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Outline
• Linear Bandits

• Advanced Topics
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Part 1. Linear Bandits
• Formulation

• Estimator and UCB Construction

• LinUCB and Regret Analysis
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Bandits: Interactive Learning
• Multi-armed bandits: a simplest formulation for bandit problems 

Exploration-Exploitation tradeoff

• Exploitation: pull the best arm so far
• Exploration: try other arms that may be better

The goal is to minimize the regret :

i.e., difference between the cumulative reward of the best arm and that obtained by the bandit algorithm
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• A ubiquitous problem in real life: feature information

• Each arm represent a book and has side information;
• Arm set could be very large or even infinite.

Stochastic Linear Bandits
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Stochastic LB: Formulation
Stochastic Linear Bandits

• Linear modeling assumption:
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Stochastic LB: Formulation

• Linear modeling assumption:

Stochastic Linear Bandits

• Regret measure: 
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Stochastic LB: Formulation

Arm set

Model

Regret

Multi-Armed Bandits Linear Bandits



Lecture 12. Stochastic Bandits IIAdvanced Optimization (Fall 2025) 9

• Linear Bandits is a special case of MAB with infinite arm:

 

Deploying UCB to Linear Bandits

Why not directly deploy UCB to address Linear Bandits?

Haven’t exploited the additional contextual feature information !
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LinUCB: Linear Bandits with UCB 

LinUCB Algorithm

Ø Estimator: construct an estimation of the reward (linearly parameterized) 

Ø Arm selection: upper confidence bound selection

exploit explore



Lecture 12. Stochastic Bandits IIAdvanced Optimization (Fall 2025) 11

LinUCB: Estimator
• Input: historical feature-reward pairs

• Estimation: regularized least square (ridge regression)

“one-pass” incremental update
online data item is processed only once, 

don’t need to store it along the time

• This LS estimator can be updated incrementally.
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LinUCB: Estimator

• This LS estimator can be updated incrementally.

known as the Recursive Least Square (RLS) estimator

provably equivalent to the standard LS estimator

• Even accelerated by using rank-1 update (Sherman-Morrison-Woodbury 
formula), which reduces the computational complexity from 
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exploit explore

LinUCB: UCB construction and selection

Learning History
Regularized Least Square Estimator

Key question: how to construct a proper UCB?
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• UCB for stochastic MAB

• UCB for stochastic LB (LinUCB)
• More information can be used to estimate expected reward.

LinUCB Algorithm

UCB estimation LinUCB estimation
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Construct UCB

Proof.
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Proof of Estimation Error Bound
Proof.
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Self-Normalized Concentration
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Proof of Estimation Error Bound
Proof.
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Proof of Estimation Error Bound
Proof.
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LinUCB: Regret Bound

Proof.
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LinUCB: Regret Bound
Proof.
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LinUCB: Regret Bound
Proof.
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Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. 
Improved algorithms for linear stochastic bandits. 
In Advances in Neural Information Processing Systems 
24 (NIPS), pages 2312–2320, 2011.
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Part 2. Advanced Topics
• Self-Normalized Concentration

• Connection of Linear bandits to RL theory

• More generalized model
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Part 2. Advanced Topics
• Self-Normalized Concentration

• Connection of Linear bandits to RL theory

• More Generalized Model
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Proof of Estimation Error Bound
Proof.
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Self-Normalized Concentration
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Self-Normalized Processes: Limit 
theory and Statistical Applications
Victor H. de la Pena, Tze Leung Lai, 

and Qi-Man Shao
Probability and Its Applications 

Series. Springer. 2009.
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Tze Leung Lai (黎子良)
1945 – 2023

斯坦福大学统计系前任系主任

第一位华人COPSS总统奖获得者

https://en.wikipedia.org/wiki/Multi-armed bandit

https://en.wikipedia.org/wiki/Tze_Leung_Lai
https://en.wikipedia.org/wiki/Multi-armed_bandit
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Advanced Topic: Bayesian Optimization

ICML 2020 ten-year 

Test of Time Award!

Reference: Gaussian Process Optimization in the Bandit Setting: 
No Regret and Experimental Design. ICML 2010. 

Linear bandits in RKHS

https://icml.cc/Conferences/2010/papers/422.pdf
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Part 2. Advanced Topics
• Self-Normalized Concentration

• Connection of Linear bandits to RL theory

• More Generalized Model
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Linear bandits for RL Theory

COLT 2020

ICML 2020

Function Approximation

a technique with huge success 
(especially by involving DNN) , crucially 

useful for the AlphaGo’s success
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Function Approximation
Tabular MDPs: usually maintain a table to store values for all states (or state-
action pairs), which scales with state number � and action number �.

We discover through 
experience that this state is bad

In tabular methods, we know 
nothing about this state.

We know nothing about 
this state either!

But this has a poor scalability in practical scenarios; and many structures yet to exploit…
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Function Approximation
RL Function approximation: approximate using a parameterized function. 

• To avoid bad dependence on #states �, #action � in tabular MDPs

• Describe states (or state-actions) using feature representations in ℝ�.

• A modern choice: DNN as a feature representer

similar 
output

parameterize MDP model with a low-dimensional representation 
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Deploying bandit techniques
• Linear Mixture MDPs

• Linear Bandits

• Linear modeling assumption:

Linear bandits serve as 
a foundational tool for 
understanding linear 

mixture MDPs
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Linear Mixture MDPs

Reward estimation

Transition estimation

Regret boundEstimation error

• Least square for parameter estimation

agent environment
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Part 2. Advanced Topics
• Self-Normalized Concentration

• Connection of Linear bandits to RL theory

• More Generalized Model
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Beyond: More Expressivity

(i) Generalized linear bandits (ii) Heavy-tailed linear bandits

[Wang-Zhang-Z-Zhou, ICML’25] Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update. 
[Zhang-Xu-Z-Sugiyama, NeurIPS’25] Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update. 

Goal: computationally efficient (better “one-pass”) algorithm with optimal regret

Linear Non-linear 
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① GLB: Problem Formulation

❑ Generalized linear reward function:

Generalized Linear Bandits
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① GLB: Existing Algorithm
• GLM-UCB Algorithm [Filippi et al., NIPS 2010]

Ø Estimator: maximum likelihood estimator 

Estimation error:

There are recent works using “warm-up” 
to remove �, but is still not one-pass

Regret bound: 

Ø Arm selection: upper confidence bound
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② Hvt-LB: Problem Formulation
• Linear reward with sub-Gaussian noise

In many scenarios, 
the noise can be 

heavy-tailed !

• Linear bandits with heavy-tailed noise
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② Hvt-LB: Existing Algorithm
• HEAVY-OFUL Algorithm [Huang et al., NeurIPS 2023]

Ø Estimator: adaptive Huber regression

Squared loss

Huber loss

reduce penalty for 
large deviation 

Estimation error:

Ø Arm selection: upper confidence bound

Regret bound: 
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Efficiency Concerns

• Heavy-tailed LB: adaptive Huber regression

Question: Can Generalized/Heavy-tailed LB enjoy one-pass algorithms?

• Stochastic LB: least squares (closed-form solution)

• Generalized LB: maximum likelihood estimator

one-pass update

inefficiency due to non-quadratic loss

infeasible!
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More Recent Progress

• One-Pass Bandit Learning for RLHF and Function Approximation
2025.11.23, 第二十届中国人工智能基础年会 (CFAI 2025)·强化学习论坛, 湖南长沙.

https://www.pengzhao-ml.com/talk/202511_one-pass%20bandits@CFAI.pdf
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Generalized Linear Bandits (GLB)

NIPS’10 Parametric Bandits: 
The Generalized Linear Case

NeurIPS’25 Generalized Linear Bandits: Almost 
Optimal Regret with One-Pass Update

https://papers.nips.cc/paper_files/paper/2010/hash/c2626d850c80ea07e7511bbae4c76f4b-Abstract.html
https://www.pengzhao-ml.com/publication/NeurIPS'25_OnePass-GLB.pdf
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Generalized Linear Bandits (GLB)



Lecture 12. Stochastic Bandits IIAdvanced Optimization (Fall 2025) 47

Generalized Linear Bandits (GLB)
A variety of usage, especially for the logistic link function…

q RL with function approximation: MNL mixture MDPs (related to GLB)
Long-Fei Li*, Yu-Yang Qian*, Peng Zhao, Zhi-Hua Zhou. Provably Efficient 
Online RLHF with One-Pass Reward Modeling. NeurIPS 2025.

q RLHF: BT model naturally related to logistic bandits, etc.
Long-Fei Li, Yu-Jie Zhang, Peng Zhao, Zhi-Hua Zhou. Provably Efficient 
Reinforcement Learning with Multinomial Logit Function Approximation. 
NeurIPS 2024.
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Summary

Q & A
Thanks!


	Outline
	Part 1. Linear Bandits
	Part 2. Advanced Topics
	Self-Normalized Concentratio
	Connection of Linear bandits to RL theory
	More Generalized Model

	Summary

