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Part 1. Linear Bandits

e Formulation
 Estimator and UCB Construction

* LiInUCB and Regret Analysis
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Bandits: Interactive Learning

* Multi-armed bandits: a simplest formulation for bandit problems

Ateachroundt=1,2,--- i
(1) player first chooses an arm a, € |K|; EEE EEE

(2) environment reveals a reward r;(a;) ~ distribution D,,_;

(3) player updates the strategy by the pair (a¢, r¢(a)).

The goal is to minimize the regret : Exploration-Exploitation tradeoff

» Exploitation: pull the best arm so far

T T
Reg, = max E Zrt(a) — Z’rt(at)
t=1

ac|K] po * Exploration: try other arms that may be better

i.e., difference between the cumulative reward of the best arm and that obtained by the bandit algorithm
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* Each arm represent a book and has side information;
* Arm set could be very large or even infinite.
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Stochastic LB: Formulation

Stochastic Linear Bandits

Each arm is associated with a feature vectorx € X = {x ¢ R? | ||x||» < L}

Ateachroundt=1,2,---

(1) the player first chooses an arm X; from arm set X’;

(2) and then environment reveals a reward r; € R.

* Linear modeling assumption: 7:(x) = x "0, +n
— for some unknown parameter 6, € © = {6 | |||, < S},

— for some unknown noise: 7, is R-sub-Gaussian random noise;
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Stochastic LB: Formulation

Stochastic Linear Bandits
Each arm is associated with a feature vectorx € X = {x ¢ R? | ||x||» < L}
Ateachroundt=1,2,---

(1) the player first chooses an arm X; from arm set X’;

(2) and then environment reveals a reward r; € R.

* Linear modeling assumption: 7:(x) = x "0, +n
T

« Regret measure: R+ 2T T, -y X/'o,
g R Max X 0 ; . 0

For simplicity, we use a fixed arm set X, and results in this lecture can be
extended to changing set, i.e., A;.
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Stochastic LB: Formulation

Each arm is associated with a feature vector x € X = {x € R? | ||x||» < L}
Ateachroundt=1,2,---

(1) the player first chooses an arm X, from arm set &’;

(2) and then environment reveals a reward r; € R.

Multi-Armed Bandits

Linear Bandits

Arm set

finite arm set K|

infinite arm set X = {||x||» < L}

Model

Vit € [T],a € [K],ri(a) € [0,1]

Ty = XtTG* + My p(x) = x ',

n:: sub-Gaussian noise

Regret

Rt = T max u(a) — a
r =T max u(a) ~ 3 pler)

T
. _ Tg _ T
R —Tineaicx 0 ;Xt 0
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Deploying UCB to Linear Bandits

* Linear Bandits is a special case of MAB with infinite arm:

> Why not directly deploy UCB to address Linear Bandits?

Theorem 3 (Distribution-free). Suppose that for all t € [T'] and a € |K],
0 < ri(a) <1, then UCB satisfies

Rr <2VTKWT+ Y A, =0 (\/TKlogT) .

a€[K]

Infinite arm set (K — o00) leads to meaningless regret guarantee!

:> Haven't exploited the additional contextual feature information !
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LinUCB: Linear Bandits with UCB

LinUCB Algorithm
Ateachround¢t=1,2,---
(1) Select X; = arg max, ., UCB;_1(x)
(2) Observe reward r; and update the estimation @\t
(3) update upper confidence bounds UCB;(x) by new estimation

» Estimator: construct an estimation of the reward (linearly parameterized)

» Arm selection: upper confidence bound selection

X,.1 = arg max {xTet + By || }
xeX t=1

exploit
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LinUCB: Estimator

* Input: historical feature-reward pairs
{(X17 Tl)a (X27 7a2)7 SRR (Xt—17 Tt—l)}

* Estimation: regularized least square (ridge regression)

t—1

6, = argmin A|0]3 + 3 (X6 — )

HcRd “one-pass” incremental update

s=1
online data item is processed only once,

Closed form: 0, = V, by don’t need to store it along the time

6A’t+1 = Vt_lbt, where
Vi=Vio1 + Xe X,

* This LS estimator can be updated incrementally. by = b1 +7: X,

Vit BN+ 3000 XX b &30 X,
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LinUCB: Estimator

Closed form: 6, = Vi~ (00 reX,), iy = M+ X100 X, X[

 This LS estimator can be updated incrementally.

* Even accelerated by using rank-1 update (Sherman-Morrison-Woodbury
formula), which reduces the computational complexity from O(d?) to O(d?)

P 1 Xy
1+ X P, X,

Kt:

AN o AN —|—/\
0p = 0; 1+ Ky [Tt - Xt 975_1} known as the Recursive Least Square (RLS) estimator

P,=P_, - K.X,'P_;.

provably equivalent to the standard LS estimator
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LinUCB: UCB construction and selection

Key question: how to construct a proper UCB?

Construct UCB,(x) to ensure that I:> Xi41 = argmax, .y UCB,(x)
pn(x) =x"0, < UCB(x) @
£ 7iy() + Brallxlly |
exploit Submit X1,
ﬁ observe r;;1 € R

Regularized Least Square Estimator ) ﬂ

=X, 0.+ L Hist
6’ = arg min MMIOE + E -1 X TH : earmng 1Story
t g fcRd H H2 ( ) < (Xlarl) (thrt)

\ //It (X) = XTQt /
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LinUCB Algorithm

* UCB for stochastic MAB
(1) estimate p(a) by average estimation;
(2) construct upper confidence bound for p(a) by concentration inequalities.

» UCB for stochastic LB (LinUCB)

* More information can be used to estimate expected reward.

UCB estimation LinUCB estimation
t t—1
]. N . 2) T 2
s (a) = 1ias = atrs(a 0; = argmin A||0||5 + X0 —rs
fiea) = oy 2 Hos = alra(a) 2 )
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Construct UCB

Lemma 2 (Estimation error). For any x € X,6 € (0, 1), with probability at least
1 — 6, the following holds for all t € |T]

xT (0, - 0.)

Ad

Therefore, it suggests UCB;(x) £ x 0+ B4 ”X”V;_ll' ensuring p(x) < UCB(x).

1 (t—1)L?
< 5t_1||x||vt__11, where ;1 = R4/ 2log 5+ dlog ( 1+ +VAS.

t—1
Proof @9«—%ﬁ(§:mX96h 0 = Vb (S meXs)

s=1

t—1 t—1

s=1 s=1

t—1 t—1 T
1 =AM X . X.
—%ﬁ(Ev@nx@) Vit = AT 2o XX
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Proof of Estimation Error Bound

t—1
Proof. 5, _ /A <Z NsXs — A9*> Viog =AM+ xox T
s=1
|XT (‘/9\75 — 9*) < HXHVt_—ll 0, — 0. Cauchy-Schwarz inequality: |a ' b| < ||a||||b||~

t—1

< [y

t—1
e
s=1

+ w*vta) 6, = v (Six)

—1
Viea

Core difficulty: The actions { X, },—1 . : are neither fixed nor independent but
are intricately correlated via the rewards {rs}s=1. .
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Self-Normalized Concentration

Theorem 4 (Self-normalized concentration for Vector-Valued Martingales). Let {F}}$°, be a filtration. Let
{n:}$2 be a real-valued stochastic process such that n, is Fy-measurable and n, is conditionally R-sub-Gaussian
for some R > 0O i.e.,

A\ R?
VA eR, Elexp(An:) | X1.¢,m1.0-1] < exp ( > ) .

Let {X;}22, be an R¥-valued stochastic process such that X; is Fy_,-measurable. Assume that Visa d x d
positive definite matrix. For any t > 0, define

t t
Vi=Vo+ ) XX, Si=) nX.
s=1

s=1

Then, for any 6 > 0, with probability at least 1 — 9, forall t > 0,

N

det(V;)z det(Vp) ™
HStHQt—l §2R210g< =) 56( 0 )
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Proof of Estimation Error Bound

< Jixlly,, 20,y

Proof. ‘XT (@ — 9*)

Theorem 4 (Self-normalized concentration). For any ¢ € (0, 1), with probability
at least 1 — 9, forall t > 0,

t
DX
s=1

2

N[

det(V;)2 det(V))

< 92R?] ’ 7).

.
t

Tr (V) = Tr(A) +Tr | S X XST><)\d+tL2 V, = AT+ X, X[
s=1

d d d d d
DY Tr (V) A+ tL2
det (V) = [T\ < [ =i= - <
et (V1) 1;[1 —< d d = d

det(Vp) = det(A) = A4 Vj = A

Advanced Optimization (Fall 2025) Lecture 12. Stochastic Bandits II
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Proof of Estimation Error Bound
< [Ixly-v ( z_:nsXs o M*Vti)

Proof. ‘XT (@ — 9*)

t—1 3 -3 _ 2\ 2
Z%Xs < |2R2 108 det (V3)2 det (Vp) < | 2R210g 1/ Ad+(t-1)L
) ) \ ) A
=1 vz
1 1,2 det (V) < A+ tL2\°
=R 210g(g>—|—d10g<1—|—v) et (Vi) < 7
det(Vp) = \¢
[N ly1 € e Ay < —= [IAL]]y < VAS
Vt_l B \/>\min (Vvt—l) 2 \/X S
R 1 t1,2
T(g, — < . - v
|X (Ht 9*) < ||X||Vt_1 (R\/Qlog 5 + dlog <1 + Ad) + \/XS> o
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LinUCB: Regret Bound

Theorem 5. Let \ = d, the regret of LinUCB is bounded with probability at least 1 — 1/T, by

— TL L2T ~

Proof. Let X, £ arg maxxey X | 0, each of the following holds with probability at least 1 — 4,
vt € [T], X, 0. < X0, + B || Xelly

Ve € [T], X0, > X6, = By | Xilly
With probability at least 1 — 20,
vt € [T), X 0 = X[ 0 < X760, = X[ B+ Bis (I X.llyr + Xl )

<261 1 Xellv1 s X0, + 8 [ Xclly - < X0 + B 1 Xelly -
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LinUCB: Regret Bound

Proof. With probability at least 1 — 25, Vit € T, X'o, — XtTH* < 281 HXtHVt—_ll .

T T T

_ 2

Rr = E (X*TQ* — XtTH*) < 207 E ||XtHvt—_11 <2074\ | T E :HXtHVt__ll Vi=Al+ 2221 XX
t=1

Lemma 4 (Elliptical Potential Lemma). For any sequence {X,..., X7} € RIXT,
suppose Vo = A, V, = V,_1 + X X, , and || X,||, < L, then

T
L?T
Xi|[3-1 < dlog [ 1+ =—
;H tlly = g( Ad) proved in Lecture 6

Rr < 287

T
2T
\ T Z | X+ H%/f_ S 28T \/ T'dlog (1 + W) (actually requires slight twists on Lemma 4)
=1
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LinUCB: Regret Bound

_ 2
Proof. With probability at least 1 — 25, Rt < 207 \/Td log (1 + E)

2 1
RT§2BT\/Td10g <1+%) 6tR\/210g5+dlog

1 + —
<+)\d

<2 (R\/Zlog%+dlog (1+1;\—d) +\/_S> \/leog (1+

Let 6 = 1/2T, then with probability at least 1 — 1/7,

L2T
Ad

>+\fs

Ry <2 <R\/210g (g) + dlog (1+ TA—d> + fs) \/leog(

= O(dVT)

L2T
1+ —)

Ad
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Improved Algorithms for Linear Stochastic Bandits

Yasin Abbasi-Yadkori David Pal Csaba Szepesvari
abbasiya@ualberta.ca dpal@google.com szepesva@ualberta.ca
Dept. of Computing Science  Dept. of Computing Science  Dept. of Computing Science
University of Alberta University of Alberta University of Alberta

Abstract

We improve the theoretical analysis and empirical performance of algorithms for
the stochastic multi-armed bandit problem and the linear stochastic multi-armed
bandit problem. In particular, we show that a simple modification of Auer’s
UCB algorithm (Auer, 2002) achieves with high probability constant regret.
More importantly, we modify and, consequently, improve the analysis of the
algorithm for the for linear stochastic bandit problem studied by Auer (2002),
Dani et al. (2008), Rusmevichientong and Tsitsiklis (2010), Li et al. (2010).
Our modification improves the regret bound by a logarithmic factor, though
experiments show a vast improvement. In both cases, the improvement stems
from the construction of smaller confidence sets. For their construction we use a
novel tail inequality for vector-valued martingales.

1 Introduction

Linear stochastic bandit problem is a sequential decision-making problem where in each time step
we have to choose an action, and as a response we receive a stochastic reward, expected value of
which is an unknown linear function of the action. The goal is to collect as much reward as possible
over the course of n time steps. The precise model is described in Section 1.2.

Several variants and special cases of the problem exist differing on what the set of available
actions is in each round. For example, the standard stochastic d-armed bandit problem, introduced
by Robbins (1952) and then studied by Lai and Robbins (1985), is a special case of linear stochastic
bandit problem where the set of available actions in each round is the standard orthonormal basis of
R4, Another variant, studied by Auer (2002) under the name “linear reinforcement learning”, and
later in the context of web advertisement by Li et al. (2010), Chu et al. (2011), is a variant when the
set of available actions changes from time step to time step, but has the same finite cardinality in
each step. Another variant dubbed “sleeping bandits”, studied by Kieinberg et al. (2008), is the case
when the set of available actions changes from time step to time step, but it is always a subset of the
standard orthonormal basis of BY. Another variant, studied by Dani et al. (2008), Abbasi-Yadkori
et al. (2009), Rusmevichientong and Tsitsiklis (2010), is the case when the set of available actions
does not change between time steps but the set can be an almost arbitrary, even infinite, bounded
subset of a finite-dimensional vector space. Related problems were also studied by Abe et al.
(2003), Walsh et al. (2009), Dekel et al. (2010).

In all these works, the algorithms are based on the same underlying idea—the optimism-in-the-
Jface-of-uncertainty (OFU) principle. This is not surprising since they are solving almost the same
problem. The OFU principle elegantly solves the exploration-exploitation dilemma inherent in the
problem. The basic idea of the principle is to maintain a confidence set for the vector of coefficients
of the linear function. In every round, the algorithm chooses an estimate from the confidence
set and an action so that the predicted reward is maximized, i.e., estimate-action pair is chosen
optimistically. We give details of the algorithm in Section 2.

1

Improved algorithms for linear stochastic bandits

=1
REEH
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Yasin Abbasi-Yadkori, Csaba Szepesvari, David Pal
2011

Advances in Neural Information Processing Systems
2312-2320

We improve the theoretical analysis and empirical performance of algorithms for the
stochastic multi-armed bandit problem and the linear stochastic multi-armed bandit
problem. In particular, we show that a simple modification of Auer’s UCB algorithm (Auer,
2002) achieves with high probability constant regret. More importantly, we modify and,
consequently, improve the analysis of the algorithm for the for linear stochastic bandit
problem studied by Auer (2002), Dani et al.(2008), Rusmevichientong and Tsitsiklis
(2010), Li et al.(2010). Our modification improves the regret bound by a logarithmic
factor, though experiments show a vast improvement. In both cases, the improvement
stems from the construction of smaller confidence sets. For their construction we use a
novel tail inequality for vector-valued martingales.
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@ Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari.
Improved algorithms for linear stochastic bandits.
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Part 2. Advanced Topics

e Self-Normalized Concentration
* Connection of Linear bandits to RL theory

* More generalized model
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Part 2. Advanced Topics

e Self-Normalized Concentration
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Proof of Estimation Error Bound

t—1
Proof. 5, _ /A <Z NsXs — A9*> Viog =AM+ xox T
s=1
|XT (‘/9\75 — 9*) < HXHVt_—ll 0, — 0. Cauchy-Schwarz inequality: |a ' b| < ||a||||b||~

t—1

< [y

t—1
e
s=1

+ w*vta) 6, = v (Six)

—1
Viea

Core difficulty: The actions { X, },—1 . : are neither fixed nor independent but
are intricately correlated via the rewards {rs}s=1. .
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Self-Normalized Concentration

Theorem 4 (Self-normalized concentration for Vector-Valued Martingales). Let {F}}$°, be a filtration. Let
{n:}$2 be a real-valued stochastic process such that n, is Fy-measurable and n, is conditionally R-sub-Gaussian
for some R > 0O i.e.,

A\ R?
VA eR, Elexp(An:) | X1.¢,m1.0-1] < exp ( > ) .

Let {X;}22, be an R¥-valued stochastic process such that X; is Fy_,-measurable. Assume that Visa d x d
positive definite matrix. For any t > 0, define

t t
Vi=Vo+ ) XX, Si=) nX.
s=1

s=1

Then, for any 6 > 0, with probability at least 1 — 9, forall t > 0,

N

det(V;)z det(Vp) ™
HStHQt—l §2R210g< =) 56( 0 )

Advanced Optimization (Fall 2025) Lecture 12. Stochastic Bandits II 27



Victor H.de la Pefia
Tze Leung Lai
Qi-Man Shao

Self-Normalized
Processes

Limit Theory and Statistical Applications

Self-Normalized Processes: Limit
theory and Statistical Applications

Victor H. de la Pena, Tze Leung Lai,
and Qi-Man Shao

Probability and Its Applications
Series. Springer. 2009.

@ Springer
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Tze Leung Lai (325E)
1945 - 2023
Eﬁ i@?&%ﬁ?%ﬁ%%ﬂf%i&
— {14 A\COPSSmAIIRISE

Statistical Science
1986, Vol. 1, No. 2, 276-284

The Contributions of Herbert Robbins to

Mathematical Statistics

Tze Leung Lai and David Siegmund

Herbert Robbins was born on January 12, 1915, in
New Castle, Pennsylvania. In 1931 he entered Har-
vard College at the age of 16. Although his interests
until then had been predommantly hterary, he found
himself i d to ics under
the influence of Marston Morse, who during many
long conversations conveyed a vivid sense of the in-
tellectual challenge of creative work in that field
(cf. Page, 1984, p. 7). He received the A.B. summa
cum laude in 1935, and the Ph.D. in 1938, also from

North Carolina at Chapel Hill. Having read [7] and
[10], and greatly impressed by Robbins’ mathematical
skills, Hotelling offered him the position of associate
professor to teach measure theory and probability to
the graduate students in the new department. Robbins
accepted the position and spent the next six years at
Chapel Hill. During this relatively short period Rob-
bins not only studied and developed an increasingly
deep interest in statistics, but he also made a number
of profound contributions to his new field: complete

g [12], d decision theory [25], sto-

Harvard. His thesis, in the field of ial
topology and written under the supervision of Hassler
Whitney, was published in 1941 [3]. (Numbers in
brackets refer to Robbins’ bibliography at the end of
this article.)

After graduation, Robbins worked for a year at the
Institute for Advanced Study at Princeton as Marston
Morse’s assistant. He then spent the next three years
at New York University as instructor in mathematics.
He became nationally known in 1941 as the coauthor,
with Richard Courant, of the classic What Is Mathe-
matics? [4). This important book has influenced gen-
erations of mathematics students here and abroad in
many editions and translations. To date more than
100,000 copies have been sold.

chastic approximation [26], and the sequential design
of experiments [28], to name a few.

After a Guggenheim Fellowship at the Institute for
Advanced Study during 1952-1953, Robbms moved
from Chapel Hill to Columbia Uni as
and chairman of the Department of Mathematical
Statistics. Since 1953, with the exception of the three
years 1965-1968 spent at Minnesota, Purdue, Berke-
ley, and Michigan, he has been at Columbia, where he
is Higgins Professor Emeritus of Mathematical Sta-
tistics. During this period he has published over 100
papers on a variety of topics in probability and statis-
tics. His most notable contributions include the crea-
tion of the empirical Bayes methodology, the theory

Bandit strategies |edit)

Optimal solutions [edit]

Further information: Gittins index

the one-parameter exponential family. Then, in Katehakis and Robbins[22]
were given for the case of normal populations with known variances. The next notable progress was obtained by Burnetas
and Katehakis in the paper "Optimal adaptive policies for sequential allocation problems”, 23]
with uniformly maximum convergence rate were constructed, under more general conditions that include the case in which

A major breakthrough was the construction of optimal population selection strategies, or policies (that possess uniformly
maximum convergence rate to the population with highest mean) in the work described below.

In the paperl "Asymptotically efficient adaptive allocation rules”, Lai and Robbins[zﬂl(following papers of Robbins and his
co-workers going back to Robbins in the year 1952) constructed convergent population selection policies that possess the
fastest rate of convergence (to the population with highest mean) for the case that the population reward distributions are
simplifications of the policy and the main proof

where index based policies

https://en.wikipedia.org/wiki/Multi-armed bandit

ADVANCES IN APPLIED MATHEMATICS 6, 4-22 (1985)

Asymptotically Efficient Adaptive Allocation Rules*

T. L. LA1 AND HERBERT ROBBINS

Department of Statisties, Columbia University, New York, New York 10027

1. INTRODUCTION

Let IT; (j = 1,..., k) denote statistical populations (treatments, manu-
facturing processes, etc.) specified respectively by univariate density func-
tions f(x; §;) with respect to some measure », where f(-; -) is known and
the 6, are unknown parameters belonging to some set ©. Assume that
21 x1f(x; 8) dv(x) < oo for all § € 8. How should we sample x,, x,,...
sequentially from the k populations in order to achieve the greatest possible
expected value of the sum §, = x; + --- +x, as n = 00? Starting with [3]
there has been a considerable literature on this subject, which is often called
the multi-armed bandit problem. The name derives from an imagined slot
machine with k > 2 arms. (Ordinary slot machines with one arm are

one-armed bandits, since in the long run they are as effective as human

bandits in separating the victim from his money.) When an arm is pulled,

the player wins a random reward. For each arm j there is an unknown
probability distribution II y of the reward. The player wants to choose at
each stage one of the k arms, the choice depending in some way on the
record of previous trials, so as to maximize the long-run total expected
reward. A more worthy setting for this problem is in the context of
sequential clinical trials, where there are k treatments of unknown efficacy
to be used in treating a long sequence of patients.

An adaptive allocation rule ¢ is a sequence of random variables @, @,, ...
taking values in the set {1,...,k} and such that the event {¢, =j}
(“sample from II, at stage n”) belongs to the o-field &%, _; generated by
the previous values @, x,...,9,_1, X,_;. Let p(8) = [Z_ xf(x; 0)dv(x).

*Research supported by the National Science Foundation and the National Institutes of
Health. This paper was delivered at the Statistical Research Conference at Cornell University,
July 6-9, 1983, in memory of Jack Kiefer and Jacob Wolfowitz.

4

0196-8858 /85 §7.50
Copyright © 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.
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Advanced Topic: Bayesian Optimization

Gaussian Process Optimization in the Bandit Setting:
No Regret and Experimental Design

Niranjan Srinivas
Andreas Krause

California Institute of Technology, Pasadena, CA, USA

Sham Kakade
University of Pennsylvania, Philadelphia, PA, USA

Matthias Seeger
Saarland University, Saarbriicken, Germany

Abstract

Many applications require optimizing an un-
known, noisy function that is expensive to
evaluate. We formalize this task as a multi-
armed bandit problem, where the payoff function
is either sampled from a Gaussian process (GP)
or has low RKHS norm. We resolve the impor-
tant open problem of deriving regret bounds for
this setting, which imply novel convergence rates
for GP optimization. We analyze GP-UCB, an
intuitive upper-confidence based algorithm, and
bound its cumulative regret in terms of maximal
information gain, establishing a novel connection
between GP optimization and experimental de-
sign. Moreover, by bounding the latter in terms
of operator spectra, we obtain explicit sublinear
regret bounds for many commonly used covari-
ance functions. In some important cases, our
bounds have surprisingly weak dependence on
the dimensionality. In our experiments on real
sensor data, GP-UCB compares favorably with
other heuristical GP optimization approaches.

1. Introduction

In most stochastic optimization settings, evaluating
the unknown function is expensive, and sampling
is to be minimized. Examples include cho:
advertisements in sponsored search to
profit in g_gli =

2007) or 14
(Lizotte d
to this
paradigm
maximize
exploration
(Chaloner
is to be e

Appearing in Proceedings of the 27" International Confer-
ence on Machine Learning, Haifa, Istael, 2010. Copyright
2010 by the author(s)/owner(s).

NIRANJAN@CALTECH.EDU
KRAUSEA@CALTECH.EDU

SKAKADE@WHARTON.UPENN.EDU

MSEEGER@MMCI.UNI-SAARLAND.DE

as possible, for example by maximizing information
gain. The challenge in both approaches is twofold: we
have to estimate an unknown function f from noisy
samples, and we must optimize our estimate over some
high-dimensional input space. For the former, much
progress has been made in machine learning through
kernel methods and Gaussian process (GP) models
(Rasmussen & Williams, 2006), where smoothness
assumptions about f are encoded through the choice
of kernel in a flexible nonparametric fashion. Beyond
Euclidean spaces, kernels can be defined on diverse
domains such as spaces of graphs, sets, or lists.

We are concerned with GP optimization in the multi-
armed bandit setting, where f is sampled from a GP
distribution or has low “complexity” measured in
terms of its RKHS norm under some kernel. We pro-
vide the first sublinear regret bounds in this nonpara-
metric setting, which imply convergence rates for GP
optimization. In particular, we analyze the Gaussian
Process Upper Confidence Bound (GP-UCB) algo-
rithm, a simple and intuitive Bayesian method (Auer
et al., 2002; Auer, 2002; Dani et al., 2008). While
objectives are different in the multi-armed hands

- PoTcralizes stochastic
near optimization in a bandit setting, where the un-
known function comes from a finite-dimensional linear
space. GPs are nonlinear random functions, which can
be represented in an infinite-dimensional linear space.
For the standard linear setting, Dani et al. (2008)

Reward function: r; = f(X;) +

|H | /
m=1 Pm\X)Pm (X

f(x) belongs to RKHS with & (x, x’

H|

m=1

X)) "0+ n

Rewrite f(x) = O om () = o(2) 70

Ty = Linear bandits in RKHS

5 T T 5
4t 1 4t J
3t — 3r 1

3} N -3r 1
4t | 4t |
5 . L L . . L L -5 : L . - . L .

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Iteration t Iteration t + 1

Reference: Gaussian Process Optimization in the Bandit Setting:
No Regret and Experimental Design. ICML 2010.
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Part 2. Advanced Topics

e Self-Normalized Concentration

* Connection of Linear bandits to RL theory
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Linear bandits for RL Theory

Function Approximation . , o
Provably Efficient Reinforcement Learning with Linear

: Function Approximation

P, @ls) vy (S))
<
Chi Jin Zhuoran Yang
P University of California, Berkeley Princeton University
L = chijin@cs.berkeley.edu zy6@princeton.edu
o |
1 - Zhaoran Wang Michael I. Jordan
. = Northwestern University University of California, Berkeley
: : zhaoranwang@gmail.com jordan@cs.berkeley.edu COLT 2020

Reinforcement Learning in Feature Space: Matrix Bandit, Kernels,
and Regret Bound

Lin F. Yang Mengdi Wang
a techniq ue with huge success Princeton University Princeton University
. . . . lin.yang@princeton.edu mengdiw@princeton.edu
(especially by involving DNN), crucially A S
useful for the AlphaGo’s success s 14, 2019 ICML 2020
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Function Approximation

Tabular MDPs: usually maintain a table to store values for all states (or state-

action pairs), which scales with state number and action number

Figure 1 Figure 2 Figure 3
We discover through In tabular methods, we know We know nothing about
experience that this state is bad nothing about this state. this state either!

But this has a poor scalability in practical scenarios; and many structures yet to exploit...
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Function Approximation

RL Function approximation: approximate using a parameterized function.
* To avoid bad dependence on #states , #action in tabular MDPs
* Describe states (or state-actions) using feature representations in

e A modern choice: DNN as a feature representer

similar
output

AN

parameterize MDP model with a low-dimensional representation

> regret bound should not dependent on S or A, but rather the intrinsic dimension d
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Deploying bandit techniques

e Linear Mixture MDPs

rh(xv CL) — <¢(x7 CL), 6;;>

¢ : S x A R?is known feature map

Y : S x Ax S — R%is known feature map

Py (s | s,a) = (¥ (s" | 5,a),wy,) e {67} is the unknown reward parameter

o {wi}L  isthe unknown transition parameter

* Linear Bandits

(1) the player first chooses an arm X, from arm set &’;
(2) and then environment reveals a reward r; € R.

» Linear modeling assumption: r+(z) =z ' 6. + 7

Linear bandits serve as
a foundational tool for
understanding linear

mixture MDPs
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Linear Mixture MDPs

* Least square for parameter estimation

Reward estimation

|

Transition estimation

k—1

0 = arg min
fecR4 ,
J=1

W), = arg min
weRd

%H@H% + > (ralsn,an) — ¢(sn, ah)TQ)z}

k—1
{)\;vwg =+ Z ((Yns1(sn,an), w) — Vh+1(5h+1))2}

Vi (s)

at
(00]
|
\!.:’Jst
nh
agent environment
r(se, a)
H
= En Z rhe (Shyan) | sp=s
h'=h

Estimation error

W = wlls, < O (VaH (log(t/9))?)

Regret bound

REGr < O (d\/ﬁ )

K: the number of epsiodes

H: the length of each epsiode
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Part 2. Advanced Topics

e Self-Normalized Concentration

* Connection of Linear bandits to RL theory

e More Generalized Model
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Beyond: More Expressivity

(i) Generalized linear bandits
re = (X, 0.) +ny

Linear Non-linear

(i1) Heavy-tailed linear bandits
re = X, 0. + 1

Goal: computationally efficient (better “one-pass”) algorithm with optimal regret

@ [Wang-Zhang-Z-Zhou, ICML'25] Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update.

@ [Zhang-Xu-Z-Sugiyama, NeurIPS'25] Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update.
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(D) GLB: Problem Formulation

Generalized Linear Bandits
Ateachroundt=1,2,---

(1) the player first chooses an arm X; from arm set X’;

(2) and then environment reveals a reward r; € R.

3 Generalized linear reward function: 7 = (X, 0,) +

Examples: logistic bandit 10
« 1.9 D. XT . . 1 Z,rg:j

Tt — O (gnOt (73711Ck ) Wp ILL( ! 0 ) H(Z) o 1‘|‘6Xp(_z) olz
1 (“click”) otherwise |
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(D GLB: Existing Algorithm

* GLM-UCB Algorithm [Filippi et al., NIPS 2010]

» Estimator: maximum likelihood estimator
t—1

~ A .

0, = arg m1n§||9||§ + > £S(0), with ¢,5B(0) = —logPy (rey1 | X,)
O po—

: : ~ k The non-linear term k,, /c,, can be
. T _ T < e » nw/Cu
Estimation error: ‘u(x 0r) —p(x 0.)| < - Be—1llxlly-1 as large as O(c)!
> Arm selection: upper confidence bound N

X, = argmax {u(x"0,) + B2 [xl|y | N

xeX t=1

0

~ [k,
Regret bound: REGr <O ( C dv T) There are recent works using “warm-up”
7

to remove , but is still not one-pass

*Note: ¢, < p/(z) < k,,Vz € [-S, 5]

Advanced Optimization (Fall 2025) Lecture 12. Stochastic Bandits II 40



(2 Hvt-LB: Problem Formulation

e Linear reward with sub-Gaussian noise : = X, 0, +n;

Assumption 1 (sub-Gaussian noise). The noise 7, is conditionally R-
sub-Gaussian for some R > 0 i.e. In many scenarios

\2 ]2 the noise can be
\V/)\ & R,E [eXp ()\T]t) | Xl:t7 nl:t—l] S eXp ( 2 ) . heaVY'Talled I

* Linear bandits with heavy-tailed noise

Assumption 2 (heavy-tailed noise). The noise {n;, F;} is is martingale —
difference (I [n; | F¢_1] = 0), and satisfies that for some e € (0,1],2; > 0,

E ||

./T‘.t_l} S th—*—&‘.
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(2 Hvt-LB: Existing Algorithm

 HEAVY-OFUL Algorithm [Huang et al., NeurIPS 2023]

» Estimator: adaptive Huber regression

R \ t—1
0, = argmin=||0]|3 + > V(0
t = argm 5 1912 ; (0)

ét—i—l - 9*

~ l1—e
Estimation error: . <O <t2<1+€>>
t

» Arm selection: upper confidence bound

X, = arg max {XT@ + Beea ||y }
xeX t=1

Regret bound: REG; < O (dTﬁ)

Huber loss is defined using a threshold 7, > 0,

gy = [ #ROIs
’ Ts|zs(0)| — & if |25(0)] > 7,

with z,(0) = ==X 0

Os

Squared loss

Huber loss

reduce penalty for
large deviation

0!
—————————————
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Efficiency Concerns

* Stochastic LB: least squares (closed-form solution) one-pass update
t—1 2 (975 V;f 11 (Zz;ll TsXs)
-
Z _argmln_Hm|2+Z X[0-r) == Vier = M+ Y00 X, X[

S s=1

* Generalized LB: maximum likelihood estimator

t—1 GLB \  inefficiency due to non-quadratic loss
‘91& = argmln—H9H2 + E :E The cost at round ¢
9€O —

« Heavy-tailed LB: adaptive Huber regression >|::> Computational cost: O(tlog T')

Storage cost: O(t)

H t

9t — arg rmn— H9H2 + Z £y infeasible!
0cO s—1 y

Question: Can Generalized/Heavy-tailed LB enjoy one-pass algorithms?
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More Recent Progress

Learning And Mining from DatA

One-Pass Bandit Learni (One-Pass Bandits: Reference

fOI‘ RLHF and FunCtion APPI‘OX [l Yu-Jie Zhang, Sheng-An Xu, Peng Zhao, Masashi Sugiyama. Generalized Linear Bandits:
Almost Optimal Regret with One-Pass Update. NeurIPS 2025.

Peng Zhao E) Long-Fei Li*, Yu-Yang Qian*, Peng Zhao, Zhi-Hua Zhou. Provably Efficient Online RLHF
with One-Pass Reward Modeling. NeurlIPS 2025.
School of Al E Jing Wang, Yu-Jie Zhang, Peng Zhao, and Zhi-Hua Zhou. Heavy-Tailed Linear Bandits:
Huber Regression with One-Pass Update. ICML 2025.
E]

Nanjing University
Long-Fei Li, Yu-Jie Zhang, Peng Zhao, Zhi-Hua Zhou. Provably Efficient Reinforcement

Nov 23, 2025 @ CFAI Learning with Multinomial Logit Function Approximation. NeurIPS 2024. Thanks!
IO N Al &
¥ ‘ , ~ L
Yu-Jie Zhang Jing Wang Long-Fei Li Yu-Yang Qian Sheng-An Xu Zhi-Hua Zhou
(NJU = U Tokyo = UW) (NJU) (NJU- Noah's Ark Lab) (NJU) (NJU = UCB) (NJU)
Peng Zhao (Nanjing University) 49

One-Pass Bandit Learning for RLHF and Function Approximation

2025.11.23, S5 _TBPEH A LEEEMFS (CFAIL 2025)- 52,5 MB1x, AR KD
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Generalized Linear Bandits (GLB)

Generalized Linear Bandits:
Almost Optimal Regret with One-Pass Update

Parametric Bandits:
The Generalized Linear Case

Sarah Filippi Olivier Cappé Yu-Jie Zhang', Sheng-An Xu®", Peng Zhao®’, Masashi Sugiyama'*
LTCl LTCl 1 RIKEN AIP, Tokyo, Japan
Telecom ParisTech et CNRS Telecom ParisTech et CNRS 2 National Key Laboratory for Novel Software Technology, Nanjing University, China
Paris, France Paris, France ¥ School of Artificial Intelligence, Nanjing University, China
filippi@telecom-paristech.fr cappe@telecom-paristech. fr ¥ The University of Tokyo, Chiba, Japan
Aurélien Garivier Csaba Szepesvari
RLAI Laboratory Abstract
Telecom ParisTech et CNRS University of Alberta
—— Tarm, Trincs - " E’d!""m""‘.cfmad“ We study the generalized linear bandit (GLB) problem, a contextal multi-armed
garivierdtelecom-paristech. fr szepesvalualberta.ca bandit framework that extends the classical linear model by incorporating a non-

linear link function, thereby modeling a broad class of reward distributions such as
Bermoulli and Poisson, While GLBs are widely .lppln.lhlc o real-world scenarios,

Abstract their i nature i dh significant ch both com-
putational and statistical efficiency. Existing methods |yp|t.al|y trade off between
We consider structured multi-armed bandit problems based on the Generalized "':" objective ""h"”""“m"g h'“h W'[S'::fh"l‘;““ "‘f “T“"‘m"l 'ﬁmf‘“a‘l‘:‘"“‘;ﬁ:
Lincar Model (GLM) framework of statistics. For these bandits, we propose a new g 5. i 5 fnintly afMciaa algrasiind thiae sitatne & naacty Sntinl ragiat
algorithm, called GLM-UCB. We derive finite time, high probability bounds on bound with ©(1) time and space complexities per round. The core of our method
the Rogrt of the aIgomhnL c:’\cndmg Previote qnalys:s dc\‘clprcul !5" the “"E-ﬂr is a tight confidence set for the online or descent (OMD) estimator, which is
Pa"d“s B2 the m-mAlmmrmsc The B"aly? highlights akey dificuliy m.gmmfl'." derived through a novel analysis that leverages the notion of mix loss from online
ing linear bandit algorithms to the non-linear case, which is solved m GLM-UCB prediction. The .m.ll 5i5 shows that our OMD ekt e
by focusing on the reward space rather than on the meter space. Morcover, as dates, achieves statistical efficiency i !
the actual effectiveness of current parameterized bandit algorithms is often poor in thereby leading fo 8 jointly éfficiout optimistic miethod,

practice, we provide a tuning method based on asymptotic arguments, which leads
to significantly better practical performance. We present two numerical experi-

ments on real-world data that illustrate the potential of the GLM-UCB approach. i
: . . i . 1 Introduction
Keywords: multi-armed bandit, parametric bandits, generalized linear models,
UICR, regret mminini zaticr. Stochastic multi-armed bandits [Robbins, 1952] represent a fundamental class of sequential deci

making problems where a learner interacts with ronments by selecting actions (or arms) and
I Introduction receiving feedback in the form of rewards. In this paper, we study the contextual multi-armed bandit
problem under the framework of generalized lmc.lr models (GLMs). In this seiting, each action is
In the classical K -armed bandit problem, an agent selects at cach time step one of the K arms and characterized by a contextual feature vector x € X, © RY, where the arm set X, may vary over
receives a reward that depends on the chosen action. The aim of the agent is to choose the sequence time, More specifically, the learning process can be seen as a T round game between the learner and
of arms to be played so as to maximize the cumulated reward. There is a fundamental u'adr-nl‘l environments: at each round f, the learner selects an action X, € X} and then observes a stocl i
between gathering experimental data about the reward ( ) and iting the res ry € R generated according to a GLM (see Definition 2.1). The goal of the learner is to
arm which seems to be the most promising. maximize the cumulative expected reward obtained over the time horizon T. Under the GLM model,
In the basic muli-armed bandit problem, also called the independent bandits problem, the :Jf‘:;ﬁ]‘;:“h;g:fg&w;‘"“f_d’:;{m Ay ,[;‘w‘" et d l‘;m‘;:‘ i pzr:‘l::‘}:’e““':";’c‘:{:z;
sewacds mec. aemaoicd i o random and g 1o 8 F rameter £, € R, which needs to be estimated from the observed action-reward pairs.
distribution that is specific to cach arm —see [1, 2, 3, 4] and rcfcn:n.u. therein. Recently, structured pa i P
bandit problems in which the distributions of the rewards pertaining to cach arm are connected Compared with the classical linear case [Abbasi-Yadkori et al., 2011], the generalized linear bandit
by a common unknown parameter have received much attention [3, 6, 7, 8, 9]. This model is (GLB) framework allows for a richer class of reward distributions, including Gaussian, Bernoulli,
motivated by the many practical applications where the number of arms is large, but the payoffs arc and Poisson distributions. This flexibility enables the modeling of various real-world tasks, such as
interrelated. Up to know, two different models were studied in the literature along these lines. In recommendation systems [Li et al., 2010] and personalized medicine [Tewari and Murphy, 2017],
one model, in each times step, a side-information, or context, is given to the agent first. The payoffs where the feedback is binary (Bernoulli) or count-based (Poisson) and inherently non-linear. Besides

of the arms depend both on this side information and the index of the arm. Thus the optimal arm
changes with the context [5, 6, 9]. In the second, simpler model, that we are also interested in here,
there is no side-information, but the agent is given a model that describes the possible relations

*‘C dence: Peng Zhao p@lamda nju.edu.cn>

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

NIPS'10 Parametric Bandits: NeurIPS'25 Generalized Linear Bandits: Almost
The Generalized Linear Case Optimal Regret with One-Pass Update
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Generalized Linear Bandits (GLB)

Table 1: Comparison of regret guarantees and computational complexity per round for GLBs. Here, k. =
1/ (%", 1/ (x/.6.)) is the slope at the optimal action x¢ . = arg max,. y, u(x ' 6.), with k. < r (see
Section 2 for details). | indicates the amortized time complexity, i.e., average per-round cost over 7" rounds.

Method Regret Time per Round Memory Jointly Efficient
GLM-UCB [Filippi et al., 2010] O(k(log T)2V/T) O(t) O(t) X
GLOC [Jun et al., 2017] O(klog TV/T) O(1) O(1) X
OFUGLB [Lee et al., 2024, Liu et al., 2024]  O(log T/T /) O(t) O(t) X
RS-GLinCB [Sawarni et al., 2024] O(log T+/T/k.) O((logt)?) y O(t) X
GLB-OMD (Theorem 2 of this paper) O(log T\/T/k.) O(1) O(1) v
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Generalized Linear Bandits (GLB)

A variety of usage, especially for the logistic link function...

J RL with function approximation: MNL mixture MDPs (related to GLB)

Long-Fei Li*, Yu-Yang Qian*, Peng Zhao, Zhi-Hua Zhou. Provably Efficient
Online RLHF with One-Pass Reward Modeling. NeurIPS 2025.

J RLHF: BT model naturally related to logistic bandits, etc.

Long-Fei Li, Yu-Jie Zhang, Peng Zhao, Zhi-Hua Zhou. Provably Efficient
Reinforcement Learning with Multinomial Logit Function Approximation.
NeurIPS 2024.
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Summary

Formulation

[ STOCHASTIC LINEAR BANDITS ] Estimator and UCB Construction

LinUCB and Regret Analysis

STOCHASTIC BANDITS II

Self-Normalized Concentration

ADVANCED TOPICS Connection of Linear bandits to RL theory

More Generalized Models

Q& A
Thanks!
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