T ] (Hint: define

q ≜
√
1 +

∑t
s=1 (X

⊤
s (θs − θ∗))

2
)

t∑
s=1

(
X⊤

s (θs − θ∗)
)2 ≤ β′

t ≜ 1+
4

κ
Bt+

8R2

κ2
log

(
1

δ

√
4 +

8

κ
Bt +

64R4

κ4 · 4δ2

)
. (4.2)

(3) [15pts] Denote zs = X⊤
s θs as the virtual reward at step s. Then we can compute the

parameter estimator θ̂t using least squares over the history data pairs {Xs, zs}ts=1 as

θ̂t = argmin
θ

λ∥θ∥22 +
t∑

s=1

(
zs −X⊤

s θ
)2

. (4.3)

Based on Eq (4.2) and estimator (4.3), let Vt = λId +
∑t

s=1 XsX
⊤
s . Please prove that,

with probability at least 1− δ, the following holds for any t ∈ [T ]: (Hint: closed form

of least square (4.3))

∥θ∗ − θ̂t∥2Vt
≤ βt ≜ λS2 + β′

t −

(
λ∥θ̂t∥22 +

t∑
s=1

(
zs −X⊤

s θ̂t

)2)
. (4.4)

(4) [10pts] Based on the UCB βt in Eq (4.4),we design the UCB select criteria as follows,

Xt = argmax
x∈X

{〈
x, θ̂t−1

〉
+
√

βt−1∥x∥V −1
t−1

}
. (4.5)

For the parameter estimator (4.3) and arm selection criteria (4.5), please prove that,

with probability at least 1− 2δ, the following regret bound holds: (Hint: µ(x⊤θ∗)−
µ(X⊤

t θ∗) ≤ L(x−Xt)
⊤θ∗)

RegT = max
x∈X

T∑
t=1

µ(x⊤θ∗)−
T∑

t=1

µ(X⊤
t θ∗) = O

(
L
√

βTdT log T
)
.
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Solution. Give your answers here. (中英文均可)
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5 [50pts] Online Regression with Available Information

This problem investigates how to incorporate the available side information to obtain

an improved regret bound for online regression. At each round t ∈ [T ], the online learner

submits a decision xt ∈ X ⊆ Rd, and the online function is defined as ft(xt) =
1
2
(x⊤

t ψt−yt)
2,

where ψt ∈ Ψ ⊆ Rd denotes the feature and yt ∈ Y ⊆ R denotes the corresponding label.

Our goal is to minimize the regret for any u ∈ X :

RegT (u) ≜
T∑

t=1

ft(xt)−
T∑

t=1

ft(u).

We assume that yt ∈ [−Y, Y ] holds for all t ∈ [T ].

(1) [5pts] Prove that online function ft(x) is α-exp-concave with α = minx∈X
{

1
(x⊤ψt−yt)2

}
.

Based on the above result, we know that an O
(
maxx∈X ,t∈[T ]{(x⊤ψt − yt)

2} · d log T
)

regret is attainable by employing Online Newton Step when assuming the boundedness

of domain diameter and gradient norm. However, this regret may not be favorable when

the domain X or the feature space Ψ is large (the exp-concave parameter α is very small).

Below, we will resolve the issue using the available information on this problem.

Actually, in online regression, the feature ψt is available to the online learner before

submitting the decision xt (while the label yt is definitely unknown now), which means

the learner knows part of ft(·)’s information before updating. Hence, we use Optimistic

Online Mirror Descent to leverage this available information by treating it as the “hint”:

xt = argmin
x∈Rd

{
1

2

(
x⊤ψt

)2
+

1

2
∥x− x̂t∥2At−1

}
,

x̂t+1 = argmin
x∈Rd

{
1

2

(
x⊤ψt − yt

)2
+

1

2
∥x− x̂t∥2At−1

}
,

(5.1)

where At−1 = λI+
∑t−1

s=1ψsψ
⊤
s is the regularized covariance matrix.

In (5.1), we have considered the difficult scenario that X = Rd (recall that now α

can approach 0). To simplify subsequent presentations, we denote by ht(x) =
1
2

(
x⊤ψt

)2
,

serving as a “guess” of ft(x) by treating yt = 0.

(2) [20pts] Prove a property of the online function ft(x):

ft(x)− ft(y) = ⟨∇ft(x),x− y⟩ − 1

2
∥x− y∥2ψtψ⊤

t
.

With this property, try to prove an intermediate result for the algorithm in (5.1):

RegT (u) ≤
T∑

t=1

1

2

(
∥u− x̂t∥2At−1

− ∥u− x̂t+1∥2At−1
− ∥u− x̂t+1∥2ψtψ⊤

t

)
+

T∑
t=1

(
ft(xt)− ft(x̂t+1) + ht(x̂t+1)− ht(xt)

)
.
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(3) [10pts] Prove the following technical result:

ft(xt)− ft(x̂t+1) + ht(x̂t+1)− ht(xt) = y2tψ
⊤
t A

−1
t ψt.

(4) [15pts] Prove the final regret bound of the algorithm in (5.1):

RegT (u) ≤ O
(
λ∥u∥22 + dY 2 log(T )

)
.

Compared to O
(
maxx∈X ,t∈[T ]{(x⊤ψt − yt)

2} · d log T
)
, the refined regret bound de-

pends on Y 2 rather than a potentially large quantity maxx∈X ,t∈[T ]{(x⊤ψt − yt)
2},

hence demonstrating the value of employing this side information in online regression.

Solution. Give your answers here. (中英文均可)

12



6 [5pts] Bonus (Lecture Slides 8-12)

You can earn bonus points by pointing out errors in the lecture slides 8-12 on the

course website. Specifically, consider the following three types of errors:

(A) Technical errors (e.g., incorrect coefficients in formulas), 1pts each.

(B) Serious typo in presentation (e.g., AB but actually A⊤B, xA but actually

x⊤A), 0.5pts each.

(C) Typos in formula/statement (e.g., writing vector xt as xt; grammar/spelling

errors), 0.25pts each.

(D) Other suggestions: like how to better organize the proofs or alternative simpli-

fied proofs..., up to 1.5pts each.

List the errors in lecture slides 8-12 and state the way to correct. Please clearly indicate

which type each error belongs to, with a total score not exceeding 5pts.

For example,

(1) [(A) Technical errors] Lecture X. Page2. xxx

(2) [(B) Serious typo in presentation] Lecture Y. Page4. yyy → zzz

(3) [(C) Typos in formula/statement] Lecture W. Page6. www → vvv

(4) [(D) Other suggestions] Lecture V. Page8. It would be better...

Solution. Give your answers here. (中英文均可)
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