

Lecture 11. Stochastic Bandits

Advanced Optimization (Fall 2025)

Peng Zhao

zhaop@lamda.nju.edu.cn

Nanjing University

Outline

- Multi-Armed Bandits
- Algorithm for Stochastic MAB
- Comparison and Extension

Part 1. Multi-Armed Bandits

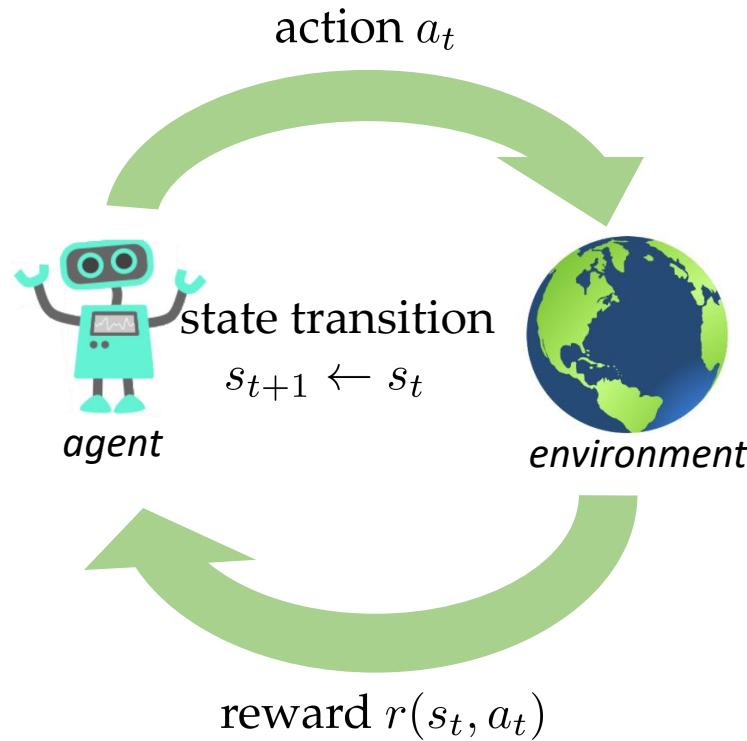
- Problem Formulation
- Exploration-Exploitation Dilemma
- Lower Bound

Bandits

- Bandit problems
 - named after a *one-armed bandit*
 - *arm*: a colloquial term for a slot machine that is pulled to try to win
 - *bandit*: comes from the idea that the machine is a “thief” that takes your money without offering a guaranteed return
- Multi-armed bandits
 - Context: there are multiple slot machines, each with its own probability of payout
 - Goal: the player (gambler) places her bets on a slot machine to maximize the total reward

Bandits as Interactive Learning

- Bandit is “*single-step*” decision version of Reinforcement Learning



Reinforcement learning:

- Sequential decision making
- With state transition

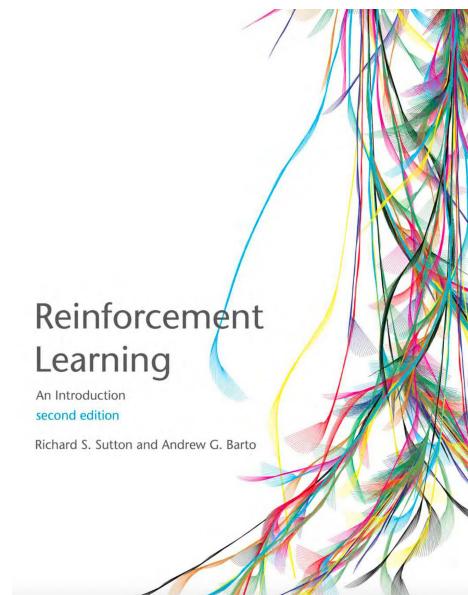
Bandits:

- Single-step decision making
- No state transition

Bandits as Interactive Learning

Sutton & Barto. Reinforcement Learning, second edition: An Introduction.
MIT Press, 2018.

2024 Turing award winner



CONTENTS	
iv	
2.8	Conclusions
2.9	Bibliographical and Historical Remarks
3	The Reinforcement Learning Problem
3.1	The Agent-Environment Interface
3.2	Goals and Rewards
3.3	Returns
3.4	Unified Notation for Episodic and Continuing Tasks
*3.5	The Markov Property
3.6	Markov Decision Processes
3.7	Value Functions
3.8	Optimal Value Functions
3.9	Optimality and Approximation
3.10	Summary
3.11	Bibliographical and Historical Remarks
1	Preface
	viii
	Series Forward
	xii
	Summary of Notation
	xiii
I	The Problem
1	1 Introduction
	3
1.1	Reinforcement Learning
	4
1.2	Examples
	6
1.3	Elements of Reinforcement Learning
	7
1.4	An Extended Example: Tic-Tac-Toe
	10
1.5	Summary
	15
1.6	History of Reinforcement Learning
	16
1.7	Bibliographical Remarks
	23
2	Bandit Problems
25	
2.1	An n -Armed Bandit Problem
	26
2.2	Action-Value Methods
	27
2.3	Softmax Action Selection
	30
2.4	Incremental Implementation
	32
2.5	Tracking a Nonstationary Problem
	33
2.6	Optimistic Initial Values
	35
2.7	Associative Search (Contextual Bandits)
	37
II	Tabular Action-Value Methods
79	
4	Dynamic Programming
	83
4.1	Policy Evaluation
	84
4.2	Policy Improvement
	87
4.3	Policy Iteration
	91
4.4	Value Iteration
	95
4.5	Asynchronous Dynamic Programming
	98
4.6	Generalized Policy Iteration
	99
4.7	Efficiency of Dynamic Programming
	101
4.8	Summary
	102
4.9	Bibliographical and Historical Remarks
	103
5	Monte Carlo Methods
	107
5.1	Monte Carlo Policy Evaluation
	108

Stochastic Multi-Armed Bandit (MAB)

- **MAB:** A player is facing K arms. At each time t , the player pulls one arm $a \in [K]$ and then receives a reward $r_t(a) \in [0, 1]$:

Arm 1	$r_1(1)$	$r_2(1)$	0.6	$r_4(1)$	$r_5(1)$
Arm 2	1	$r_2(2)$	$r_3(2)$	0.2	$r_5(2)$
Arm 3	$r_1(3)$	0.7	$r_3(3)$	$r_4(3)$	0.3

- **Stochastic:**

Each arm $a \in [K]$ has an unknown distribution \mathcal{D}_a with mean $\mu(a)$, such that rewards $r_1(a), r_2(a), \dots, r_T(a)$ are i.i.d samples from \mathcal{D}_a .

For conventional issue, we will use the “*reward language*” in stochastic bandits.

Formulation

At each round $t = 1, 2, \dots$

- (1) player first chooses an arm $a_t \in [K]$;
- (2) environment reveals a reward $r_t(a_t) \sim \text{distribution } \mathcal{D}_{a_t}$;
- (3) player updates the model by the pair $(a_t, r_t(a_t))$.

- The goal is to minimize the *pseudo regret*:

$$\bar{R}_T \triangleq \max_{a \in [K]} \mathbb{E} \left[\sum_{t=1}^T r_t(a) - \sum_{t=1}^T r_t(a_t) \right] = T\mu(a^*) - \sum_{t=1}^T \mu(a_t)$$

where $a^* \in \arg \max_{a \in [K]} \mu(a)$ is the best arm in the sense of expectation.

- Caveat: note the difference between *pseudo regret* and the *(expected) regret*.

Formulation

At each round $t = 1, 2, \dots$

- (1) player first chooses an arm $a_t \in [K]$;
- (2) environment reveals a reward $r_t(a_t) \sim \text{distribution } \mathcal{D}_{a_t}$;
- (3) player updates the model by the pair $(a_t, r_t(a_t))$.

- The goal is to minimize the *pseudo regret*:

$$\bar{R}_T = T\mu(a^*) - \sum_{t=1}^T \mu(a_t)$$

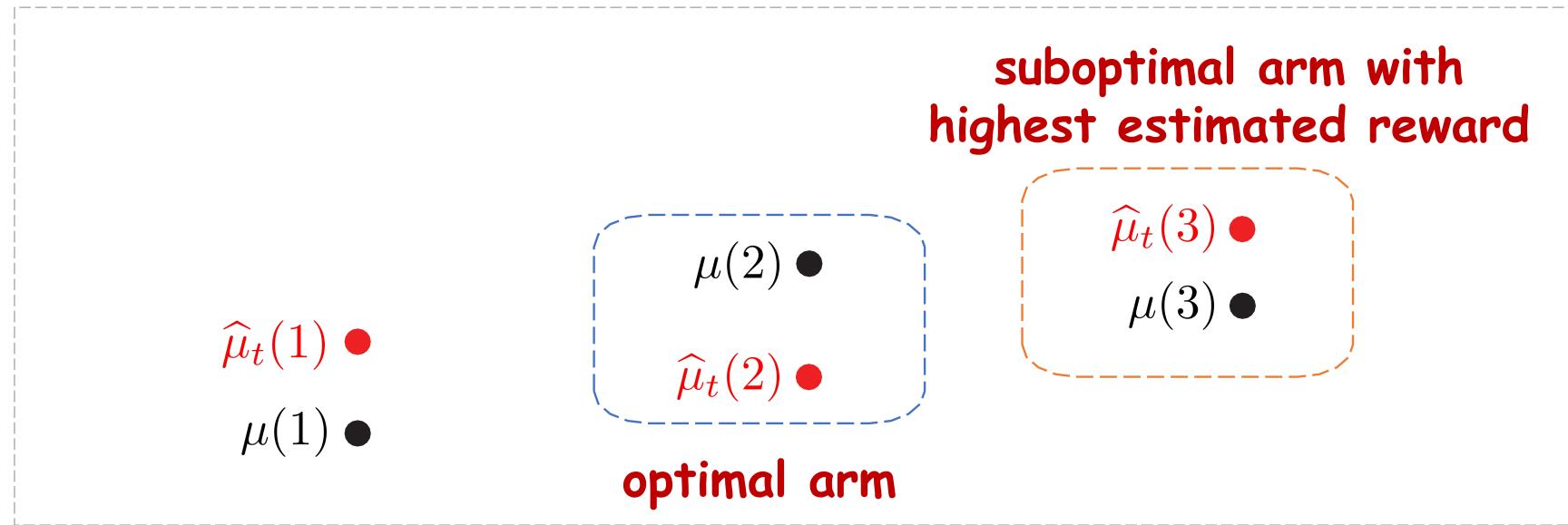
i.e., difference between the cumulative reward of the best arm and that obtained by the bandit algorithm

Exploration vs Exploitation

- **Exploitation**: pull the best arm so far
- **Exploration**: try other arms that may be better

Exploration-Exploitation Dilemma

- How to balance exploration and exploitation?



- This is a fundamental problem in bandits, reinforcement learning, recommendation systems, and related areas.

Exploration vs Exploitation

- **Exploitation:** pull the best arm so far
- **Exploration:** try other arms that may be better

Solving Stochastic MAB: Deploying Exp3

- Stochastic MAB is a special case of Adversarial MAB
 - ➡ Deploying Exp3 achieves the expected regret (though having gap to pseudo regret).

Theorem 1 (Upper Bound for Exp3). *Suppose that $\forall t \in [T]$ and $a \in [K]$, $0 \leq \ell_{t,a} \leq 1$, then Exp3 with learning rate $\eta = \sqrt{(\ln K)/(TK)}$ guarantees*

$$\mathbb{E}[\text{REG}_T] = \mathbb{E} \left[\sum_{t=1}^T \ell_{t,a_t} \right] - \min_{a \in [K]} \sum_{t=1}^T \ell_{t,a} \leq \mathcal{O} \left(\sqrt{TK \log K} \right),$$

where the expectation is taken over the randomness of the algorithm.

- ➡ Not yet to exploit benign **stochastic** modeling.... instance-dependent analysis

Regret Decomposition

- For stochastic MAB, a natural characterization of the arms:
 - (i) **Suboptimality gap**: $\Delta_a = \mu(a^*) - \mu(a)$;
 - (ii) Number of times arm a is pulled in t rounds: $n_t(a) = \sum_{s=1}^t \mathbf{1}\{a_s = a\}$.
- Regret Decomposition Lemma:

$$\begin{aligned}\bar{R}_T &= \max_{a \in [K]} \mathbb{E} \left[\sum_{t=1}^T r_t(a) - \sum_{t=1}^T r_t(a_t) \right] = T\mu(a^*) - \sum_{t=1}^T \mu(a_t) \\ &= \sum_{a \in [K]} (\mu(a^*) - \mu(a_t)) \cdot n_T(a) = \sum_{a \in [K]} \Delta_a \cdot n_T(a)\end{aligned}$$

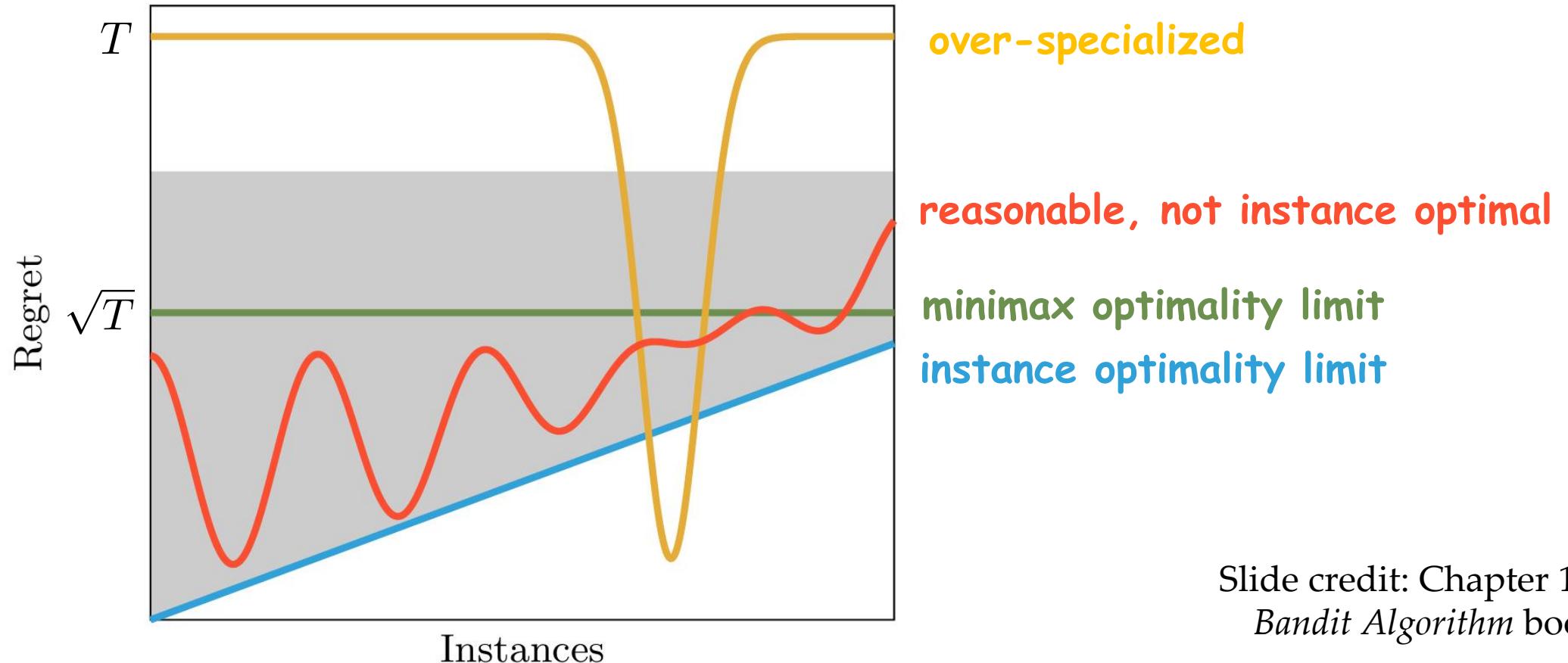
Lower Bound

- How hard is the stochastic MAB problem?
- Two types:
 - **Instance-dependent lower bound**: characterize the difficulty of a specific bandit instance.
 - **Instance-independent (minimax) lower bound**: hold for all algorithms and all stochastic bandit environments.

Theorem 2 (Minimax Lower Bound for MAB). *For any bandit algorithm \mathcal{A} , there exists an instance ν with a **stochastic** loss sequence such that*

$$\inf_{\mathcal{A}} \sup_{\nu} \mathbb{E} [\bar{R}_T(\mathcal{A}, \nu)] = \Omega(\sqrt{TK})$$

Lower Bound



Slide credit: Chapter 16,
Bandit Algorithm book

Instance-Dependent Lower Bound

Theorem 3 (Lai-Robbins Lower Bound for Stochastic MAB). *For any algorithm \mathcal{A} and any stochastic MAB instance ν , with arm a 's reward distribution denoted by ν_a and optimal arm a^* , we have*

$$\liminf_{T \rightarrow \infty} \frac{\mathbb{E} [\bar{R}_T(\mathcal{A}, \nu)]}{\log T} \geq \sum_{a: \Delta_a > 0} \frac{\Delta_a}{\text{KL}(\nu_a \| \nu_{a^*})}.$$

- In typical reward models (e.g., Bernoulli or sub-Gaussian), we have that $\text{KL}(\nu_a \| \nu_{a^*}) = \Theta(\Delta_a^2)$. This indicates that $\mathbb{E} [\bar{R}_T] = \Omega\left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a}\right)$.
- This instance-dependent guarantee is (usually) called **gap-dependent** in MAB.

Gap-dependent vs Gap-independent

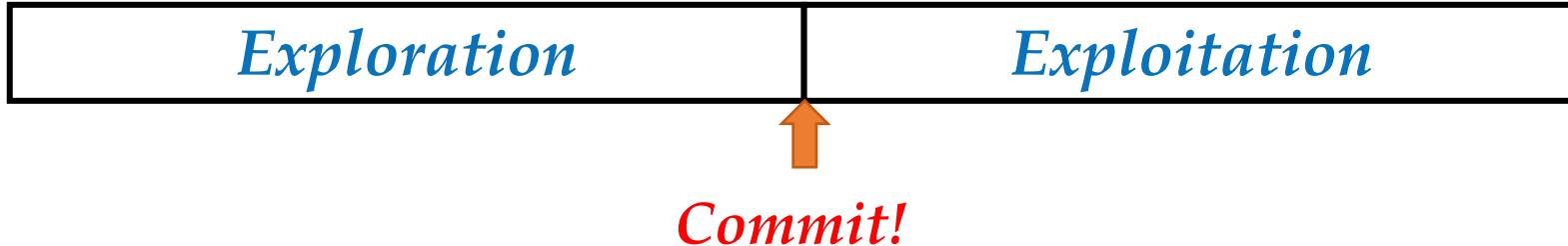
- Consider this gap-dependent lower bound: $\mathbb{E} [\bar{R}_T] = \Omega \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} \right)$.
- This does *not* contradict with the (gap-independent) minimax lower bound, since we can construct *hard* instances with vanishing gap $\Delta_a = \Theta(\sqrt{K/T})$.
 - Suppose there is an arm a with a small gap Δ_a , then always picking arm a should just lead to $\bar{R}_T = \Delta_a T$.
 - So if $\Delta_a \leq \sqrt{K/T}$, this will not contradict with $\bar{R}_T = \sqrt{KT}$ minimax rate.
 - Otherwise ($\Delta_a \geq \sqrt{K/T}$), the gap-dependent lower bound implies $\sum_a \log T / \Delta_a \geq \log T \sqrt{KT}$, also collaborates with minimax lower bound.

Part 2. Algorithms for Stochastic MAB

- Explore-then-Commit (ETC)
- ε -Greedy
- Upper Confidence Bound (UCB)
- Thompson Sampling

A Natural Solution: Explore-then-Commit

- (1) Do *explore* for the first T_0 round by pulling each arm for T_0/K times;
- (2) Do *exploit* for the rest $T - T_0$ round by always pulling $\hat{a} = \arg \max_{a \in [K]} \hat{\mu}_{T_0}(a)$.



Theorem 4. Suppose that $\forall t \in [T]$ and $a \in [K]$, $0 \leq r_t(a) \leq 1$, then ETC with exploration period T_0 guarantees

$$\mathbb{E}[\bar{R}_T] \leq \sum_{a \in [K]} \left(\frac{T_0}{K} + 2T \exp\left(-\frac{T_0 \Delta_a^2}{2K}\right) \right) \Delta_a.$$

Proof of ETC Regret Bound

$$\Delta_a = \mu(a^*) - \mu(a)$$

Proof. By regret decomposition lemma: $\mathbb{E}[\bar{R}_T] = \sum_{a \in [K]} \Delta_a \cdot \mathbb{E}[n_T(a)]$

Below we estimate $\mathbb{E}[n_T(a)]$, the expected number of pulls of arm a :

Exploration Exploitation

$$\begin{aligned}\mathbb{E}[n_T(a)] &= T_0/K + (T - T_0) \Pr\{\hat{a} = a\} \\ &\leq T_0/K + (T - T_0) \Pr\{\hat{\mu}_{T_0}(a) \geq \hat{\mu}_{T_0}(a^*)\}\end{aligned}$$

Optimal arm $a^* = \arg \max_{a \in [K]} \mu(a)$

Pulling strategy $\hat{a} = \arg \max_{a \in [K]} \hat{\mu}_{T_0}(a)$

Note that when $\hat{\mu}_{T_0}(a) \geq \hat{\mu}_{T_0}(a^*)$ happens, it implies one of the following two rare events must happen:

$$\hat{\mu}_{T_0}(a) \geq (\mu(a) + \mu(a^*))/2, \text{ and } \hat{\mu}_{T_0}(a^*) \leq (\mu(a) + \mu(a^*))/2.$$

Otherwise, $\hat{\mu}_{T_0}(a) < (\mu(a) + \mu(a^*))/2 < \hat{\mu}_{T_0}(a^*)$.

Proof of ETC Regret Bound

$$\Delta_a = \mu(a^*) - \mu(a)$$

Proof. By regret decomposition lemma: $\mathbb{E}[\bar{R}_T] = \sum_{a \in [K]} \Delta_a \cdot \mathbb{E}[n_T(a)]$

Below we estimate $\mathbb{E}[n_T(a)]$, the expected number of pulls of arm a :

$$\mathbb{E}[n_T(a)] = T_0/K + (T - T_0) \Pr\{\hat{a} = a\}$$

$$\leq T_0/K + (T - T_0) \Pr\{\hat{\mu}_{T_0}(a) \geq \hat{\mu}_{T_0}(a^*)\}$$

$$\leq T_0/K + (T - T_0) \Pr\left\{\hat{\mu}_{T_0}(a) \geq \frac{\mu(a) + \mu(a^*)}{2} \cup \hat{\mu}_{T_0}(a^*) \leq \frac{\mu(a) + \mu(a^*)}{2}\right\}$$

$$\leq T_0/K + (T - T_0) \left(\Pr\left\{\hat{\mu}_{T_0}(a) \geq \frac{\mu(a) + \mu(a^*)}{2}\right\} + \Pr\left\{\hat{\mu}_{T_0}(a^*) \leq \frac{\mu(a) + \mu(a^*)}{2}\right\} \right)$$

$$\text{Union bound } \Pr\{X \cup Y\} \leq \Pr\{X\} + \Pr\{Y\}$$

Proof of ETC Regret Bound

Proof. $\mathbb{E}[n_T(a)] \leq T_0/K + T \left(\Pr \left\{ \hat{\mu}_{T_0}(a) \geq \frac{\mu(a) + \mu(a^*)}{2} \right\} + \Pr \left\{ \hat{\mu}_{T_0}(a^*) \leq \frac{\mu(a) + \mu(a^*)}{2} \right\} \right)$

Hoeffding's Inequality. For independent $X_i \in [0, 1]$, $i \in [m]$, $\bar{X} = \frac{1}{m} \sum_{i=1}^m X_i$, we have

$$\Pr \left\{ \bar{X} - \mathbb{E}[\bar{X}] \geq \epsilon \right\} \leq \exp(-2m\epsilon^2);$$

$$\Pr \left\{ \bar{X} - \mathbb{E}[\bar{X}] \leq -\epsilon \right\} \leq \exp(-2m\epsilon^2).$$

$$\Rightarrow \Pr \left\{ \hat{\mu}_{T_0}(a) \geq \frac{\mu(a) + \mu(a^*)}{2} \right\} = \Pr \left\{ \hat{\mu}_{T_0}(a) \geq \mu(a) + \frac{\Delta_a}{2} \right\} \leq \exp \left(-\frac{T_0 \Delta_a^2}{2K} \right)$$

$$\Rightarrow \Pr \left\{ \hat{\mu}_{T_0}(a^*) \leq \frac{\mu(a) + \mu(a^*)}{2} \right\} = \Pr \left\{ \hat{\mu}_{T_0}(a^*) \leq \mu(a^*) + \frac{\Delta_a}{2} \right\} \leq \exp \left(-\frac{T_0 \Delta_a^2}{2K} \right)$$

$$\Rightarrow \mathbb{E}[\bar{R}_T] = \sum_{a \in [K]} \Delta_a \mathbb{E}[n_T(a)] \leq \sum_{a \in [K]} \left(\frac{T_0}{K} + 2T \exp \left(-\frac{T_0 \Delta_a^2}{2K} \right) \right) \Delta_a$$

□

Issue of ETC

Theorem 4. Suppose that $\forall t \in [T]$ and $a \in [K], 0 \leq r_t(a) \leq 1$, then ETC with exploration period T_0 guarantees

$$\mathbb{E}[\bar{R}_T] \leq \sum_{a \in [K]} \left(\frac{T_0}{K} + 2T \exp\left(-\frac{T_0 \Delta_a^2}{2K}\right) \right) \Delta_a.$$

- Need to tune T_0 (or more specifically, the number that each arm is pulled in the exploration phase, i.e., $m \triangleq T_0/K$):

Tune T_0 with prior of suboptimality gap Δ_a :

$$\mathbb{E}[\bar{R}_T] = \mathcal{O}\left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a\right) \text{ by setting } m = \frac{2}{\Delta_{\min}^2} \log(2T).$$

Issue of ETC

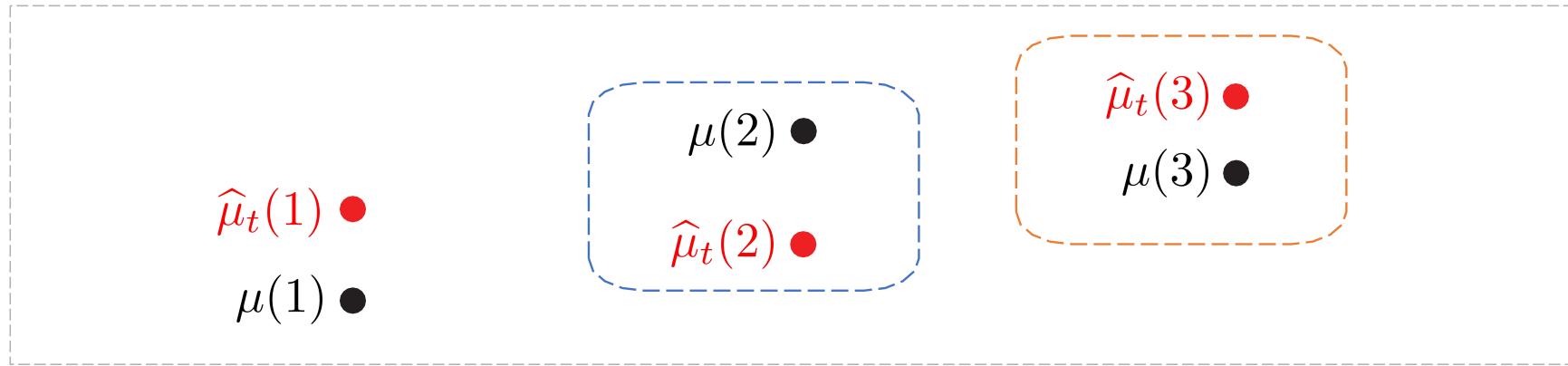
Theorem 4. Suppose that $\forall t \in [T]$ and $a \in [K], 0 \leq r_t(a) \leq 1$, then ETC with exploration period T_0 guarantees

$$\mathbb{E}[\bar{R}_T] \leq \sum_{a \in [K]} \left(\frac{T_0}{K} + 2T \exp\left(-\frac{T_0 \Delta_a^2}{2K}\right) \right) \Delta_a.$$

- Need to tune T_0 :
 - Tune T_0 with prior of suboptimality gap Δ_{\min} : $\mathbb{E}[\bar{R}_T] = \mathcal{O}\left(\frac{\log T}{\Delta_{\min}^2} \sum_{a \in [K]} \Delta_a\right)$
 - Tune T_0 without prior of suboptimality gap Δ_{\min} : $\mathbb{E}[\bar{R}_T] = \tilde{\mathcal{O}}(T^{2/3})$
- ETC is **not** a minimax optimal algorithm.
→ Solution: need *strategic exploration*.

Strategic Exploration

- ETC algorithm relies on the estimate during the exploration phase. ***There is no way to reverse the estimate!***



- Strategic exploration methods:
 - *ϵ -Greedy*: explore with certain randomness
 - *Upper Confidence Bound (UCB)*: explore optimistically
 - *Thompson Sampling*: explore by randomness in posterior sampling

ε -Greedy

- Simple idea on balancing exploration and exploitation.

ε -Greedy Algorithm

At each round $t = 1, 2, \dots$

- (1) With probability $1 - \varepsilon_t$, choose arm $a_t = \arg \max_a \hat{\mu}_{t-1}(a)$;
otherwise choose arm uniformly at random.
- (2) Observe reward r_t .
- (3) Update the empirical estimate $\hat{\mu}_t(a_t) = \frac{(t-1)\hat{\mu}_{t-1}(a_t) + r_t}{t}$,
and $\hat{\mu}_t(a) = \hat{\mu}_{t-1}(a)$ for all $a \neq a_t$.

- In words, do exploration with probability ε_t at round t .

Regret Bound of ε -Greedy

- Without adaptive exploration probability: *asymptotically*,

$$\text{if } \varepsilon_t = \varepsilon > 0, \text{ then } \lim_{T \rightarrow \infty} \frac{\mathbb{E}[\bar{R}_T]}{T} = \frac{\varepsilon}{K} \sum_{a \in [K]} \Delta_a.$$

- With adaptive exploration probability:

Theorem 5. Suppose that $\forall t \in [T]$ and $a \in [K]$, $0 \leq r_t(a) \leq 1$, ε -Greedy algorithm with $\varepsilon_t = \min\{1, CK/(t\Delta_{\min}^2)\}$ for a sufficiently large universal constant C . Then

$$\mathbb{E}[\bar{R}_T] \leq \mathcal{O} \left(\frac{\log T}{\Delta_{\min}^2} \sum_{a \in [K]} \Delta_a \right).$$

Proof of ε -Greedy Regret Bound

$$\textbf{\textit{Proof.}} \quad \mathbb{E}[\bar{R}_T] = \sum_{a \in [K]} \Delta_a \mathbb{E}[n_T(a)] = \sum_{a \in [K]} \Delta_a \left(\mathbb{E}[n_T^{\text{explore}}(a)] + \mathbb{E}[n_T^{\text{exploit}}(a)] \right)$$

Exploration pulls of arm a :

$$\mathbb{E}[n_T^{\text{explore}}(a)] = \sum_{t=1}^T \frac{\varepsilon_t}{K}$$

Let $t_0 = \left\lceil \frac{CK}{\Delta_{\min}^2} \right\rceil$ to ensure at least one pull on arm a

$$\begin{aligned} &\leq \frac{1}{K} \left(\sum_{t=1}^{t_0} 1 + \sum_{t=t_0+1}^T \frac{CK}{t \Delta_{\min}^2} \right) && \text{by the definition of } \varepsilon_t \\ &\leq \frac{t_0}{K} + \frac{C}{\Delta_{\min}^2} \sum_{t=t_0+1}^T \frac{1}{t} && \text{by } t_0 \leq \frac{2CK}{\Delta_{\min}^2} \\ &\leq \frac{2C}{\Delta_{\min}^2} + \frac{C}{\Delta_{\min}^2} \left(1 + \log \frac{T \Delta_{\min}^2}{CK} \right) = \mathcal{O} \left(\frac{1}{\Delta_{\min}^2} \log \frac{T \Delta_{\min}^2}{K} \right) \end{aligned}$$

Proof of ε -Greedy Regret Bound

Proof. Exploitation pulls of **suboptimal** arm a :

$$\begin{aligned} \mathbb{E}[n_T^{\text{exploit}}(a)] &\leq \sum_{t=t_0+1}^T \Pr(\hat{\mu}_{t-1}(a) \geq \hat{\mu}_{t-1}(a^*)) && \text{No exploitation before } t_0 + 1 \\ &\leq \sum_{t=t_0+1}^T \Pr(\hat{\mu}_{t-1}(a) - \mu(a) \geq \frac{\Delta_a}{2}) + \Pr(\mu(a^*) - \hat{\mu}_{t-1}(a^*) \geq \frac{\Delta_a}{2}) && \text{union bound similar to} \\ &&& \text{splitting analysis in ETC} \end{aligned}$$

Denote $m_t(a) \triangleq \mathbb{E}[n_{t-1}^{\text{explore}}(a)]$. For $\Pr(\hat{\mu}_{t-1}(a) - \mu(a) \geq \frac{\Delta_a}{2})$, we have

$$\begin{aligned} &\Pr(\hat{\mu}_{t-1}(a) - \mu(a) \geq \frac{\Delta_a}{2}) \\ &= \Pr\left(\hat{\mu}_{t-1}(a) - \mu(a) \geq \frac{\Delta_a}{2}, n_{t-1}(a) < \frac{m_t(a)}{2}\right) + \sum_{m=\lceil \frac{m_t(a)}{2} \rceil}^{t-1} \Pr\left(\hat{\mu}_{t-1}(a) - \mu(a) \geq \frac{\Delta_a}{2}, n_{t-1}(a) = m\right) \\ &\leq \Pr\left(n_{t-1}(a) < \frac{m_t(a)}{2}\right) + \sum_{m=\lceil \frac{m_t(a)}{2} \rceil}^{t-1} \Pr(n_{t-1}(a) = m) \Pr\left(\hat{\mu}_{t-1}(a) - \mu(a) \geq \frac{\Delta_a}{2} \mid n_{t-1}(a) = m\right) \end{aligned}$$

Proof of ε -Greedy Regret Bound

Lemma 1 (Multiplicative Chernoff Bound). *Let N be the sum of independent Bernoulli random variables with mean $\mu = \mathbb{E}[N]$. For any $0 < \delta < 1$, the lower tail bound is given by*

$$\mathbb{P}(N \leq (1 - \delta)\mu) \leq \exp\left(-\frac{\delta^2\mu}{2}\right).$$

$$\Pr\left(n_{t-1}(a) < \frac{m_t(a)}{2}\right) \leq \exp\left(-\frac{m_t(a)}{8}\right) \quad \text{By choosing } \delta = \frac{1}{2} \text{ in Lemma 1}$$

$$\Pr\left(\hat{\mu}_{t-1}(a) - \mu(a) \geq \frac{\Delta_a}{2} \mid n_{t-1}(a) = m\right) \leq \exp\left(-\frac{m}{2\Delta_a^2}\right) \quad \text{Hoeffding's inequality}$$

Plugging them back, we have

$$\Pr\left(\hat{\mu}_{t-1}(a) - \mu(a) \geq \frac{\Delta_a}{2}\right) \leq \exp\left(-\frac{m_t(a)}{8}\right) + \exp\left(-\frac{m_t(a)}{4\Delta_a^2}\right)$$

For $\Pr\left(\mu(a^*) - \hat{\mu}_{t-1}(a^*) \geq \frac{\Delta_a}{2}\right)$, we have the same upper bound.

Proof of ε -Greedy Regret Bound

Then, we have

$$\mathbb{E}[n_T^{\text{exploit}}(a)] \leq \sum_{t=t_0+1}^T 2 \exp\left(-\frac{m_t(a)}{8}\right) + 2 \exp\left(-\frac{m_t(a)}{4\Delta_a^2}\right)$$

For $t \geq t_0$, we have

$$m_t(a) \triangleq \mathbb{E}\left[n_{t-1}^{\text{explore}}(a)\right] = \sum_{s=1}^{t-1} \frac{\varepsilon_s}{K} \geq \sum_{s=t_0+1}^{t-1} \frac{C}{s\Delta_{\min}^2} \geq \frac{C}{\Delta_{\min}^2} \log\left(\frac{t}{t_0+1}\right)$$

Plugging back, we have

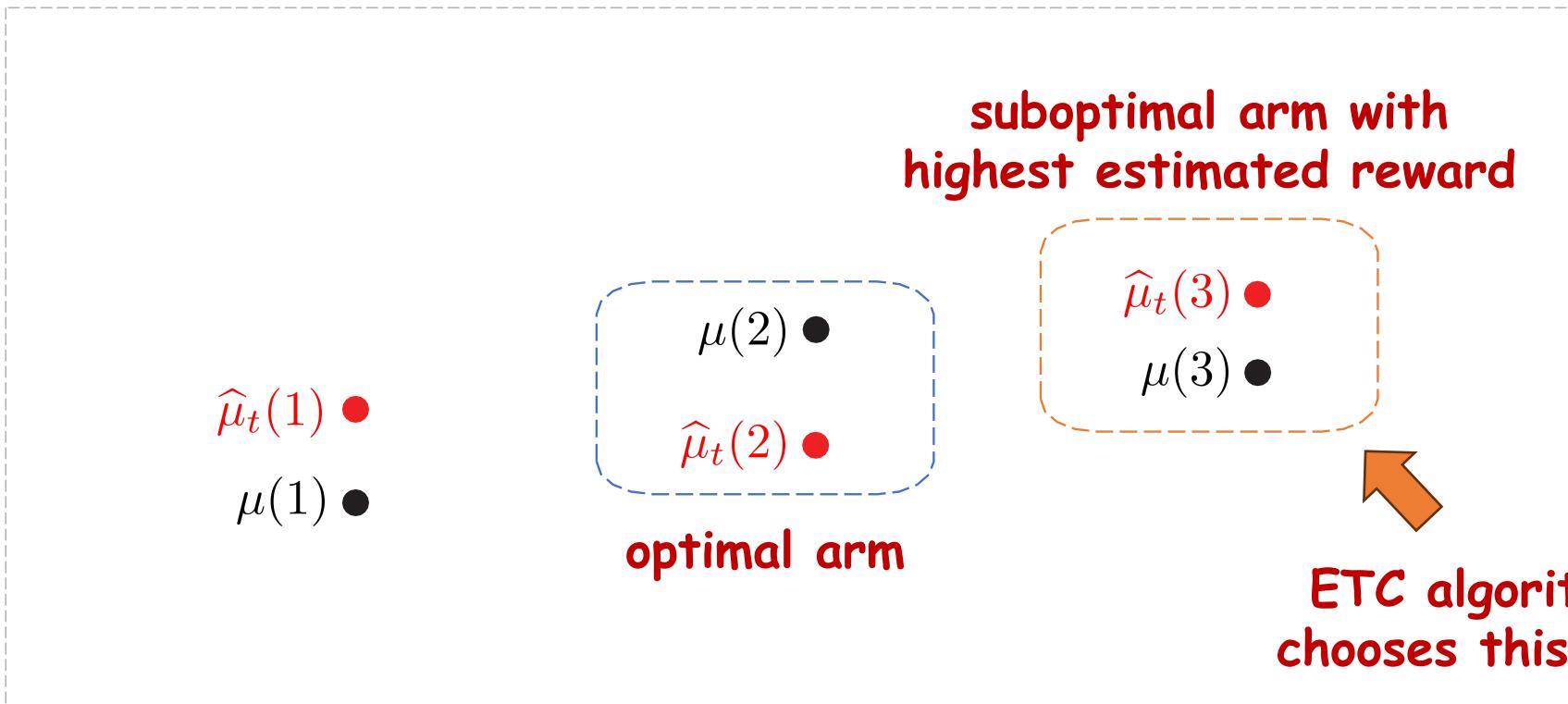
$$\begin{aligned} \mathbb{E}[n_T^{\text{exploit}}(a)] &\leq \sum_{t=t_0+1}^T 2 \exp\left(-\frac{m_t(a)}{8}\right) + \sum_{t=t_0+1}^T 2 \exp\left(-\frac{m_t(a)}{4\Delta_a^2}\right) \\ &\leq \sum_{t=t_0+1}^T \left(\frac{t}{t_0+1}\right)^{-C/8} + \sum_{t=t_0+1}^T \left(\frac{t}{t_0+1}\right)^{-C/4} \leq \mathcal{O}(1) \quad \text{Choosing } C = 16 \end{aligned}$$

Finally, we have

$$\mathbb{E}[\bar{R}_T] = \sum_{a \in [K]} \Delta_a \left(\mathbb{E}[n_T^{\text{explore}}(a)] + \mathbb{E}[n_T^{\text{exploit}}(a)] \right) \leq \mathcal{O}\left(\frac{\log T}{\Delta_{\min}^2} \sum_{a \in [K]} \Delta_a\right).$$

Upper Confidence Bound

- UCB



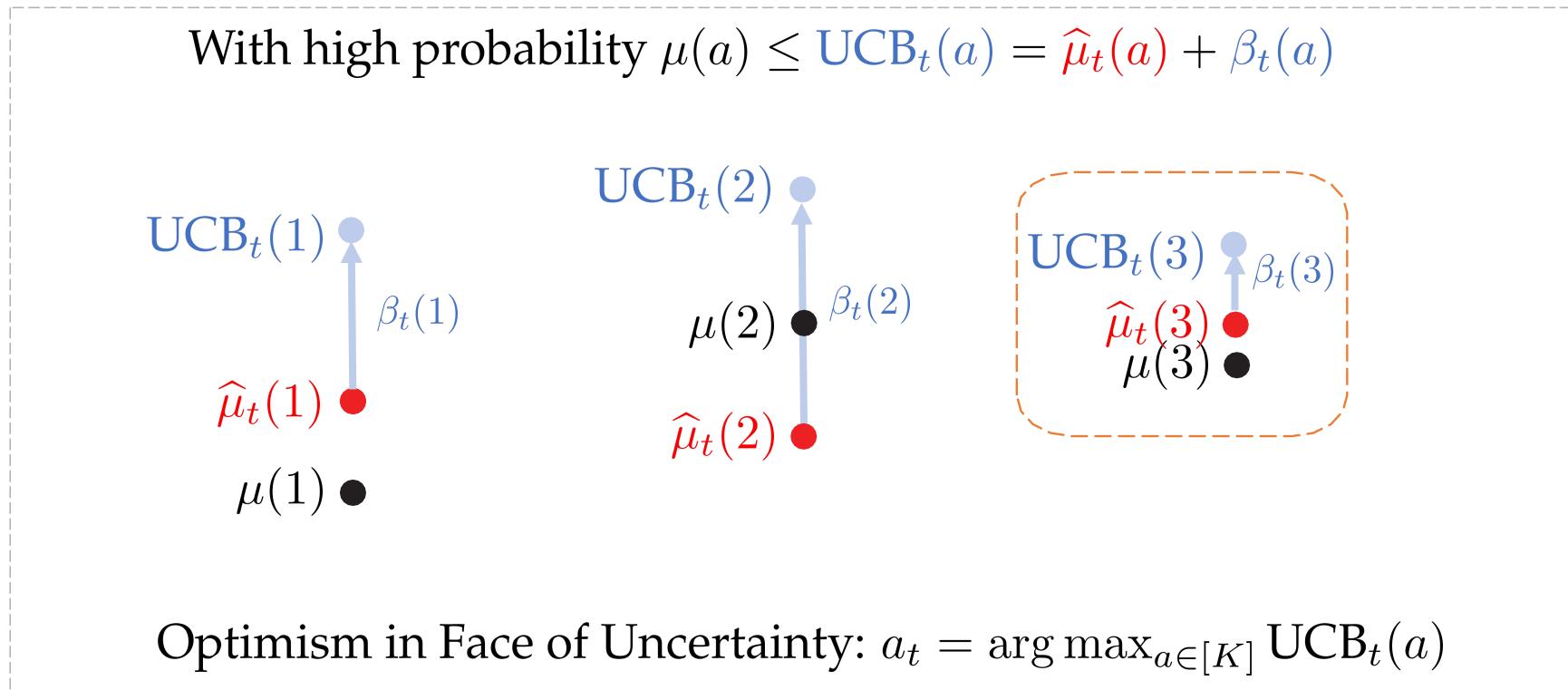
Upper Confidence Bound

- UCB



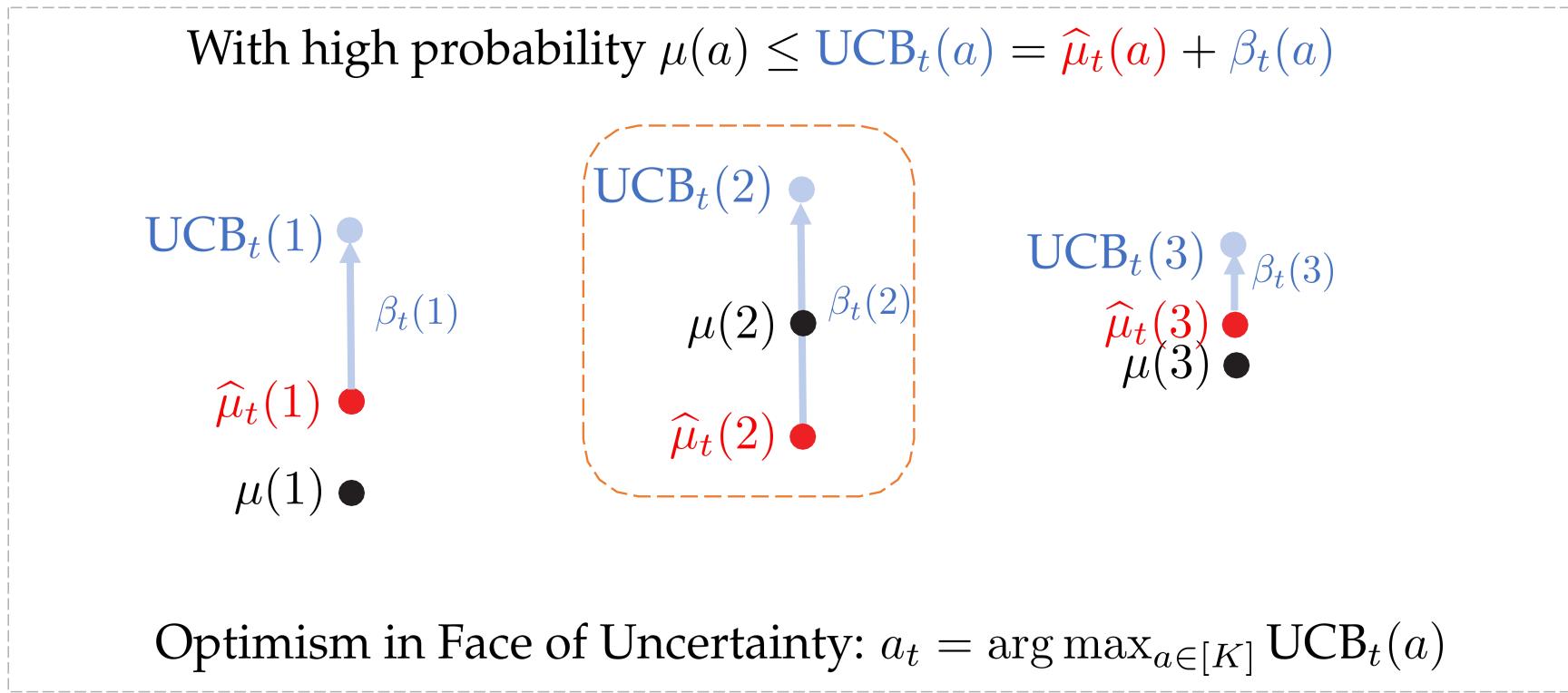
Upper Confidence Bound

- UCB



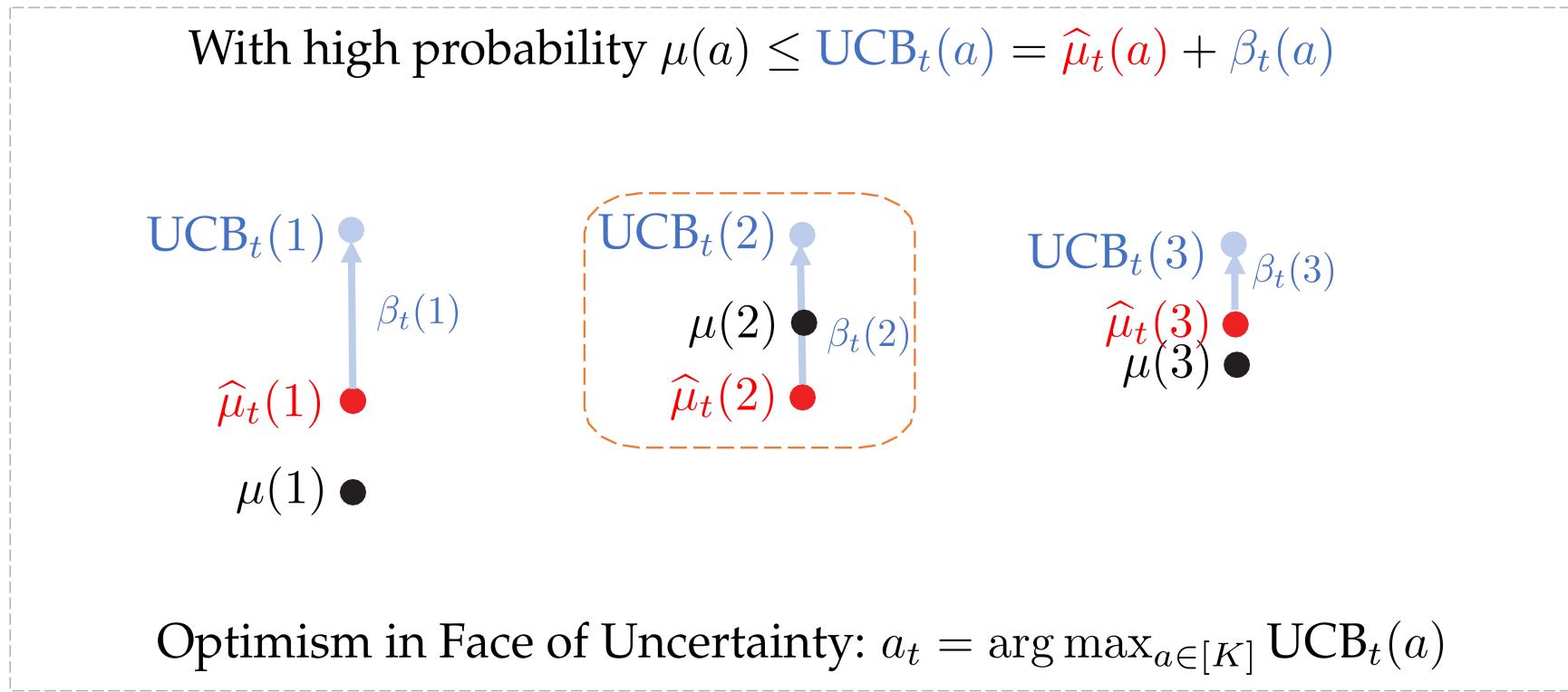
Upper Confidence Bound

- UCB



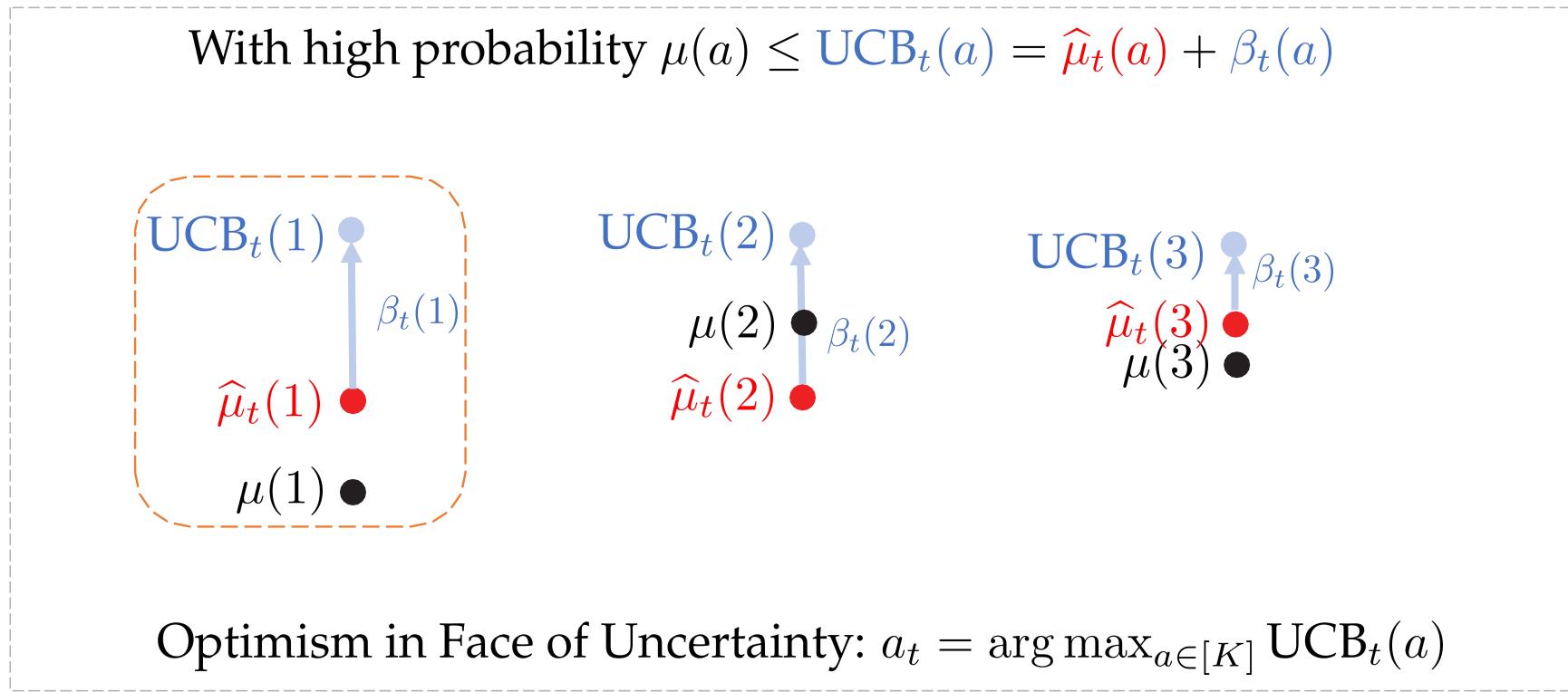
Upper Confidence Bound

- UCB



Upper Confidence Bound

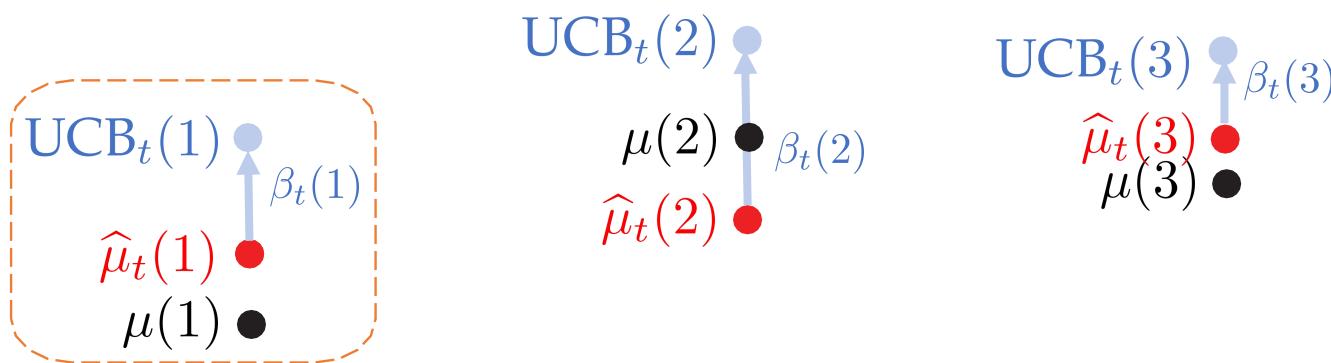
- UCB



Upper Confidence Bound

- UCB

With high probability $\mu(a) \leq \text{UCB}_t(a) = \hat{\mu}_t(a) + \beta_t(a)$

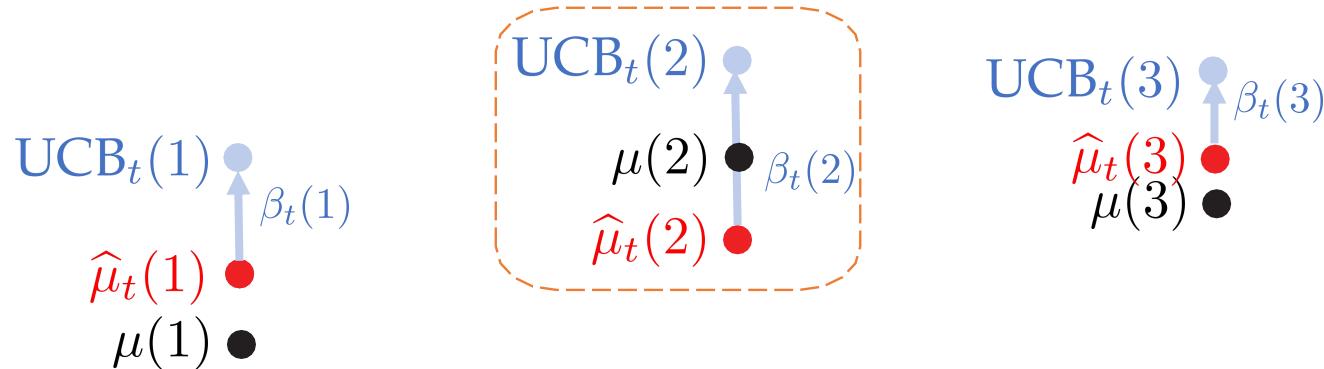


Optimism in Face of Uncertainty: $a_t = \arg \max_{a \in [K]} \text{UCB}_t(a)$

Upper Confidence Bound

- UCB

With high probability $\mu(a) \leq \text{UCB}_t(a) = \hat{\mu}_t(a) + \beta_t(a)$



Optimism in Face of Uncertainty: $a_t = \arg \max_{a \in [K]} \text{UCB}_t(a)$

A large UCB means **uncertainty** or **good arm**.

Choosing the largest UCB means either **exploring** or **exploiting**.

Optimism in the Face of Uncertainty

- A general principle for dealing with uncertainty, or a strategy for balancing exploration and exploitation

$$\text{UCB}_t(a) = \hat{\mu}_t(a) + \beta_t(a)$$

Decision-Making Under Uncertainty: *optimism drives exploration*, encouraging to try new things or take controllable risks, which can lead to better long-term outcomes

UCB Algorithm: Formulation

UCB Algorithm (known as UCB1)

At each round $t = 1, 2, \dots$

- (1) Choose arm $a_t = \arg \max_{a \in [K]} \mathbf{UCB}_{t-1}(a)$
- (2) Observe reward r_t and update the estimation $\hat{\mu}_t$
- (3) Update upper confidence bounds $\mathbf{UCB}_t(a)$ by new estimation

- Estimation: empirical average

$$\hat{\mu}_t(a) = \frac{1}{n_t(a)} \sum_{s=1}^t \mathbf{1}\{a_s = a\} r_s(a), \quad \text{where } n_t(a) \text{ is the pulled times of arm } a$$

- UCB construction: Hoeffding's inequality

Construct UCB

Lemma 2 (Estimation error). *With probability at least $1 - 2K/T$, we have*

$$\forall a \in [K], t \in [T], |\mu(a) - \hat{\mu}_t(a)| \leq \sqrt{\frac{\log T}{n_t(a)}}.$$

Therefore, it suggests $\mathbf{UCB}_t(a) \triangleq \hat{\mu}_t(a) + \sqrt{\frac{\log T}{n_t(a)}}$, ensuring $\mu(a) \leq \mathbf{UCB}_t(a)$.

Proof. For each arm a , by Hoeffding inequality, we have

$$\Pr \left\{ |\mu(a) - \hat{\mu}_t(a)| \leq \sqrt{\frac{\log(1/\delta)}{2n_t(a)}} \right\} \geq 1 - 2\delta \quad \begin{aligned} \Pr \left\{ \bar{X} - \mathbb{E}[\bar{X}] \geq \epsilon \right\} &\leq \exp(-2m\epsilon^2) \\ \Pr \left\{ \bar{X} - \mathbb{E}[\bar{X}] \leq -\epsilon \right\} &\leq \exp(-2m\epsilon^2) \end{aligned}$$

Furthermore, by the union bound over all arms and all rounds and letting $\delta = 1/T^2$,

$$\Pr \left\{ \forall a \in [K], t \in [T], |\mu(a) - \hat{\mu}_t(a)| \leq \sqrt{\frac{\log T}{n_t(a)}} \right\} \geq 1 - 2\frac{K}{T} \quad \square$$

UCB: Gap-Dependent Bound

Theorem 6 (Gap-dependent). *Suppose that for all $t \in [T]$ and $a \in [K]$, $0 \leq r_t(a) \leq 1$, then with probability at least $1 - 2K/T$, UCB satisfies*

$$\bar{R}_T \leq \sum_{a: \Delta_a > 0} \frac{4 \log T}{\Delta_a} + \Delta_a = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} \right).$$

Proof. With probability at least $1 - 2K/T$

$$\begin{aligned} \Delta_{a_t} &= \mu(a^*) - \mu(a_t) \leq \mathbf{UCB}_{t-1}(a^*) - \mu(a_t) & \forall a \in [K], \mu(a) \leq \mathbf{UCB}_t(a) \\ &\leq \mathbf{UCB}_{t-1}(a_t) - \mu(a_t) & a_t = \arg \max_{a \in [K]} \mathbf{UCB}_{t-1}(a) \\ &\leq 2 \sqrt{\frac{\log T}{n_{t-1}(a_t)}} & |\mu(a) - \hat{\mu}_t(a)| \leq \sqrt{\frac{\log(1/\delta)}{n_t(a)}} \\ & & \mathbf{UCB}_t(a) \triangleq \hat{\mu}_t(a) + \sqrt{\frac{\log T}{n_t(a)}} \end{aligned}$$

Proof of UCB Regret Bound

Proof. $\Delta_{a_t} \leq 2\sqrt{\frac{\log T}{n_{t-1}(a_t)}}$

Let t be the last time a is selected, then with probability at least $1 - 2K/T$,

$$\Delta_a \leq 2\sqrt{\frac{\log T}{n_{t-1}(a)}} = 2\sqrt{\frac{\log T}{n_T(a) - 1}}$$

$$\Rightarrow n_T(a) \leq 4\frac{\log T}{\Delta_a^2} + 1$$

$$\Rightarrow \bar{R}_T = \sum_{a \in [K]} \Delta_a \textcolor{red}{n_T(a)} \leq \sum_{a: \Delta_a > 0} \Delta_a \left(4\frac{\log T}{\Delta_a^2} + 1 \right) = \sum_{a: \Delta_a > 0} 4\frac{\log T}{\Delta_a} + \Delta_a.$$

□

UCB: Gap-Dependent Bound

Theorem 6 (Gap-dependent). *Suppose that for all $t \in [T]$ and $a \in [K]$, $0 \leq r_t(a) \leq 1$, then with probability at least $1 - 2K/T$, UCB satisfies*

$$\bar{R}_T \leq \sum_{a: \Delta_a > 0} \frac{4 \log T}{\Delta_a} + \Delta_a = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} \right).$$

- Smaller the Δ_a , larger the regret. Its harder to distinguish the optimal arm from the suboptimal one.
- However, tiny Δ_a should not lead to larger regret. Always pick arm a should just lead to $\bar{R}_T = \Delta_a T$.

$$\Rightarrow \bar{R}_T \leq \min \left\{ \max_{a \in [K]} \Delta_a T, \sum_{a: \Delta_a > 0} \frac{4 \log T}{\Delta_a} + \Delta_a \right\}$$

distribution-dependent
also called gap/instance-dependent

Gap-dependent Upper and Lower Bounds

Theorem 6 (Gap-dependent). *Suppose that for all $t \in [T]$ and $a \in [K]$, $0 \leq r_t(a) \leq 1$, then with probability at least $1 - 2K/T$, UCB satisfies*

$$\bar{R}_T \leq \sum_{a: \Delta_a > 0} \frac{4 \log T}{\Delta_a} + \Delta_a = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} \right).$$

Theorem 3 (Lai-Robbins Lower Bound for Stochastic MAB). *For any algorithm \mathcal{A} and any stochastic MAB instance ν , with arm a 's reward distribution denoted by ν_a and optimal arm a^* , we have*

$$\liminf_{T \rightarrow \infty} \frac{\mathbb{E} [\bar{R}_T(\mathcal{A}, \nu)]}{\log T} \geq \sum_{a: \Delta_a > 0} \frac{\Delta_a}{\text{KL}(\nu_a \| \nu_{a^*})}.$$

- In typical reward models (e.g., Bernoulli or sub-Gaussian), we have that $\text{KL}(\nu_a \| \nu_{a^*}) = \Theta(\Delta_a^2)$. This indicates that $\mathbb{E} [\bar{R}_T] = \Omega \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} \right)$.

UCB: Gap-Independent Bound

Theorem 7 (Gap-independent). *Suppose that for all $t \in [T]$ and $a \in [K]$, $0 \leq r_t(a) \leq 1$, then UCB satisfies with probability at least $1 - 2K/T$,*

$$\bar{R}_T \leq 2\sqrt{TK \log T} + \sum_{a \in [K]} \Delta_a = \mathcal{O}\left(\sqrt{TK \log T}\right).$$

Proof.

$$\begin{aligned} \bar{R}_T &= \sum_{a \in [K]} \Delta_a n_T(a) = \sum_{a: \Delta_a < \Delta} \Delta_a n_T(a) + \sum_{a: \Delta_a \geq \Delta} \Delta_a n_T(a) & n_T(a) \leq 4 \frac{\log T}{\Delta_a^2} + 1 \\ &\leq T\Delta + \sum_{a: \Delta_a \geq \Delta} \Delta_a \left(4 \frac{\log T}{\Delta_a^2} + 1\right) \leq T\Delta + 4 \frac{K \log T}{\Delta} + \sum_{a \in [K]} \Delta_a \\ &\leq 2\sqrt{TK \log T} + \sum_{a \in [K]} \Delta_a \quad \text{Choosing } \Delta = 2\sqrt{K(\log T)/T} \end{aligned}$$

□

Gap-Independent Upper and Lower Bounds

Theorem 7 (Gap-independent). *Suppose that for all $t \in [T]$ and $a \in [K]$, $0 \leq r_t(a) \leq 1$, then UCB satisfies with probability at least $1 - 2K/T$,*

$$\bar{R}_T \leq 2\sqrt{TK \log T} + \sum_{a \in [K]} \Delta_a = \mathcal{O}\left(\sqrt{TK \log T}\right).$$

Theorem 2 (Minimax Lower Bound for MAB). *For any bandit algorithm \mathcal{A} , there exists an instance ν with a **stochastic** loss sequence such that*

$$\inf_{\mathcal{A}} \sup_{\nu} \mathbb{E} [\bar{R}_T(\mathcal{A}, \nu)] = \Omega(\sqrt{TK})$$

Thompson Sampling

- Suppose for each arm $a \in [K]$, $r_t(a) \in \{0, 1\}$ and $r_t(a) \sim \text{Ber}(\mu_a)$ (μ_a is unknown).

Thompson Sampling

Initialization: Choose fake prior $\text{Beta}(\alpha_{a,1}, \beta_{a,1})$ for $a \in [K]$ following some strategy.

At each round $t = 1, 2, \dots$

- (1) For each arm a , sample $\tilde{\mu}_t(a) \sim \text{Beta}(\alpha_{a,t}, \beta_{a,t})$
- (2) Choose $a_t = \arg \max_{a \in [K]} \tilde{\mu}_t(a)$ and observe reward $r_t \in \{0, 1\}$
- (3) Update the posterior of arm a_t by

$$(\alpha_{a_t,t+1}, \beta_{a_t,t+1}) = \begin{cases} (\alpha_{a_t,t} + 1, \beta_{a_t,t}), & \text{if } r_t = 1, \\ (\alpha_{a_t,t}, \beta_{a_t,t} + 1), & \text{if } r_t = 0. \end{cases}$$

Thompson Sampling

Thompson Sampling

Initialization: Choose fake prior $\text{Beta}(\alpha_{a,1}, \beta_{a,1})$ for $a \in [K]$ following some strategy.

At each round $t = 1, 2, \dots$

- (1) For each arm a , sample $\tilde{\mu}_t(a) \sim \text{Beta}(\alpha_{a,t}, \beta_{a,t})$
- (2) Choose $a_t = \arg \max_{a \in [K]} \tilde{\mu}_t(a)$ and observe reward $r_t \in \{0, 1\}$
- (3) Update the posterior of arm a_t by

$$(\alpha_{a_t,t+1}, \beta_{a_t,t+1}) = \begin{cases} (\alpha_{a_t,t} + 1, \beta_{a_t,t}), & \text{if } r_t = 1, \\ (\alpha_{a_t,t}, \beta_{a_t,t} + 1), & \text{if } r_t = 0. \end{cases}$$

$\text{Beta}(\alpha, \beta)$

- Mean: $\mu = \frac{\alpha}{\alpha + \beta}$ Exploitation
- Var: $\sigma \approx \frac{\mu(1 - \mu)}{\alpha + \beta}$ Exploration

A large $\tilde{\mu}_t(a_t)$ means **large mean (good arm)** or **large variance (uncertainty)**.

Choosing the largest $\tilde{\mu}_t(a_t)$ means either **exploring** or **exploiting**.

TS Regret Bound

- Gap-dependent bound

Theorem 8. For every $\epsilon > 0$ there exists a problem-dependent constant $C(\epsilon, \mu_1, \dots, \mu_K)$ such that the regret of Thompson Sampling satisfies:

$$\mathbb{E} [\bar{R}_T] \leq (1 + \epsilon) \sum_{a \in A: \mu_a \neq \mu^*} \frac{\Delta_a (\log(T) + \log \log(T))}{KL(\mu_a, \mu^*)} + C(\epsilon, \mu_1, \dots, \mu_K).$$

By the Pinsker's inequality $2KL(\mu_a, \mu^*) > \Delta_a^2$, we have the asymptotically optimal bound

$$\mathbb{E} [\bar{R}_T] \leq 2(1 + \epsilon) \sum_{a \in A: \mu_a \neq \mu^*} \frac{\log(T) + \log \log(T)}{\Delta_a} + C(\epsilon, \mu_1, \dots, \mu_K).$$

Summary of All those methods

- ETC

$$\mathbb{E}[\bar{R}_T^{\text{ETC}}] = \mathcal{O} \left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a \right)$$

- ε -greedy

$$\mathbb{E}[\bar{R}_T^{\varepsilon}] = \mathcal{O} \left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a \right)$$

- UCB1

$$\bar{R}_T^{\text{UCB}} = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} \right), \text{ with probability } \geq 1 - \frac{2K}{T}$$

- TS

$$\mathbb{E}[\bar{R}_T^{\text{TS}}] = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} + C \right)$$

(C is a problem-dependent constant)

Part 3. Comparison

- ETC vs ε -greedy
- ε -greedy vs UCB
- UCB vs Thompson Sampling

Summary of All those methods

- ETC

$$\mathbb{E}[\bar{R}_T^{\text{ETC}}] = \mathcal{O} \left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a \right)$$

- ε -greedy

$$\mathbb{E}[\bar{R}_T^{\varepsilon}] = \mathcal{O} \left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a \right)$$

- UCB1

$$\bar{R}_T^{\text{UCB}} = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} \right), \text{ with probability } \geq 1 - \frac{2K}{T}$$

- TS

$$\mathbb{E}[\bar{R}_T^{\text{TS}}] = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} + C \right)$$

(C is a problem-dependent constant)

ETC vs ε -greedy

- ETC uses a single exploration length m determined by Δ_{\min} and explores *every* arm exactly m times.

$$\mathbb{E}[\bar{R}_T^{\text{ETC}}] = \mathcal{O}\left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a\right)$$

- ε -greedy performs uniform exploration in each exploration step, but the use of exploitation and the decaying ε_t lead to arm-dependent behaviors.

$$\mathbb{E}[\bar{R}_T^{\varepsilon}] = \mathcal{O}\left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a\right)$$

Summary of All those methods

- ETC

$$\mathbb{E}[\bar{R}_T^{\text{ETC}}] = \mathcal{O} \left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a \right)$$

- ε -greedy

$$\mathbb{E}[\bar{R}_T^{\varepsilon}] = \mathcal{O} \left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a \right)$$

- UCB1

$$\bar{R}_T^{\text{UCB}} = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} \right), \text{ with probability } \geq 1 - \frac{2K}{T}$$

- TS

$$\mathbb{E}[\bar{R}_T^{\text{TS}}] = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} + C \right)$$

(C is a problem-dependent constant)

ε -greedy vs UCB

- ε -greedy $\mathbb{E}[\bar{R}_T^\varepsilon] = \mathcal{O}\left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a\right)$
- UCB1 $\bar{R}_T^{\text{UCB}} = \mathcal{O}\left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a}\right)$, with probability $\geq 1 - \frac{2K}{T}$

Example 1: All gaps similar

When $\Delta_a = \Delta$ for all $a \in [K]$, we have

$$\varepsilon\text{-greedy} \quad \mathbb{E}[\bar{R}_T^\varepsilon] = \mathcal{O}\left(\frac{\log T}{\Delta^2} \cdot K\Delta\right) = \mathcal{O}\left(K\frac{\log T}{\Delta}\right),$$

$$\text{UCB} \quad \bar{R}_T^{\text{UCB}} = \mathcal{O}\left(\log T \cdot K\frac{1}{\Delta}\right) = \mathcal{O}\left(K\frac{\log T}{\Delta}\right).$$

the same order

ε -greedy vs UCB

- ε -greedy

$$\mathbb{E}[\bar{R}_T^\varepsilon] = \mathcal{O}\left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a\right)$$

- UCB1

$$\bar{R}_T^{\text{UCB}} = \mathcal{O}\left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a}\right), \text{ with probability } \geq 1 - \frac{2K}{T}$$

Example 2: One nearly-optimal arm, many clearly bad arms

When $\mu_1 = 0.99$, $\mu_2 = 0.98$, and $\mu_a = 0$ for $a = 3, \dots, K$, we have $\Delta_2 = 0.01$ and $\Delta_a \approx 1$ for $a = 3, \dots, K$.

ε -greedy	$\mathbb{E}[\bar{R}_T^\varepsilon] \approx \frac{\log T}{(0.01)^2} \cdot K = 10^4 K \log T,$
UCB1	$\bar{R}_T^{\text{UCB}} \approx (100 + K) \log T.$

UCB incurs significantly lower regret

ε -greedy vs UCB

- ε -greedy
$$\mathbb{E}[\bar{R}_T^\varepsilon] = \mathcal{O}\left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a\right)$$
- UCB1
$$\bar{R}_T^{\text{UCB}} = \mathcal{O}\left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a}\right), \text{ with probability } \geq 1 - \frac{2K}{T}$$

□ Prior information dependence

- ε -greedy requires the knowledge of Δ_{\min} to achieve the desired regret
- UCB1 doesn't need any prior knowledge of gaps.

□ Exploration mechanism

- ε -greedy explores all the arms uniformly
- UCB1 drives exploration through a confidence bonus, allocating more trials to arms with greater uncertainty.

Summary of All those methods

- ETC

$$\mathbb{E}[\bar{R}_T^{\text{ETC}}] = \mathcal{O} \left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a \right)$$

- ε -greedy

$$\mathbb{E}[\bar{R}_T^{\varepsilon}] = \mathcal{O} \left(\frac{\log T}{\Delta_{\min}^2} \sum_{a: \Delta_a > 0} \Delta_a \right)$$

- UCB1

$$\bar{R}_T^{\text{UCB}} = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} \right), \text{ with probability } \geq 1 - \frac{2K}{T}$$

- TS

$$\mathbb{E}[\bar{R}_T^{\text{TS}}] = \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} + C \right)$$

(C is a problem-dependent constant)

UCB vs Thompson Sampling

	UCB	Thompson Sampling
Decision Style	Deterministic	Probabilistic
Core Principle	Frequentist	Bayesian
Prior Knowledge	Subgaussian parameter σ	Prior distribution type
Exploration	Empirical mean $\hat{\mu}_t$	Mean of distribution μ
Exploitation	Uncertainty $\beta_t(a)$	Var of distribution σ
Guarantee	$\mathcal{O}\left(\log T \sum_a \frac{1}{\Delta_a}\right)$ with high probability	$\mathcal{O}\left(\log T \sum_a \frac{1}{\Delta_a} + C\right)$ asymptotically

Table 1: Comparison between UCB and Thompson Sampling

(C is a problem-dependent constant)

Part 4. Extension

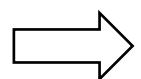
- Best of Both Words
- Extensions of UCB1
- Best Arm Identification (BAI)
- UCB in Online RL

Advanced Topic: Best of Both Worlds

- Best of adversarial MAB: $\mathbb{E}[\text{REG}_T] = \mathbb{E} \left[\sum_{t=1}^T \ell_{t,a_t} \right] - \min_{a \in [K]} \sum_{t=1}^T \ell_{t,a} \leq \mathcal{O} \left(\sqrt{TK} \right)$
- Best of stochastic MAB: $\bar{R}_T = \max_{a \in [K]} \mathbb{E} \left[\sum_{t=1}^T r_t(a) - \sum_{t=1}^T r_t(a_t) \right] \leq \mathcal{O} \left(\sum_{a: \Delta_a > 0} \frac{\log T}{\Delta_a} \right)$

Can one algorithm achieve the ***best of both worlds***, without knowing whether the world is stochastic or adversarial?

- UCB: can get almost linear regret under the adversarial setting.
- Exp3: can't have adaptive regret bound in the stochastic case.



Surprisingly, using OMD with *Tsallis entropy* regularizer.

Reference: Julian Zimmert, Yevgeny Seldin. [An Optimal Algorithm for Stochastic and Adversarial Bandits](#). AISTATS 2019.

Advanced Topic: Extension of UCB1

- Recall that UCB1 algorithm is *nearly* minimax optimal (up to some logarithmic factor).

Theorem 7 (Gap-independent). *Suppose that for all $t \in [T]$ and $a \in [K]$, $0 \leq r_t(a) \leq 1$, then UCB1 with $\delta = 1/T^2$ satisfies with high probability,*

$$\bar{R}_T \leq 2\sqrt{TK \log T} + \sum_{a \in [K]} \Delta_a = \mathcal{O}\left(\sqrt{TK \log T}\right).$$

- How to achieve *minimax optimality*?
 - Carefully tuning the (adaptive) confidence level $\delta_t = 1/f(t)$ with $f(t) = 1 + t \log^2 t$ achieves *asymptotic* optimality (see Chapter 8, *Bandit Algorithm* book).

Advanced Topic: Extension of UCB1

- Recall that UCB1 algorithm is *nearly* minimax optimal (up to some logarithmic factor).
- How to achieve *minimax optimality*?
 - Carefully tuning the confidence level achieves *asymptotic* optimality.
 - MOSS algorithm [Audibert and Bubeck, 2009] uses bonus term chosen based on T and K , as well as the number of plays of the individual arms. This achieves *minimax optimality* (See Chapter 9, *Bandit Algorithm* book).

Arm selection in UCB1:
$$a_t = \arg \max_a \hat{\mu}_{t-1}(a) + \sqrt{\frac{2 \log(1/\delta)}{n_{t-1}(a)}}$$

Arm selection in MOSS:
$$a_t = \arg \max_a \hat{\mu}_{t-1}(a) + \sqrt{\frac{4}{n_{t-1}(a)} \log^+ \frac{T}{Kn_{t-1}(a)}}$$

Advanced Topic: Extension of UCB1

- Recall that UCB1 algorithm is *nearly* minimax optimal (up to some logarithmic factor).
- How to achieve *minimax optimality*?
 - Carefully tuning the confidence level achieves *asymptotic* optimality.
 - MOSS achieves *minimax optimality* by bonus term chosen based on T and K , as well as the number of plays of the individual arms.
- UCB1 only suites for sub-Gaussian noise (to use Hoeffding's inequality). How to deal with *Bernoulli noise*?
 - Needs different concentration (for sums of Bernoulli r.v.).
 - KL-UCB algorithm [Garivier and Cappe, 2011; Maillard et al., 2011] solves that for *Bernoulli bandits* (see Chapter 10, *Bandit Algorithm* book).

Advanced Topic: Best Arm Identification

- Previously we mainly focus on *regret minimization*, which seeks for exploration-exploitation trade-off.
- Another topic in stochastic bandit: **best arm identification** (or an ε -optimal arm)

Essentially, a *pure exploration* problem.

- Setting 1: *fixed-budget* → minimize simple regret

$$\text{REG}_T^{\text{simple}} = \sum_{a \in [K]} \Delta_a \Pr(a_{T+1} = a)$$

- Setting 2: *fixed confidence* → a δ -PAC sample complexity guarantee

$$\Pr(\text{return suboptimal arm}) \leq \delta$$

Advanced Topic: UCB in Online RL

- Recall that reinforcement learning as multi-step bandits.
- ***Exploration-Exploitation dilemma*** is also a central challenge in reinforcement learning.
 - Typically, we need to estimate the state transition, and use dynamic programming to solve for the ***value function*** (cumulative reward).
 - Bellman equation:

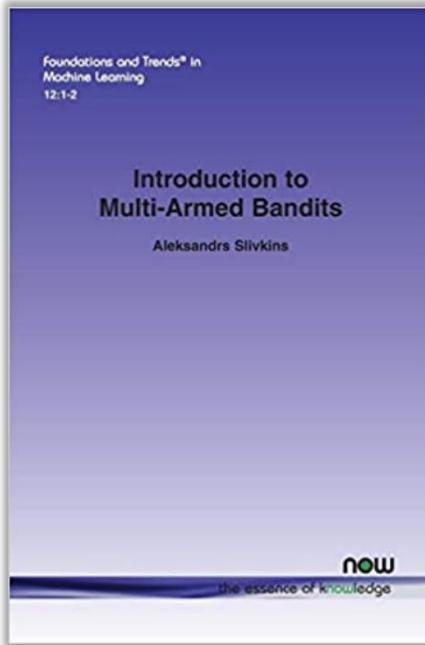
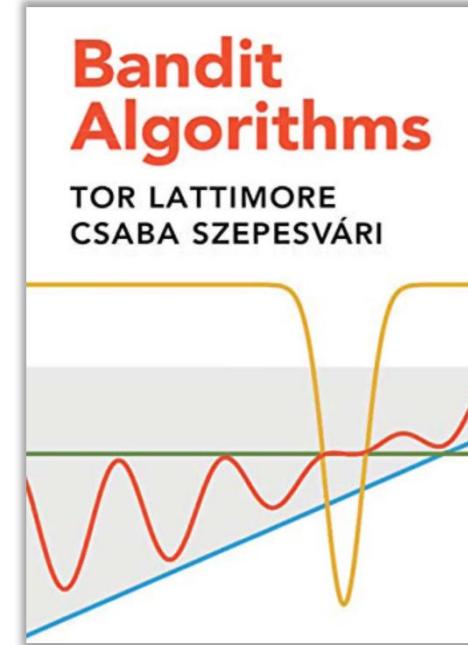
$$Q(s, a) = r(s, a) + \sum_{s'} P(s' | s, a) \max_{a'} Q(s', a') + b(s, a)$$

- UCB-VI algorithm [Azar et al., 2017]
- UCB strategy also used in many RL algorithms, e.g., ***Monte Carlo Tree Search (MCTS)*** in AlphaGo

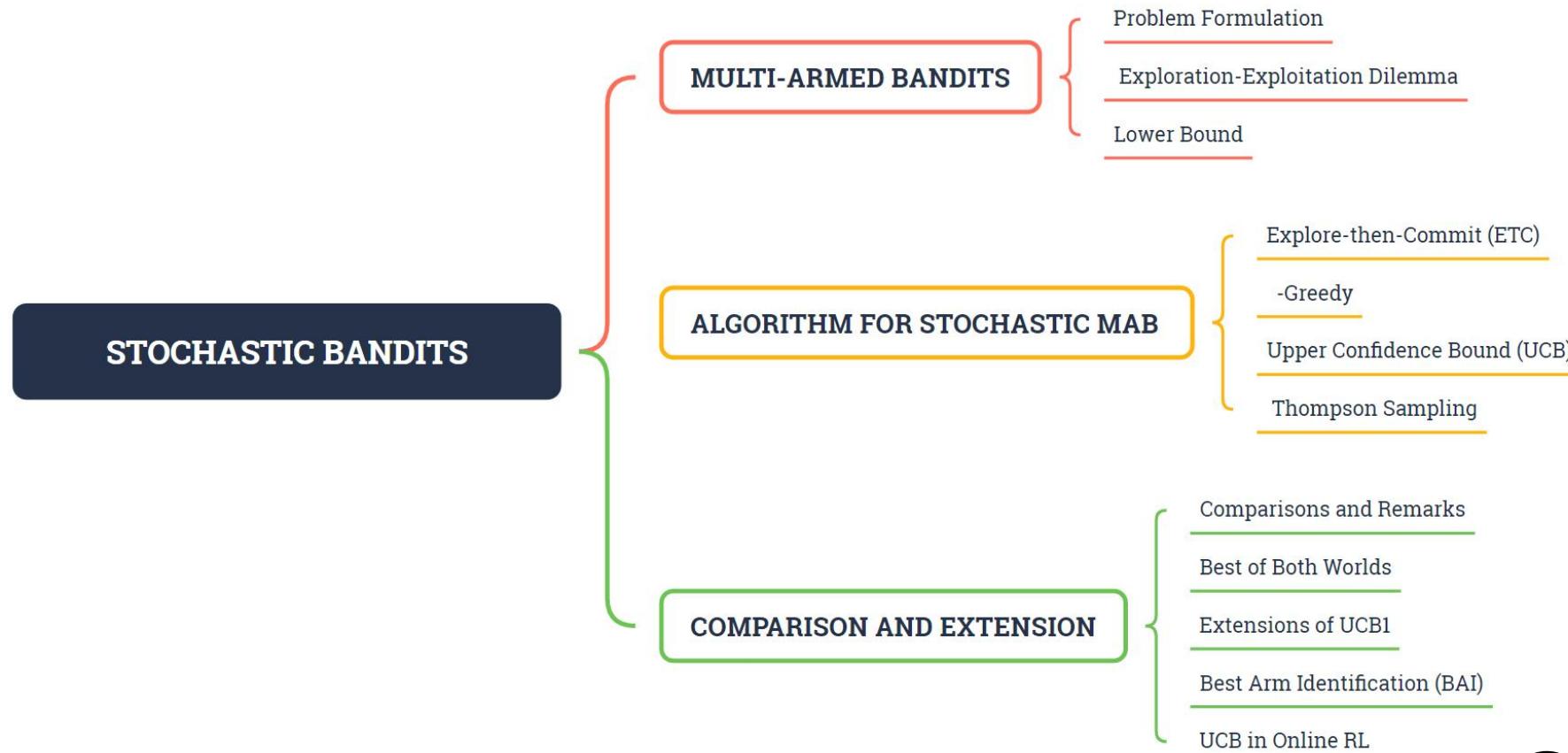
Add bonus term to encourage exploration

Many more results

- Techniques developed in bandit problems have been applied in many areas, including machine learning, reinforcement learning, statistics, operational research, and information theory [\[Bubeck and Cesa-Bianchi, 2012; Slivkins, 2019; Lattimore and Szepesvári, 2020\]](#).



Summary



Q & A

Thanks!