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* Algorithm for Stochastic MAB
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Part 1. Multi-Armed Bandits

* Problem Formulation
* Exploration-Exploitation Dilemma

 Lower Bound
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Bandits

* Bandit problems
* named after a one-armed bandit
 arm: a colloquial term for a slot machine that is pulled to try to win

 bandit: comes from the idea that the machine is a “thief” that takes

your money without offering a guaranteed return

e Multi-armed bandits

* Context: there are multiple slot machines, each with

its own probability of payout

* Goal: the player (gambler) places her bets on a slot

machine to maximize the total reward
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Bandits as Interactive Learning

 Bandit is “single-step” decision version of Reinforcement Learning

action a;
Reinforcement learning:
* Sequential decision making
GIP « With state transition
\ £ state transition \
i St4+1 < St
agent environment

Bandits:
 Single-step decision making

* No state transition
reward r(s;, a;)
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Bandits as Interactive Learning

Sutton & Barto. Reinforcement Learning, second edition: An Introduction.
MIT Press, 2018.
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Stochastic Multi-Armed Bandit (MAB)

e MAB: A player is facing K arms. At each time ¢, the player pulls one arm
a € [K] and then receives a reward 7;(a) € [0, 1]:

Arm 1 7“1(1) ’7‘2(1) 0.6 ’7“4(1) ’7“5(1)
Arm 2 1 r2(2) r3(2) 0.2 r5(2)
Arm3 | 71(3) 0.7 r3(3)  ra(3) 0.3

e Stochastic:
Each arm a € [K| has an unknown distribution D, with mean pu(a),

such that rewards ry(a),r2(a), ..., rr(a) are i.i.d samples from D,.

For conventional issue, we will use the “reward language” in stochastic bandits.
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Formulation

Ateachroundt=1,2,---

(1) player first chooses an arm a; € |K|;

(2) environment reveals a reward r;(a;) ~ distribution D,,_;

(3) player updates the model by the pair (a¢, r¢(a¢)).

* The goal is to minimize the pseudo regret:
- T T T
Rr = 1’2[8%]15 ZTt(a)—ZTt(at) :T,u(a*)—z,u(at)
t=1 t=1 t=1

where a* € argmax, ¢k 1(a) is the best arm in the sense of expectation.

 Caveat: note the difference between pseudo regret and the (expected) regret.
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Formulation

Ateachroundt=1,2,---

(1) player first chooses an arm a; € |K|;

(2) environment reveals a reward r;(a;) ~ distribution D,,_;

(3) player updates the model by the pair (a¢, r¢(a¢)).

* The goal is to minimize the pseudo regret:

Ry = Tp(a Z plar) Exploration vs Exploitation

i.e., difference between the cumulative * Exploitation: pull the best arm so far

reward of the best arm and that obtained * Exploration: try other arms that may be better
by the bandit algorithm
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Exploration-Exploitation Dilemma

* How to balance exploration and exploitation? .
Exploration vs
Exploitation
suboptimal arm with - Exploitation:
highest estimated reward oull the best
T T N e (3) @
T u2)e ) it (3) arm so far
5i(1) @ | i u(3)e * Exploration: try
t ~
) L (e other arms that
pl)e T
optimal arm may be better

* This is a fundamental problem in bandits, reinforcement
learning, recommendation systems, and related areas.
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Solving Stochastic MAB: Deploying Exp3

* Stochastic MAB is a special case of Adversarial MAB

:> Deploying Exp3 achieves the expected regret (though having gap to pseudo regret).

Theorem 1 (Upper Bound for Exp3). Suppose that ¥t € [T'] and a € [K],
0 < 4yo <1, then Exp3 with learning raten = \/(In K) /(T K) guarantees

th at} — mm tha, <O (\/TKlogK)

where the expectation is taken over the randomness of the algorithm.

E[REGT

:> Not yet to exploit benign stochastic modeling....  instance-dependent analysis
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Regret Decomposition

* For stochastic MAB, a natural characterization of the arms:
(i) Suboptimality gap: A, = p(a*) — pu(a);

(ii) Number of times arm a is pulled in t rounds: n;(a) = >.._, 1{as = a}.
* Regret Decomposition Lemma:

Rt = max E Zrt(a) -~ Zrt(at) =Tu(a™) — Z,u(at)

K

= > (ula") = plar)) -nr(a) = > A, nr(a)

a€[K] a€[K]
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Lower Bound

* How hard is the stochastic MAB problem?

* Two types:

* Instance-dependent lower bound: characterize the difficulty of a specific
bandit instance.

* Instance-independent (minimax) lower bound: hold for all algorithms
and all stochastic bandit environments.

Theorem 2 (Minimax Lower Bound for MAB). For any bandit algorithm A, there
exists an instance v with a stochastic loss sequence such that

iﬁf supE [Rr(A,v)] = Q(VTK)
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Lower Bound

T :

reasonable, not instance optimal

minimax optimality limit
instance optimality limit

Regret

Slide credit: Chapter 16,
Bandit Algorithm book

Instances
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Instance-Dependent Lower Bound

Theorem 3 (Lai-Robbins Lower Bound for Stochastic MAB). For any algorithm
A and any stochastic MAB instance v, with arm a’s reward distribution denoted by

Vo, and optimal arm a*, we have

lim inf
T— 00 log T

E[RT(A, V)} > Z Aa
- KL

(VaHVa,*).

a:A\,>0

e In typical reward models (e.g., Bernoulli or sub-Gaussian), we have that
log T

KL(vg||va+) = ©(A2). This indicates that E |[Rr| = Q (Za:Aa>O A—a)'

e This instance-dependent guarantee is (usually) called gap-dependent in MAB.
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Gap-dependent vs Gap-independent

e Consider this gap-dependentlower bound: E |Ry| = (Za: AL >0 %).

e This does not contradict with the (gap-independent) minimax lower bound,
since we can construct hard instances with vanishing gap A, = O(/K/T).

- Suppose there is an arm a with a small gap A,, then always picking arm «a
should just lead to R = A,T.

- Soif A, < \/K/T, this will not contradict with Ry = v KT minimax rate.

- Otherwise (A, > /K/T), the gap-dependent lower bound implies ) | logT /A, >
log T/ KT, also collaborates with minimax lower bound.
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Part 2. Algorithms for Stochastic MAB

* Explore-then-Commit (ETC)

* €-Greedy
* Upper Confidence Bound (UCB)

* Thompson Sampling
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A Natural Solution: Explore-then-Commit

(1) Do explore for the first T round by pulling each arm for 7/ K times;
(2) Do exploit for the rest T'— Ty round by always pulling @ = arg max, ¢k fir, (@)-

Exploration Exploitation

Commit!

Theorem 4. Suppose that ¥t € [T'] and a € [K],0 < ry(a) <1, then ETC with
exploration period Ty guarantees

ToA?
] < Z ( —|—2Texp< 2K“>)Aa.
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Proof of ETC Regret Bound 4 _ .09

Proof. By regret decomposition lemma: E[Ry] = Z A, - Elnr(a

Below we estimate E|[nr(a)], the expected number of pulls of arm a:

Optimal arm a* = arg max,c(x] i(a)
Enr(a) =To/K + (T — Ty) Pr{a = a}
Pulling strategy a = arg max,¢ (k] fi, (@)

< To/K + (T — To) Pripg, (a) = pir, (a7)}
Note that when i, (a) > 7, (a*) happens, it implies one of the following two rare

events must happen:

by (a) = (pla) + p(a®))/2, and i, (a”) < (p(a) + p(a®))/2.
Otherwise, jiz, (a) < (u(a) + p(a*))/2 < jiz, (a7).
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Proof of ETC Regret Bound 4 _ .09

Proof. By regret decomposition lemma: E[Ry] = Z Ay - Elnr(a

Below we estimate E|[nr(a)], the expected number of pulls of arm a:

Enr(a)] =Ty/K + (T —Ty) Pr{a = a}

<To/K + (T — To) Pr{fir,(a) > fir,(a™)}

< Ty/K + (T — Tp) Pr {ﬁTo(a) > p( )J;M(a*) U B (a") < u(a) Zu(a*)}
< To/K + (T —Tp) (Pr {ﬁTo(a) > p(a) zu(a*) } - Pr {ﬁTo(a*) - u(a) Zu(a*) })

Union bound Pr{X UY} < Pr{X} + Pr{Y}
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Proof of ETC Regret Bound

2

2

Proof. E[nr(a)] < To/K + T (Pr {ﬁTO(a) > pla) + pla”) } Py {ﬁ%(a*) < n(a) + p(a®) })

Hoeffding’s Inequality. For independent X; € [0, 1],i € [m], X

T m

1

>, Xi, we have

_ 1o
I:> E[Rr] = Z A Enr(a)] < P (? + 21 exp (_
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Issue of ETC

Theorem 4. Suppose that ¥t € [T'] and a € [K],0 < ry(a) <1, then ETC with
exploration period Ty guarantees

ToA?
] < Z ( —|—2Texp< ;)KCL))AQ.

* Need to tune 1o (or more specifically, the number that each arm
is pulled in the exploration phase, i.e., M = = To/K):

Tune T}, with prior of suboptimality gap A,:

_ log T , 2
E[Rr] = O (AQ. Z Aa> by setting m = eh log(2T).

min
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Issue of ETC

Theorem 4. Suppose that ¥t € [T'] and a € [K],0 < ry(a) <1, then ETC with
exploration period Ty guarantees

ToA?
] < Z ( —|—2Texp< ;)KCL))AQ.

* Need to tune 1o :
Tune Ty with prior of suboptimality gap Apin: E[Rr] = O (IAOQL_T D ac|K] Aa)
Tune T, without prior of suboptimality gap Apin: E[Rr] = O(T%/3)

* ETC is not a minimax optimal algorithm.

— Solution: need strategic exploration.
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Strategic Exploration

* ETC algorithm relies on the estimate during the exploration
phase. There is no way to reverse the estimate!

=)

.

o
=)
©
o

— e — e — e =

* Strategic exploration methods:
» -Greedy: explore with certain randomness

» Upper Confidence Bound (UCB): explore optimistically
» Thompson Sampling: explore by randomness in posterior sampling

Advanced Optimization (Fall 2025) Lecture 11. Stochastic Bandits
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e-Greedy

 Simple idea on balancing exploration and exploitation.

e-Greedy Algorithm

Ateachroundt=1,2,---
(1) With probability 1 — ¢, choose arm a; = arg max,, fi;—1(a);

otherwise choose arm uniformly at random.

(2) Observe reward r;.

(3) Update the empirical estimate ji;(a;) = (t_l)/lt—tl<at)+rt’

and ,&t(a) = ,&t_l(a) for all a # a.

* In words, do exploration with probability €: at round ¢ .
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Regret Bound of -Greedy

» Without adaptive exploration probability: asymptotically,

. E[R
ife; = e >0, then lim [TT] — % Z A,.

T'— o0

« With adaptive exploration probability:

Theorem 5. Suppose that V't € [T'|and a € [K|,0 < ri(a) < 1, e-Greedy algorithm
with e, = min{1, CK/(tA%. )} for a sufficiently large universal constant C. Then

min

B[R] < (logT Z A)

min CLE

Advanced Optimization (Fall 2025) Lecture 11. Stochastic Bandits 26



Proof of S—Greedy Regret Bound

Exploration pulls of arm a: En eXplore £t
portion >
t=1
_ | Ok 1 [& ' COK
Hetto = {Aﬁnj 1o ensure < - (Z 1+ Z A2 by the definition of ¢,
at least one pull on arm a t=to+1 TN
T
to C 1 by 1 20K
=K% T Az 2. t VS A,
min — to—l—l
Sz tar ok ) TUN\A, R TR
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Proof of e-Greedy Regret Bound

Proof. Exploitation pulls of suboptimal arm a:

E[nP ()] < Z Pr (fi—1(a) > fi—1(a*)) No exploitation before ¢y + 1
union bound similar to

T
= Z Pr (fu—1(a) — pla) = 5) +Pr (u(a”) — fu—1(a”) = 5*) splitting analysis in ETC

Pr (fie-1(a) — p(a )_ %)

= Pr (s - 1@ 2 & meal@) < 50 ) b X Pr(a(@) ) 2 3 nicala) = m)

< Pr (nt_1<a> < "”2”) b3 Pr(ni(a) = m) Pr (fie-sla) - u(a) = 3 | nes(a) = m)
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Proof of e-Greedy Regret Bound

Lemma 1 (Multiplicative Chernoff Bound). Let N be the sum of independent
Bernoulli random variables with mean p = E|N]. For any 0 < § < 1, the lower tail

bound is given by
6% 1
PN < (1-6)u) <exp (%1 ).

Pr (nt_l(a) < m;(a)) < exp (_m%(a)) By choosing § = 1 in Lemma 1

. m o, .
Pr (fi;—1(a) — pla) > 22 | ny_1(a) =m) < exp <_2A2) Hoeffding’s inequality

Plugging them back, we have

Pr (s(a) ~ (@) = &) < e (=42 ) e (=71

For Pr (p(a*) — fiy—1(a*) > %), we have the same upper bound.
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Proof of e-Greedy Regret Bound

Then, we have

=1 _ t—1 C C y
A explore o s
o) SB[ @] = 2> 3 o> gten ()
s=1 s=to+1
Plugging back, we have
ot 3 mi(a)\ | ma(a)
exploi
E[n," (a)] < Z 2 exp (— 2 >+ Z 2 exp (— 1A )
t=to+1 t=to+1
T ; ~C/8 T ; ~C/4
< Z ( > 4+ Z ( ) <0O(1) Choosing C' = 16
t=to1 N0 L it N0 T L

Finally, we have

E[Rr] = > Ao (ERGT(0)] + ER7™(a)]) < O

a€[K]

log T

mln a

ZA
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Upper Confidence Bound

« UCB

suboptimal arm with
highest estimated reward

ey | e
R | L uB)e
(1) @ L~ | D — g
. He(2) e /,'
u(1) o B R
optimal arm

ETC algorithm
chooses this arm
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)
UCBy(2) UCB, (3)
UCB, (1) - 5(3)
B,(1) 0\ @ F:(2) fe(o) @
1) o 1 e
t pie(2) @
p(l) e

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)

UCB,(2)
UCB,(1) UCB.(3) % 3,(3)
Bi(1) u(2) e ﬁtgi%g 0
fe(l) ® e
. pe(2) @
pu(l) ®

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)

UCB,(2)
UCB,(1) UCB.(3) % 3,(3)
Bi(1) u(2) e ﬁtgi%g 0
fe(l) ® e
. pe(2) @
pu(l) ®

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)

UCB,(1) UCB,(2) UCB:(3) ©5,(3)
B:(1) 2) ® (3 e
- Aﬂ( ) Bt(2) ,LtLg33Q
re(l) @ 1:(2) ®
pu(l) @

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)

UCB,(1) UCB,(2) UCB:(3) ©5,(3)
B:(1) 2) ® (3 e
- Aﬂ( ) Bt(2) ,LtLg33Q
re(l) @ 1:(2) ®
pu(l) ®

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)

UCB;(2) UCB.(3) 7 5,(3)
UCB., (1 n2)e ; e (3) @
¢(1) 8(1) 7(2) '/3/@ ,Lttg330
pe(1l) ® .
u(l) e

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = jiy(a) 4 5(a)

UCB;(2) UCB.(3) 7 5,(3)
UCB., (1 n2)e ; e (3) @
¢(1) 8(1) 7(2) 'ﬁ/@) ,Lttg330
pe(1l) ® .
u(l) e

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)

A large UCB means uncertainty or good arm.
Choosing the largest UCB means either exploring or exploiting.
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Optimism in the Face of Uncertainty

* A general principle for dealing with uncertainty, or a strategy
for balancing exploration and exploitation

UCB;(a) = ui(a) + Bi(a)

Decision-Making Under Uncertainty: optimism drives exploration,
encouraging to try new things or take controllable risks, which can lead
to better long-term outcomes
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UCB Algorithm: Formulation

UCB Algorithm (known as UCB1)
Ateachroundt=1,2,---
(1) Choose arm a; = arg max, ;] UCB;_1(a)
(2) Observe reward r; and update the estimation 7,

(3) Update upper confidence bounds UCB,(a) by new estimation

* Estimation: empirical average
1

Mt(a) — ,

* UCB construction: Hoeffding’s inequality

¢
(a) Z 1{as = a}rs(a), where n;(a) is the pulled times of arm «a
s=1

Advanced Optimization (Fall 2025) Lecture 11. Stochastic Bandits
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Construct UCB

Lemma 2 (Estimation error). With probability at least 1 — 2K /T, we have

log T

ne(a)

Va € [K].t € [T], |u(a) — fir(a)] <

Therefore, it suggests UCBy(a) = i(a) + ensuring p(a) < UCB(a).

t( ) ’
Proof. For each arm a, by Hoeffding inequality, we have

o Pr{X —EJ < me”
Pr {|M(a) — p(a)] < \/12%7/(751(2()5)} 2 1-20 Pr {){( E[X L ?}r i E 2m€2;

Furthermore, by the union bound over all arms and all rounds and letting § = 1/77,

Pr {‘v’a € K], te[T],|ula) — m(a)| < :Zg(j;} >1-— 2? [
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UCB: Gap-Dependent Bound

Theorem 6 (Gap-dependent). Suppose that forallt € [T|anda € [K],0 < 1i(a) <1,
then with probability at least 1 — 2K /T, UCB satisfies

RTS Z 412gT+Aa0< Z IOAgT>

a:Ag>0 a a:A\,>0 @

Proof. With probability at least 1 — 2K /T
ADg, = p(a”) — plar) < UCBy1(a”) — plar) Vo € [K], pla) < UCB,(a)
<UCB, () — plar) = M8 M%acqi) VOB o)

M log(1/6
< 2\/ logT ip(a) — pe(a)| < f{f%)

ni—1(ay) UCB,(a) 2 iy(a) +
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Proof of UCB Regret Bound

log T

nt—l(at)

Proof. A, < 2\/

Let ¢ be the last time a is selected, then with probability at least 1 — 2K/T,

A <2 log T _ 5 log T
ne_1(a) nr(a) — 1

T Rr= Y Awr(a)< Y A, (410gT+1> = ¥ g8l A

A2 A,

a€|K] a:Ag>0 a:Ag>0
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UCB: Gap-Dependent Bound

Theorem 6 (Gap-dependent). Suppose that forallt € [T|anda € [K],0 < 1i(a) <1,
then with probability at least 1 — 2K /T, UCB satisfies

RTS Z 412gT+Aa0< Z IOAgT>

a:Ag>0 a a:A\,>0 @

e Smaller the A,, larger the regret. Its harder to distinguish the optimal
arm from the suboptimal one.

e However, tiny A, should not lead to larger regret. Always pick arm a
should just lead to Ry = A,T.

:> B < min ¢ max AT Z 410gT+A distribution-dependent
= aclK] ’a_A o Aa “( also called gap/instance-dependent
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Gap-dependent Upper and Lower Bounds

Theorem 6 (Gap-dependent). Suppose that forallt € [T|anda € [K|,0 < 1i(a) <1,
then with probability at least 1 — 2K /T, UCB satisfies

Ry < Z 4IZgT+AaO< Z loAgT>.

a:Ag>0 a:Ag >0 a

Theorem 3 (Lai-Robbins Lower Bound for Stochastic MAB). For any algorithm A
and any stochastic MAB instance v, with arm a’s reward distribution denoted by v, and
optimal arm a*, we have

E [Rr(A, )] A,
10 . f > .
PN 2 2 R

a:A\,>0

e In typical reward models (e.g., Bernoulli or sub-Gaussian), we have that KL(v,||ve+) =

O(A?2). This indicates that E [Rr| = Q <Za:Aa>O IOALGT).
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UCB: Gap-Independent Bound

Theorem 7 (Gap-independent). Suppose that for all t € [T and a € K],
0 < ri(a) <1, then UCB satisfies with probability at least 1 — 2K /T,

Rr <2yTKlogT+ Y A, =0 (\/TKlogT> .
a€[K]

RT—ZAnT Z Agnr(a) + Z Agnr(a)
a:Ay,>A

a:Qg, <A

Proof.

nr(a) < 4285 + 1

log T KlogT
<TA+ Y Aa<4(f2 +1>§TA+4 = ZA
a:Ag>A @

<2/TKlogT+ Y A, Choosing A = 21/K (log T') /T (]
ac|K]
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Gap-Independent Upper and Lower Bounds

Theorem 7 (Gap-independent). Suppose that for all t € [T and a € K],
0 < ri(a) <1, then UCB satisfies with probability at least 1 — 2K /T,

Rr <2TKlogT + Y A,=0 (\/TKlogT) .
a€[K]

Theorem 2 (Minimax Lower Bound for MAB). For any bandit algorithm A, there
exists an instance v with a stochastic loss sequence such that

if}\f supE [Rr(A,v)] = QVTK)
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Thompson Sampling

e Suppose for each arm a € (K|, r+(a) € {0,1} and r¢(a) ~ Ber(uq) (1o is unknown).

Thompson Sampling

Initialization: Choose fake prior Beta(aq, 1,84,1) fora €

Ateachroundt=1,2,---

(3) Update the posterior of arm a; by
(

(aat,t + 17 5at,t)7
L (aat,ta ﬁat,t —I_ 1)7

(ovay,t415 Bagt+1)

| K| following some strategy.

(1) For each arm a, sample fi;(a) ~ Beta(aq ¢, Bat)

(2) Choose a; = arg max,c[x) fi+(a) and observe reward r; € {0,1}

ithzl,

ith:O.
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Thompson Sampling

Thompson Sampling
Initialization: Choose fake prior Beta(ay 1, 84,1) for a € [K]| following some strategy.| ~—————————————————

[
Ateachroundt =1,2,--- Beta(aa )
(1) For each arm a, sample fi;(a) ~ Beta(ag ¢, Bat)

(3) Update the posterior of arm a; by o Var: o ~ #1—#)  Exploration

a+p3
(aat,t —|_ 17 6&1,,15)7 if ,rt — 17 \\ /

(aat,t7 6at,t+1), ith = 0.

\

; |

| e Mean: u = a+3 Exploitation :

(2) Choose a; = argmax,c[k] fit(a) and observe reward r, € {0, 1} I |
| |

| !

(Cas,t+15 Bag,t+1) =

A large [i;(a;) means large mean (good arm) or large variance (uncertainty).

Choosing the largest ji;(a;) means either exploring or exploiting.
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TS Regret Bound

* Gap-dependent bound

Theorem 8. For every e > 0 there exists a problem-dependent constant C' (e, i1, . . . , LK)
such that the regret of Thompson Sampling satisfies:

E[Rr]<(1+¢ Aa<10gg>( : lzg ;og(T»

a€A: g Fp*

+ C (6 p1,- -, UKc) -

By the Pinsker’s inequality 2KL (p, 1*) > A2, we have the asymptotically optimal bound

E [Rr] <2(1+e¢)

log(T') + log log (T
o eI Bl ).

A,

a€A: g Fp*
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Summary of All those methods

 ETC

. e-greedy

* UCBI1

* TS

R[RETC] — O(lOgT Z A@)

N : Ay >0

O(logT S A@)

min CL'A >0
RUCB _ < 10gT>
a:A,>0
B[R] = 0 < logT
a:A,>0

2K
with probability > 1 — i
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Part 3. Comparison

e ETC vs e-greedy

e c-greedy vs UCB

e UCB vs Thompson Sampling

Advanced Optimization (Fall 2025)
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Summary of All those methods

 ETC

. e-greedy

* UCBI1

* TS

E[REIC] — O(lOgT Z A@)

MR- : Ay >0

O(logT S A@)

min . A _ >0
RUCB < 10gT>
a:A,>0
B[R] = 0 < logT
a:A,>0

2K
with probability > 1 — i
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ETC vs -greedy

e ETC uses a single exploration length m determined by A, and explores
every arm exactly m times.

R[REIC] — <logT 3 A>

mlnaA

e c-greedy performs uniform exploration in each exploration step, but the use
of exploitation and the decaying ¢; lead to arm-dependent behaviors.

E[RS] = (logT Z A)

min CLA >0
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Summary of All those methods

 ETC

. e-greedy

* UCBI1

* TS

R[RETC] — O(lOgT Z A@)

N : Ay >0

O(logT S A@)

min CL'A >0
RUCB _ ( 10gT>
a:A,>0
B[R] = 0 < logT
a:A,>0

2K
with probability > 1 — —
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-greedy vs UCB

_ log T
o c-greedy E[RT] = O <AO§ Z Aa>
min .A,>0
e UCBI RIP =0 < Z ka> , with probability > 1 — %
a:Ag>0 a

Example 1: All gaps similar

When A, = A for all a € [K], we have

_ logT log T
e-greedy  E[Rs] =0 ( -KA) — O (K ) ,
r A2 A the same order

_ 1 log T
UCB R%CB:O(logT-KZ) z(’)(K Oi )
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-greedy vs UCB

_ log T
o c-greedy E[RT] = O <AO§ Z Aa>
min .A,>0
e UCBI RIP =0 < Z ka> , with probability > 1 — %
a:Ag>0 a

Example 2: One nearly-optimal arm, many clearly bad arms

When 11 = 0.99, uo = 0.98, and p, = 0 fora = 3,..., K, we have A, = 0.01
and A, =~ 1fora=3,..., K.

_ log T
e-greedy  E[RS] ~ (0051)2 K =10*K log T,
B UCB incurs significantly
UCB1 RYB ~ (100 + K) log T. lower regret
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-greedy vs UCB

_ log T
o c-greedy E[RT] = O <AO§ Z Aa>
min .A,>0
e UCBI RIP =0 < Z ka> , with probability > 1 — %
a:Ag>0 a

d Prior information dependence

— €£-greedy requires the knowledge of Ain to achieve the desired regret

— UCBI doesn’t need any prior knowledge of gaps.

d Exploration mechanism
— ¢-greedy explores all the arms uniformly

— UCBI1 drives exploration through a confidence bonus, allocating more trials to arms
with greater uncertainty.
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Summary of All those methods

 ETC

. e-greedy

* UCBI1

* TS

R[RETC] — O(lOgT Z A@)

N : Ay >0

O(logT S A@)

mn q.-A,>0
RUCB _ ( 10gT>
a:A,>0
RTS O < 1Og T
a:A\,>0

2K
with probability > 1 — —
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UCB vs Thompson Sampling

UCB Thompson Sampling
Decision Style Deterministic Probabilistic
Core Principle Frequentist Bayesian
Prior Knowledge Subgaussian parameter o Prior distribution type
Exploration Empirical mean /i, Mean of distribution g
Exploitation Uncertainty (;(a) Var of distribution o
Guarantee O (log Ty, Aia) with high probability O (1og Ty, A%L + C’) asymptotically

Table 1: Comparison between UCB and Thompson Sampling

Advanced Optimization (Fall 2025) Lecture 11. Stochastic Bandits 60



Part 4. Extension

e Best of Both Words

 Extensions of UCB1

* Best Arm Identification (BAI)

 UCB in Online RL

Advanced Optimization (Fall 2025)
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Advanced Topic: Best of Both Worlds

* Best of adversarial MAB: E[REGr] =E

Z"‘t(@ —Zrt(at)

t=1 t=1

* Best of stochastic MAB: Rr = max E

log T
<
a:AN,>0

Can one algorithm achieve the best of both worlds, without knowing
whether the world is stochastic or adversarial?

« UCB: can get almost linear regret under the adversarial setting.

* Exp3: can’t have adaptive regret bound in the stochastic case.

> | Surprisingly, using OMD with Tsallis entropy regularizer.

Reference: Julian Zimmert, Yevgeny Seldin. An Optimal Algorithm
for Stochastic and Adversarial Bandits. AISTATS 2019.
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Advanced Topic: Extension of UCBI1

* Recall that UCB1 algorithm is nearly minimax optimal (up to
some logarithmic factor).

Theorem 7 (Gap-independent). Suppose that for all t € [T and a € K],
0 < ri(a) < 1, then UCB1 with 6 = 1/T* satisfies with high probability,

Rr <2TKlogT + Y A,=0 (\/TKlogT> .
a€[K]

* How to achieve minimax optimality?

» Carefully tuning the (adaptive) confidence level d; = 1/ f(t) with
f(t) = 1 +tlog®t achieves asymptotic optimality (see Chapter 8,
Bandit Algorithm book).
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Advanced Topic: Extension of UCBI1

* Recall that UCB1 algorithm is nearly minimax optimal (up to
some logarithmic factor).

* How to achieve minimax optimality?

* Carefully tuning the confidence level achieves asymptotic optimality.

* MOSS algorithm [Audibert and Bubeck, 2009] uses bonus term chosen
based on T and K, as well as the number of plays of the individual arms.
This achieves minimax optimality (See Chapter 9, Bandit Algorithm book).

Arm selection in UCB1: a; = argmax fi;_1(a) + \/ 21og(1/9)

ne—1(a)

Arm selection in MOSS: a; = argmax fi;_1(a) + \/ nt%(a) log™ anl(a)
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Advanced Topic: Extension of UCBI1

* Recall that UCB1 algorithm is nearly minimax optimal (up to
some logarithmic factor).

* How to achieve minimax optimality?
* Carefully tuning the confidence level achieves asymptotic optimality.

* MOSS achieves minimax optimality by bonus term chosen based on T
and K, as well as the number of plays of the individual arms.

* UCBI only suites for sub-Gaussian noise (to use Hoeffding’s
inequality). How to deal with Bernoulli noise?

* Needs different concentration (for sums of Bernoulli r.v.).

« KL-UCB algorithm [Garivier and Cappe, 2011; Maillard et al., 2011]
solves that for Bernoulli bandits (see Chapter 10, Bandit Algorithm book).
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Advanced Topic: Best Arm Identification

* Previously we mainly focus on regret minimization, which
seeks for exploration-exploitation trade-off.

* Another topic in stochastic bandit: best arm identification (or
an ¢-optimal arm)

Essentially, a pure exploration problem.
 Setting 1: fixed-budget — minimize simple regret

REGI™® = 3 A, Pr(ags: = a)
a€[K]
[ Setting 2: fixed confidence — a 6-PAC sample complexity guarantee

Pr(return suboptimal arm) < 4
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Advanced Topic: UCB in Online RL

* Recall that reinforcement learning as multi-step bandits.

* Exploration-Exploitation dilemma is also a central challenge in
reinforcement learning.

* Typically, we need to estimate the state transition, and use dynamic
programming to solve for the value function (cumulative reward).

* Bellman equation:

Q(s,a) =r(s,a) + ZP(S/ | s,a) max Q(s',a") +b(s,a)

S

« UCB-VI algorithm [Azar et al., 2017] Add bonus term to
encourage exploration

* UCB strategy also used in many RL algorithms,
e.g., Monte Carlo Tree Search (MCTS) in AlphaGo
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Many more results

 Techniques developed in bandit problems have been applied in many
areas, including machine learning, reinforcement learning, statistics,
operational research, and information theory [Bubeck and Cesa-Bianchi,

2012; Slivkins, 2019; Lattimore and Szepesvari, 2020].

Bandit
Algorithms

TOR LATTIMORE
CSABA SZEPESVARI

|

\
; , \
n Wr
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Summary

Problem Formulation

rf’ [ MULTI-ARMED BANDITS ] Exploration-Exploitation Dilemma

Lower Bound

Explore-then-Commit (ETC)

-Greedy
ALGORITHM FOR STOCHASTIC MAB
STOCHASTIC BANDITS 'ﬁ" Upper Confidence Bound (UCB)
Thompson Sampling

~ Comparisons and Remarks

Best of Both Worlds

“~ | COMPARISON AND EXTENSION | {  Extensions of UCBI

L )
\ 7

Best Arm Identification (BAI)

UCB in Online RL

Q&A
Thanks!
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