

Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update

Yu-Jie Zhang, Sheng-An Xu, Peng Zhao, Masashi Sugiyama

Advanced OPT, Dec 26 2025

南京大學

Outline

- Generalized Linear Bandits
- Statistical and Computational Efficient Challenge
- Jointly efficient Method
- Conclusion

Bandits: Interactive Learning

- Multi-armed bandits: a simplest formulation for bandit problems

At each round $t = 1, 2, \dots$

- (1) player first chooses an arm $a_t \in [K]$;
- (2) environment reveals a reward $r_t(a_t) \sim \text{distribution } \mathcal{D}_{a_t}$;
- (3) player updates the strategy by the pair $(a_t, r_t(a_t))$.

The goal is to minimize the **regret** :

$$\text{Reg}_T \triangleq \max_{a \in [K]} \mathbb{E} \left[\sum_{t=1}^T r_t(a) - \sum_{t=1}^T r_t(a_t) \right]$$

Exploration-Exploitation tradeoff

- **Exploitation**: pull the best arm so far
- **Exploration**: try other arms that may be better

i.e., difference between the cumulative reward of the best arm and that obtained by the bandit algorithm

Stochastic Linear Bandits

- A ubiquitous problem in real life: *feature information*

- Each arm represent a book and has side information;
- Arm set could be very large or even infinite.

Stochastic LB: Formulation

Stochastic Linear Bandits

Each arm is associated with a **feature vector** $\mathbf{x} \in \mathcal{X} = \{\mathbf{x} \in \mathbb{R}^d \mid \|\mathbf{x}\|_2 \leq L\}$

At each round $t = 1, 2, \dots$

- (1) the player first chooses an arm X_t from arm set \mathcal{X} ;
- (2) and then environment reveals a reward $r_t \in \mathbb{R}$.

- **Linear modeling assumption:** $r_t = \mathbf{x}_t^\top \mathbf{w}_* + \varepsilon_t$
 - for some unknown parameter $\mathbf{w} \in \mathcal{W} = \{\mathbf{w} \mid \|\mathbf{w}\|_2 \leq S\}$
 - for some unknown noise: ε_t is R -sub-Gaussian random noise;

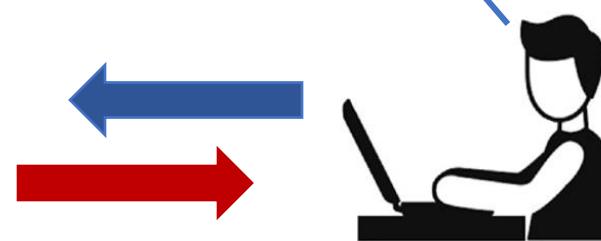
Going Beyond Linear Bandits?

We need more expressive models beyond linear classes

selected arm \mathbf{x}_t

The feedback is discrete:

$$\text{reward: } r_t = \begin{cases} 1 & (\text{"buy"}) \\ 0 & (\text{"not buy"}) \end{cases}$$



customer with preference θ_*

Generalized Linear Bandits

Generalized linear bandits: natural exponential-family (NEF) rewards

$$\mathbb{P}(r_t | z_t = \mathbf{x}_t^\top \mathbf{w}_*) = e^{r_t z_t - m(z_t) + h(r_t)}$$

$h(r)$: base measure
shaping the distribution

$m(z)$: log-partition
function for normalization

■ **Linear Bandit**: real value feedback $r_t = \mathbf{x}_t^\top \mathbf{w}_* + \varepsilon_t$

■ **Logistic Bandit**: **binary feedback** with the logit model

$$r_t = \begin{cases} 1 \text{ ("click")} & \text{w.p. } \mu(\mathbf{x}_t^\top \mathbf{w}_*) \\ 0 \text{ ("not click")} & \text{otherwise} \end{cases}$$

$$\mu(z) = \frac{1}{1 + \exp(-z)}$$

Generalized Linear Bandits

Generalized linear bandits: natural exponential-family (NEF) rewards

$$\mathbb{P}(r_t | z_t = \mathbf{x}_t^\top \mathbf{w}_*) = e^{r_t z_t - m(z_t) + h(r_t)}$$

$h(r)$: base measure
shaping the distribution

$m(z)$: log-partition
function for normalization

- **Linear Bandit**: real value feedback $r_t = \mathbf{x}_t^\top \mathbf{w}_* + \varepsilon_t$
- **Logistic Bandit**: binary feedback with the logit model
- **Poisson Bandits**: count-based feedback with unbounded reward!

$$r_t \in \{0, 1, 2, \dots\} \text{ drawn from: } r_t \sim \text{Poisson}(\mu(x_t^\top \mathbf{w}_*)) \rightarrow \mu(z) = \exp(z)$$

Generalized Linear Bandits

Generalized linear bandits: natural exponential-family (NEF) rewards

$$\mathbb{P}(r_t | z_t = \mathbf{x}_t^\top \mathbf{w}_*) = e^{r_t z_t - m(z_t) + h(r_t)}$$

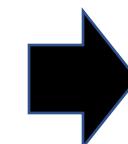
$h(r)$: base measure
shaping the distribution

$m(z)$: log-partition
function for normalization

NEF properties

Mean: $\mathbb{E}[r_t | \mathbf{x}_t^\top \mathbf{w}_*] = m'(\mathbf{x}_t^\top \mathbf{w}_*) = \mu(\mathbf{x}_t^\top \mathbf{w}_*)$

Variance: $\text{Var}[r_t | \mathbf{x}_t^\top \mathbf{w}_*] = m''(\mathbf{x}_t^\top \mathbf{w}_*) = \mu'(\mathbf{x}_t^\top \mathbf{w}_*)$



$$r_t = \mu(\mathbf{x}_t^\top \mathbf{w}_*) + \varepsilon_t$$

another formulation

Generalized Linear Bandits

- Goal: select the action \mathbf{x}_t that achieves the maximum **expected reward**.

$$\mathbb{E} \left[\sum_{t=1}^T r_t \middle| \mathbf{x}_t \right] = \sum_{t=1}^T \mu(\mathbf{x}_t^\top \mathbf{w}_*) \quad \text{↳ } \mu(z) = 1/(1 + \exp(-z)) \text{ is the probability of } r_t = 1$$

Generalized Linear Bandits

- Goal: select the action \mathbf{x}_t that achieves the maximum **expected reward**.

$$\mathbb{E} \left[\sum_{t=1}^T r_t \middle| \mathbf{x}_t \right] = \sum_{t=1}^T \mu(\mathbf{x}_t^\top \mathbf{w}_*)$$

$\mu(z) = 1/(1 + \exp(-z))$ is
the probability of $r_t = 1$

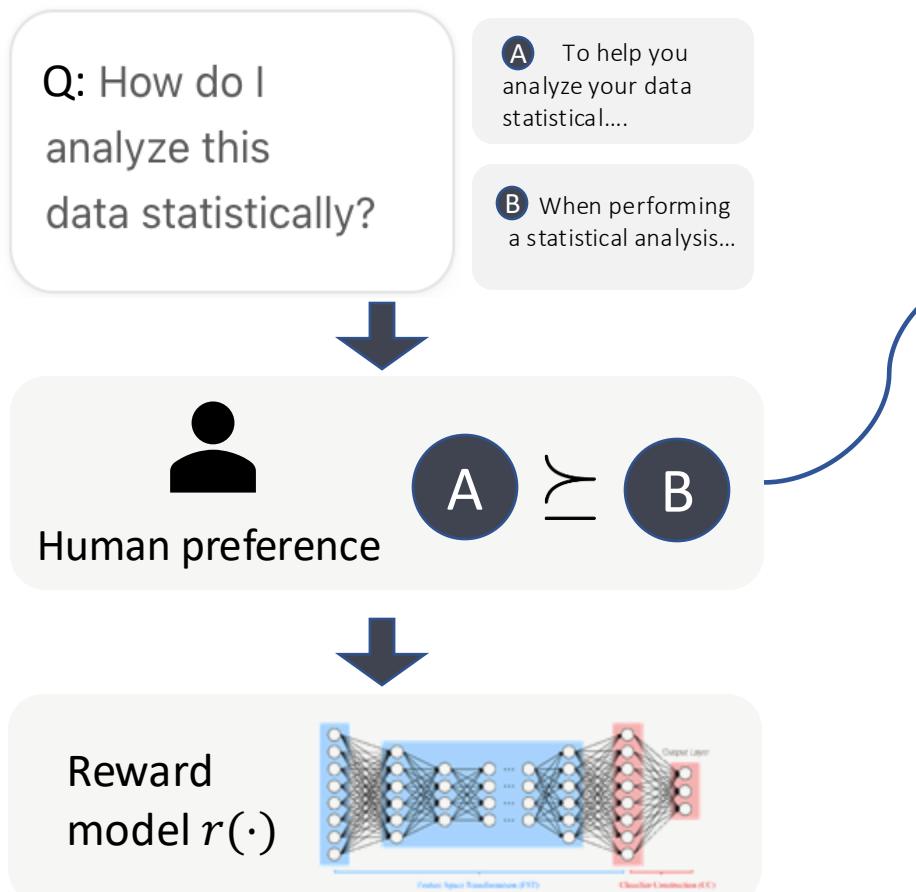
- Equal to **minimize the regret**:

$$\text{Regret} = T \max_{\mathbf{x} \in \mathcal{X}} \sigma(\mathbf{x}^\top \mathbf{w}_*) - \sum_{t=1}^T \sigma(\mathbf{x}_t^\top \mathbf{w}_*)$$

reward of the best actionreward of our algorithm

Why GLB?

Learn from human preference in dueling bandits and RLHF: Bradley-Terry Model



Bradley-Terry Model

$$\Pr[\mathbf{x}_1 \succ \mathbf{x}_2] = \frac{\exp(r(\mathbf{x}_1))}{\exp(r(\mathbf{x}_1)) + \exp(r(\mathbf{x}_2))}$$

The issue of κ appears in many work on dueling bandits and RLHF: [Saha NeurIPS'21; Zhu et al., ICML'23; Das et al., ICML'24 workshop; Pásztor et al., NeurIPS'24; Scheid et al., arXiv'24]

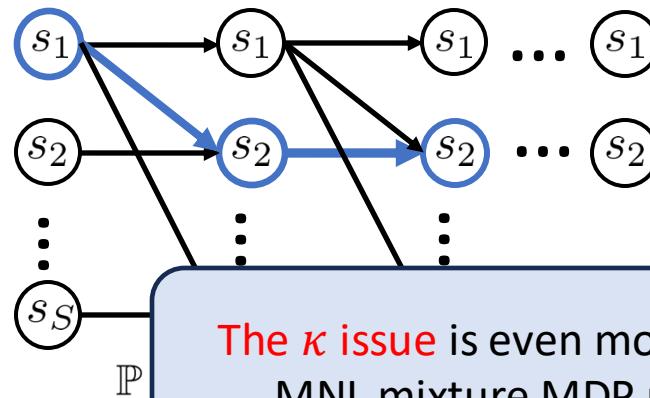
Why GLB?

To deal with large-scale MDPs: **Function Approximation**

Markov Decision Process

For iterations from $t = 1, \dots, T$

- **Learner:** observes states $s_t \in \mathcal{S}$ and plays action $a_t \in \mathcal{A}$
- **Environments:** generates next state $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)$



The κ issue is even more severe in MNL mixture MDP problem!

MNL mixture MDPs to ensure valid distribution:

$$\mathbb{P}(s' | s, a) = \frac{\exp(\phi(s' | s, a)^\top \mathbf{w}_*)}{\sum_{\tilde{s} \in \mathcal{S}_{s,a}} \exp(\phi(\tilde{s} | s, a)^\top \mathbf{w}_*)}$$

[Hwang and Oh et al., 2022; Li-Z Zhao-Zhou, 2024]

Outline

- Logistic Bandits Problem
- Statistical and Computational Efficient Challenge
- Our jointly efficient Method
- Extension to Logistic Function Approximation

GLB: Existing Algorithm

■ GLM-UCB Algorithm [Filippi et al., NIPS 2010]

- ***Estimator***: maximum likelihood estimator

$$\widehat{\mathbf{w}}_t = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{s=1}^{t-1} \ell_s^{\text{GLB}}(\mathbf{w}), \text{ with } \ell_s^{\text{GLB}}(\mathbf{w}) = -\log \mathbb{P}_{\mathbf{w}} (r_{s+1} \mid \mathbf{x}_s)$$

Estimation error: $|\mu(\mathbf{x}^\top \widehat{\mathbf{w}}_t) - \mu(\mathbf{x}^\top \mathbf{w}_*)| \leq \frac{k_\mu}{c_\mu} \beta_{t-1} \|\mathbf{x}\|_{V_{t-1}^{-1}}$

GLB: Existing Algorithm

■ GLM-UCB Algorithm [Filippi et al., NIPS 2010]

- **Estimator:** maximum likelihood estimator

$$\hat{\mathbf{w}}_t = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{s=1}^{t-1} \ell_s^{\text{GLB}}(\mathbf{w}), \text{ with } \ell_s^{\text{GLB}}(\mathbf{w}) = -\log \mathbb{P}_{\mathbf{w}} (r_{s+1} \mid \mathbf{x}_s)$$

Estimation error: $|\mu(\mathbf{x}^\top \hat{\mathbf{w}}_t) - \mu(\mathbf{x}^\top \mathbf{w}_*)| \leq \frac{k_\mu}{c_\mu} \beta_{t-1} \|\mathbf{x}\|_{V_{t-1}^{-1}}$

degree of nonlinearity

- **Arm selection:** upper confidence bound

$$\mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{X}} \left\{ \mu(\mathbf{x}^\top \hat{\mathbf{w}}_t) + \beta_{t-1} \|\mathbf{x}\|_{V_{t-1}^{-1}} \right\}$$

Regret bound: $\text{REG}_T \leq \tilde{\mathcal{O}} \left(\frac{k_\mu}{c_\mu} d \sqrt{T} \right)$

* Note: $c_\mu \leq \mu'(z) \leq k_\mu, \forall z \in [-S, S]$

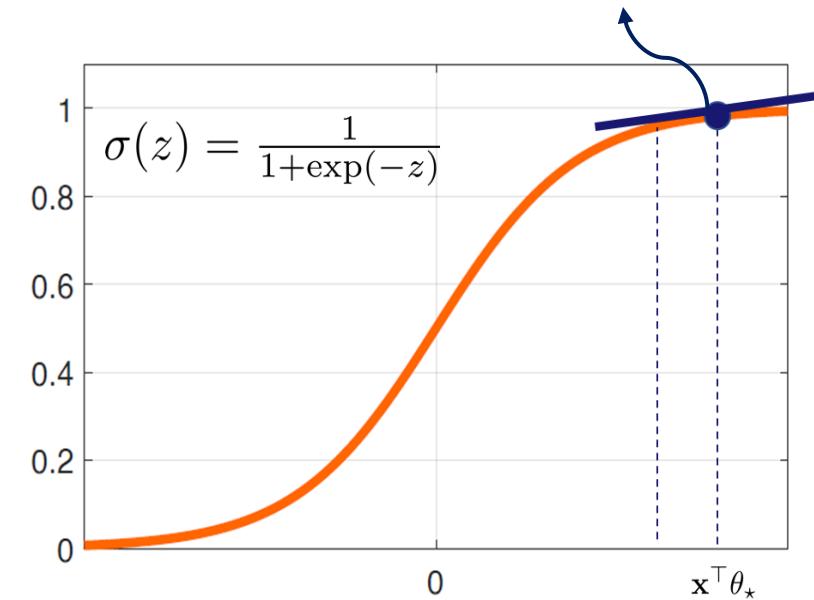
Statistical Challenge

The condition number k_μ / c_μ could be exponentially large!

Example: binary logistic bandit

- Reward function: $r(\mathbf{x}) = \sigma(\mathbf{x}^\top \mathbf{w}_*)$

$\kappa = 1/c_\mu$ is 1 divided the **minimum slope**



similar issue for Poisson bandits!

Statistical Challenge

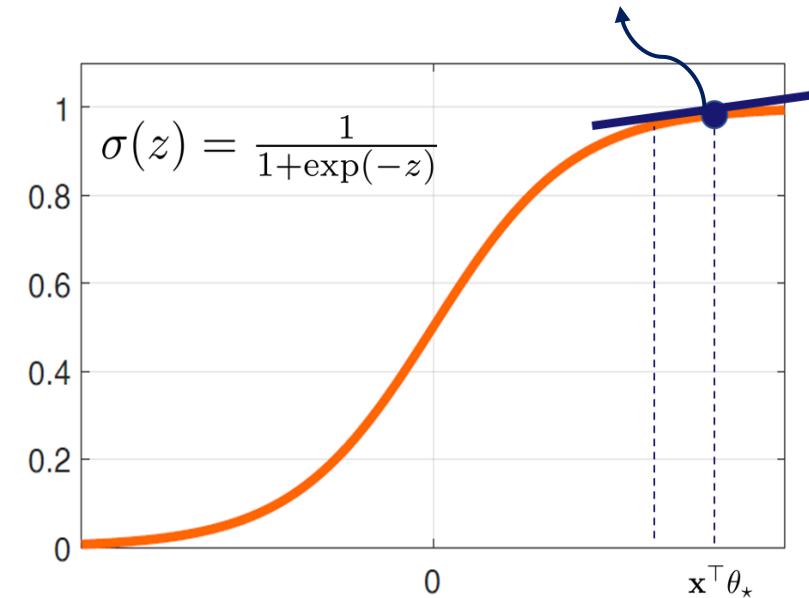
The condition number k_μ / c_μ could be exponentially large!

Example: binary logistic bandit

- Reward function: $r(\mathbf{x}) = \sigma(\mathbf{x}^\top \mathbf{w}_*)$
- GLM-UCB [Filippi et al., 2010] ensures:

$$\text{REG}_T \leq \tilde{\mathcal{O}} \left(\frac{k_\mu}{c_\mu} d \sqrt{T} \right)$$

$\kappa = 1/c_\mu$ is 1 divided the **minimum slope**



similar issue for Poisson bandits!

Statistical Challenge

The condition number k_μ / c_μ could be exponentially large!

Example: binary logistic bandit

- Reward function: $r(\mathbf{x}) = \sigma(\mathbf{x}^\top \mathbf{w}_*)$
- GLM-UCB [Filippi et al., 2010] ensures:

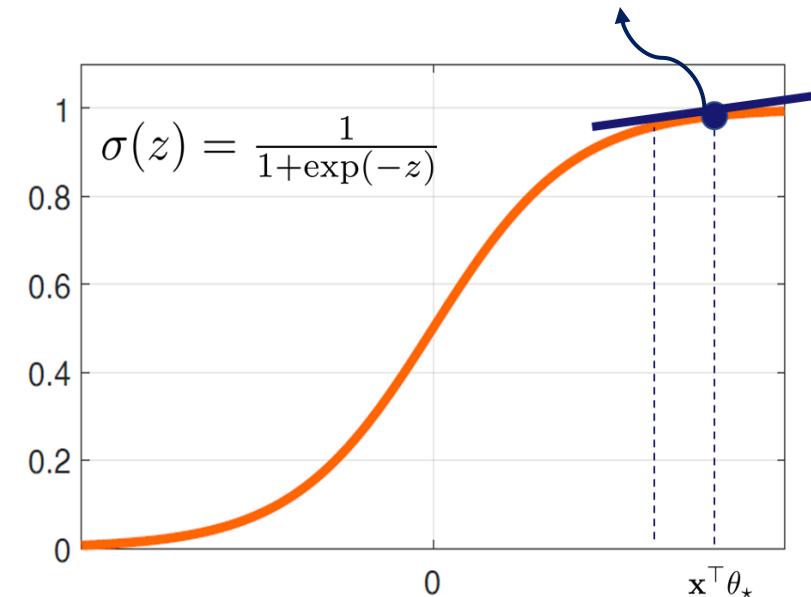
$$\text{REG}_T \leq \tilde{\mathcal{O}} \left(\frac{k_\mu}{c_\mu} d \sqrt{T} \right)$$

- In the above, the constant

$$\kappa = \max_{\mathbf{x} \in \mathcal{X}} 1/\dot{\sigma}(\mathbf{x}^\top \mathbf{w}_*) = \mathcal{O}(e^{\|\mathbf{w}_*\|_2})$$

is **exponentially large** w.r.t. $\|\mathbf{w}_*\|_2$

$\kappa = 1/c_\mu$ is 1 divided the **minimum slope**



similar issue for Poisson bandits!

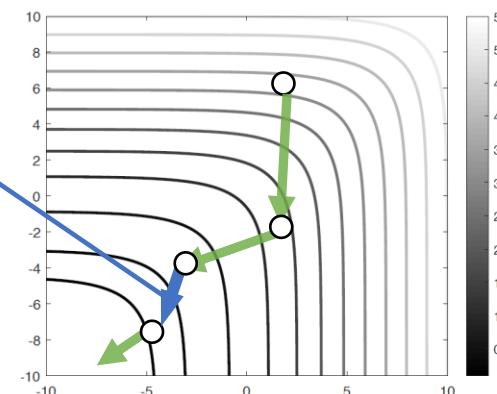
Computational Challenge

- *Maximum likelihood estimation is computationally inefficient*

$$\mathbf{w}_t^{\text{MLE}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{s=1}^{t-1} \ell_s(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2, \text{ where } \ell_t(\mathbf{w}) = -r_t \mathbf{x}_t^\top \mathbf{w} + m_t(\mathbf{w})$$

Per gradient descent step:

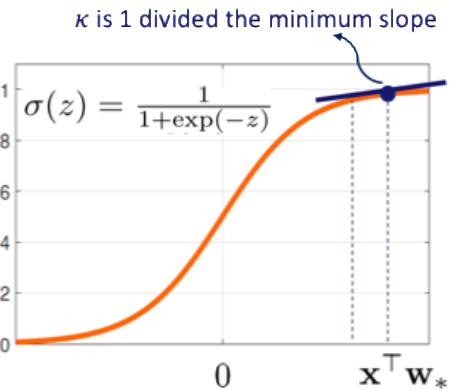
- $\mathcal{O}(t)$ time complexity per step
- $\mathcal{O}(t)$ storage complexity per step



Statistical and Computational Efficiency Concern

Setting	Algorithm	Regret	Comput. per Round	Storage Cost
linear	OFUL [Abbasi-Yadkori et al., 2011]	$\tilde{\mathcal{O}}(\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
generalized linear	GLM-UCB [Filippi et al., 2010]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$

Nonlinearity of the reward function raises concerns about both statistical and computational efficiency!

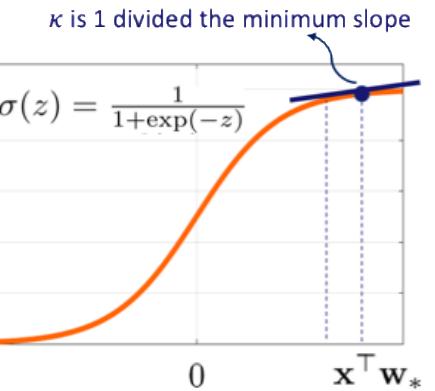


- $\kappa = \max_{\mathbf{x} \in \mathcal{X}} 1/\dot{\sigma}(\mathbf{x}^\top \mathbf{w}_*)$

Statistical and Computational Efficiency Concern

Setting	Algorithm	Regret	Comput. per Round	Storage Cost
linear	OFUL [Abbasi-Yadkori et al., 2011]	$\tilde{\mathcal{O}}(\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
generalized linear	GLM-UCB [Filippi et al., 2010]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$
	GLOC [Jun et al., 2017]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$

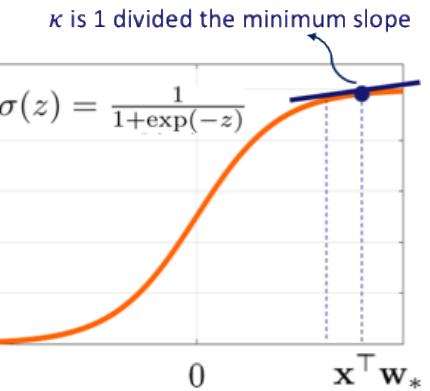
statistically inefficient computationally efficient



- $\kappa = \max_{\mathbf{x} \in \mathcal{X}} 1/\dot{\sigma}(\mathbf{x}^\top \mathbf{w}_*)$

Statistical and Computational Efficiency Concern

Setting	Algorithm	Regret	Comput. per Round	Storage Cost
linear	OFUL [Abbasi-Yadkori et al., 2011]	$\tilde{\mathcal{O}}(\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
	GLM-UCB [Filippi et al., 2010]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$
	GLOC [Jun et al., 2017]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
generalized linear (GLB)	OFUGLB [Lee et al., 2024; Liu et al., 2024]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$
	RS-GLinCB [Sawarni et al., 2024]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}((\log t)^2)^\dagger$	$\mathcal{O}(t)$
nearly minimax optimal		computationally inefficient		

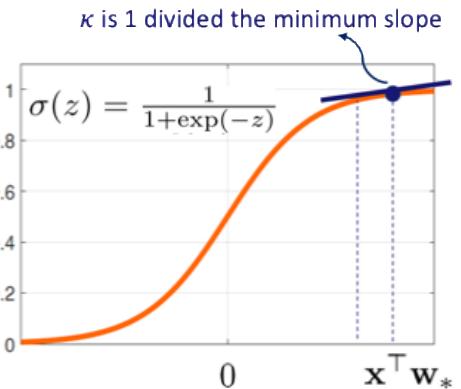


- $\kappa = \max_{\mathbf{x} \in \mathcal{X}} 1/\dot{\sigma}(\mathbf{x}^\top \mathbf{w}_*)$
- $\kappa_* = 1/\dot{\sigma}(\mathbf{x}_*^\top \mathbf{w}_*)$ is 1 over the slope at the optimal arm $\mathbf{x}_* = \arg \max_{\mathbf{x} \in \mathcal{X}} \sigma(\mathbf{x}^\top \mathbf{w}_*)$.

Statistical and Computational Efficiency Concern

Setting	Algorithm	Regret	Comput. per Round	Storage Cost
linear	OFUL [Abbasi-Yadkori et al., 2011]	$\tilde{\mathcal{O}}(\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
	GLM-UCB [Filippi et al., 2010]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$
	GLOC [Jun et al., 2017]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
generalized linear (GLB)	OFUGLB [Lee et al., 2024; Liu et al., 2024]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$
	RS-GLinCB [Sawarni et al., 2024]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}((\log t)^2)^\dagger$	$\mathcal{O}(t)$
	GLB-OMD [Z-Xu-Zhao-Sugiyama, 2025]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$

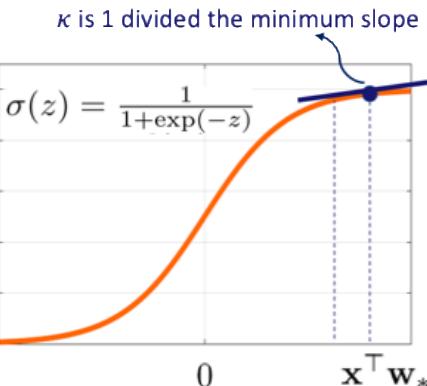
Our jointly efficient alg.!



- $\kappa = \max_{\mathbf{x} \in \mathcal{X}} 1/\dot{\sigma}(\mathbf{x}^\top \mathbf{w}_*)$
- $\kappa_* = 1/\dot{\sigma}(\mathbf{x}_*^\top \mathbf{w}_*)$ is 1 over the slope at the optimal arm $\mathbf{x}_* = \arg \max_{\mathbf{x} \in \mathcal{X}} \sigma(\mathbf{x}^\top \mathbf{w}_*)$.

Statistical and Computational Efficiency Concern

Setting	Algorithm	Regret	Comput. per Round	Storage Cost
linear	OFUL [Abbasi-Yadkori et al., 2011]	$\tilde{\mathcal{O}}(\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
	GLM-UCB [Filippi et al., 2010]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$
	GLOC [Jun et al., 2017]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
generalized linear (GLB)	OFUGLB [Lee et al., 2024; Liu et al., 2024]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$
	RS-GLinCB [Sawarni et al., 2024]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}((\log t)^2)^\dagger$	$\mathcal{O}(t)$
	GLB-OMD [Z-Xu-Zhao-Sugiyama, 2025]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$



- $\kappa = \max_{\mathbf{x} \in \mathcal{X}} 1/\dot{\sigma}(\mathbf{x}^\top \mathbf{w}_*)$
- $\kappa_* = 1/\dot{\sigma}(\mathbf{x}_*^\top \mathbf{w}_*)$ is 1 over the slope at the optimal arm $\mathbf{x}_* = \arg \max_{\mathbf{x} \in \mathcal{X}} \sigma(\mathbf{x}^\top \mathbf{w}_*)$.

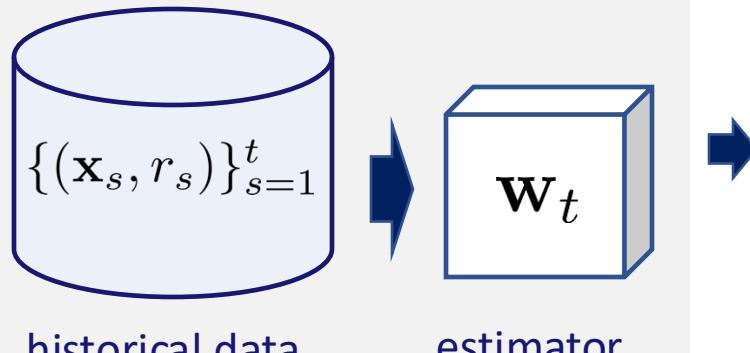
- GLB is almost as efficient as linear bandits.
- **Logistic bandits:** improves upon the best-known existing approach.
- **Unbounded rewards:** applies to Poisson bandits whose rewards are unbounded.

Outline

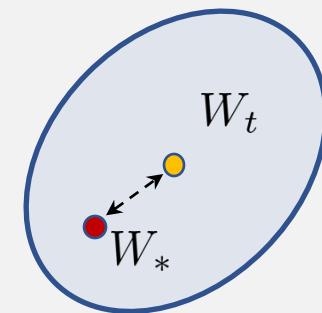
- Logistic Bandits Problem
- Statistical and Computational Efficient Concern
- **Our Jointly Efficient Method**
- Extension to Logistic Function Approximation

OFU For Logistic Bandits

Step 1: Parameter Estimation



Step 2: construct high confidence region



$$\|\mathbf{w}_* - \hat{\mathbf{w}}_t\|_{V_t} \leq \beta_t(\delta)$$

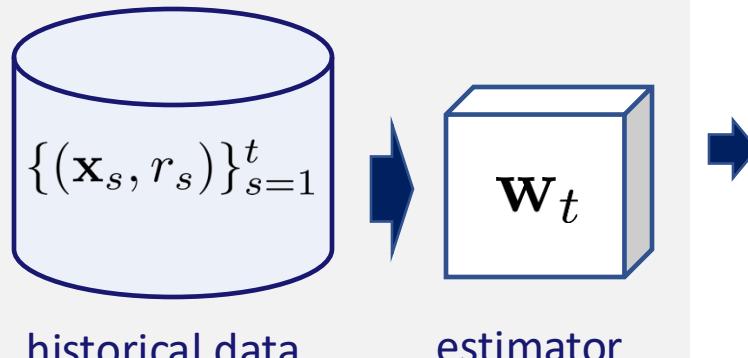
Step 3: select the arm

- For each arm, construct **UCB**
 $UCB_t(\mathbf{x}) = \max_{W \in \mathcal{C}_t(\delta)} \sigma(\mathbf{w}^\top \mathbf{x})$
- Select the one with highest UCB

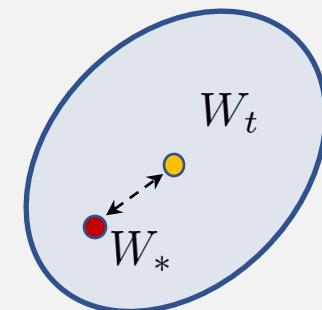
$\mathbf{x}_{t+1} = \arg \max_{\mathbf{x} \in \mathcal{X}} UCB_t(\mathbf{x})$

OFU For Logistic Bandits

Step 1: Parameter Estimation



Step 2: construct high confidence region



Step 3: select the arm

- For each arm, construct **UCB**
 $UCB_t(\mathbf{x}) = \max_{\mathbf{w} \in \mathcal{C}_t(\delta)} \sigma(\mathbf{w}^\top \mathbf{x})$
- Select the one with highest UCB

$$\mathbf{x}_{t+1} = \arg \max_{\mathbf{x} \in \mathcal{X}} UCB_t(\mathbf{x})$$

The regret scales with the **width of the confidence set** $\text{Reg}_T \propto \beta_T(\delta)$

Why κ appears?

■ **Parameter Estimation:** estimate the \mathbf{w}_* by *maximum likelihood estimation* (MLE)

$$\mathbf{w}_t^{\text{MLE}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{s=1}^{t-1} \ell_s(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

Why κ appears?

- **Parameter Estimation:** estimate the \mathbf{w}_* by *maximum likelihood estimation* (MLE)

$$\mathbf{w}_t^{\text{MLE}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{s=1}^{t-1} \ell_s(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- κ appears due to improper uncertainty quantification

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to κ

for binary case: $\|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{V_t} \lesssim \kappa \sqrt{d \log T}$

$V_t = \sum_{s=1}^{t-1} \mathbf{x}_s \mathbf{x}_s^\top$ is the design matrix

Why κ appears?

- **Parameter Estimation:** estimate the \mathbf{w}_* by *maximum likelihood estimation* (MLE)

$$\mathbf{w}_t^{\text{MLE}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{s=1}^{t-1} \ell_s(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- κ appears due to improper uncertainty quantification

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to κ

for binary case: $\|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{V_t} \lesssim \kappa \sqrt{d \log T}$

$V_t = \sum_{s=1}^{t-1} \mathbf{x}_s \mathbf{x}_s^\top$ is the design matrix

$$\|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{V_t} = \left\| \left(\sum_{s=1}^{t-1} \dot{\sigma}(\mathbf{x}_s^\top \boldsymbol{\xi}_s) \mathbf{x}_s \mathbf{x}_s^\top \right)^{-1} \cdot \left(\sum_{s=1}^{t-1} \epsilon_s \mathbf{x}_s \right) \right\|_{V_t}$$

Why κ appears?

- **Parameter Estimation:** estimate the \mathbf{w}_* by *maximum likelihood estimation* (MLE)

$$\mathbf{w}_t^{\text{MLE}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{s=1}^{t-1} \ell_s(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- κ appears due to improper uncertainty quantification

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to κ

for binary case: $\|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{\infty} \leq \kappa \sqrt{d \log T}$

$V = \nabla^{t-1} \mathbf{x}_s \mathbf{x}_s^\top$ is the design matrix

The same closed-form solution as the least squares,
except for the **non-linear term**

$$\|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{V_t} = \left\| \left(\sum_{s=1}^{t-1} \dot{\sigma}(\mathbf{x}_s^\top \boldsymbol{\xi}_s) \mathbf{x}_s \mathbf{x}_s^\top \right)^{-1} \cdot \left(\sum_{s=1}^{t-1} \epsilon_s \mathbf{x}_s \right) \right\|_{V_t}$$

Why κ appears?

- **Parameter Estimation:** estimate the \mathbf{w}_* by *maximum likelihood estimation* (MLE)

$$\mathbf{w}_t^{\text{MLE}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{s=1}^{t-1} \ell_s(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- κ appears due to improper uncertainty quantification

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to κ

for binary case: $\|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{V_t} \lesssim \kappa \sqrt{d \log T}$

$V_t = \sum_{s=1}^{t-1} \mathbf{x}_s \mathbf{x}_s^\top$ is the design matrix

$$\|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{V_t} = \left\| \left(\sum_{s=1}^{t-1} \dot{\sigma}(\mathbf{x}_s^\top \boldsymbol{\xi}_s) \mathbf{x}_s \mathbf{x}_s^\top \right)^{-1} \cdot \left(\sum_{s=1}^{t-1} \epsilon_s \mathbf{x}_s \right) \right\|_{V_t} \leq \kappa \left\| \left(\sum_{s=1}^{t-1} \mathbf{x}_s \mathbf{x}_s^\top \right)^{-1} \cdot \left(\sum_{s=1}^{t-1} \epsilon_s \mathbf{x}_s \right) \right\|_{V_t} \leq \mathcal{O}(\kappa \sqrt{d \log T})$$

Why κ appears? → the local non-linearity of MLE is not taken into account.

Why κ appears?

- **Parameter Estimation:** estimate the \mathbf{w}_* by *maximum likelihood estimation* (MLE)

$$\mathbf{w}_t^{\text{MLE}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{s=1}^{t-1} \ell_s(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- κ appears due to improper uncertainty quantification

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to κ

for binary case: $\|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{V_t} \lesssim \kappa \sqrt{d \log T}$

$V_t = \sum_{s=1}^{t-1} \mathbf{x}_s \mathbf{x}_s^\top$ is the design matrix

[Faury, et al, 2020]: capture the local curvature of the MLE estimator

$$\|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{H_t(\mathbf{w}_*)} \lesssim \sqrt{d \log T}$$

$$H_t(\mathbf{w}) = \sum_{s=1}^{t-1} \dot{\sigma}(\mathbf{x}_s^\top \mathbf{w}_*) \mathbf{x}_s \mathbf{x}_s^\top$$

approximate $\dot{\sigma}(\mathbf{x}_s^\top \xi_s)$
by the term $\dot{\sigma}(\mathbf{x}_s^\top \mathbf{w}_*)$

Why κ appears

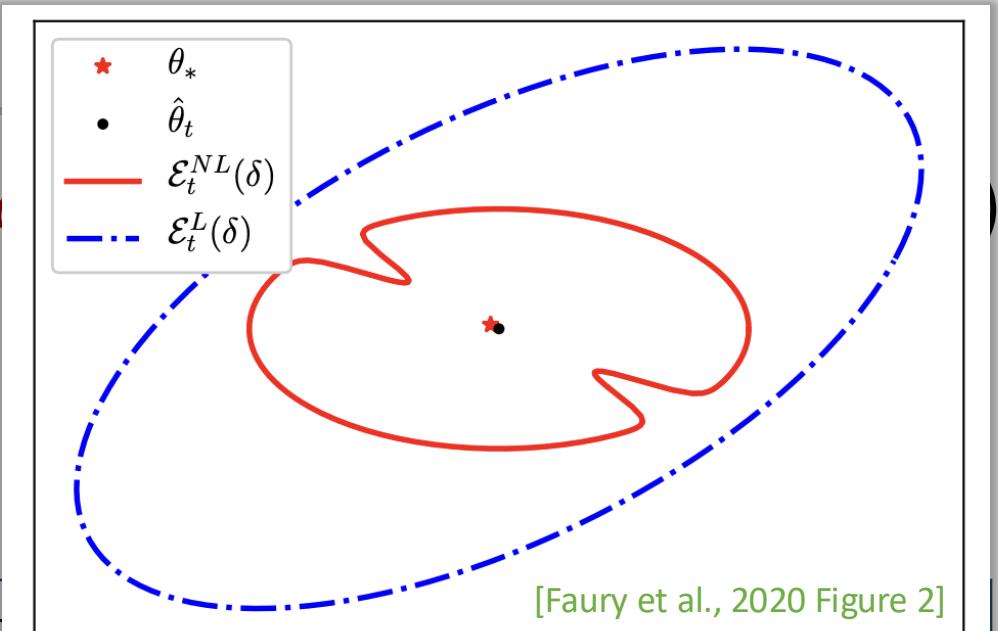
■ Parameter Estimation: estimate the \mathbf{w}_* by $\hat{\mathbf{w}}_t$

$$\mathbf{w}_t^{\text{MLE}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{s=1}^{t-1} \ell_s(\mathbf{w})$$

■ κ appears due to improper uncertainty quantification

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to

$$\text{for binary case: } \|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{V_t} \lesssim \kappa \sqrt{d \log T}$$



$V_t = \sum_{s=1}^{t-1} \mathbf{x}_s \mathbf{x}_s^\top$ is the design matrix

approximate $\dot{\sigma}(\mathbf{x}_s^\top \xi_s)$
by the term $\dot{\sigma}(\mathbf{x}_s^\top \mathbf{w}_*)$

[Faury, et al, 2020]: capture the local curvature of the MLE estimator

$$\|\mathbf{w}_* - \mathbf{w}_t^{\text{MLE}}\|_{H_t(\mathbf{w}_*)} \lesssim \sqrt{d \log T}$$

$$H_t(\mathbf{w}) = \sum_{s=1}^{t-1} \dot{\sigma}(\mathbf{x}_s^\top \mathbf{w}_*) \mathbf{x}_s \mathbf{x}_s^\top$$

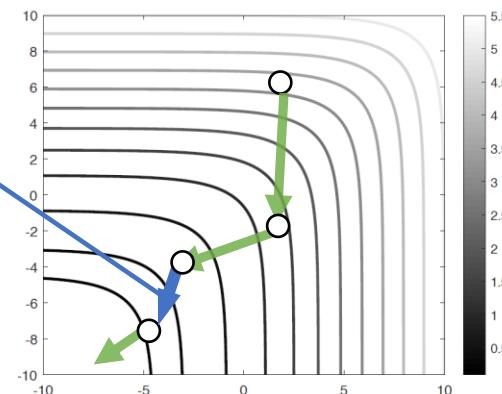
Computational Concern

- *Maximum likelihood estimation is computationally inefficient*

$$\mathbf{w}_t^{\text{MLE}} = \arg \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{s=1}^{t-1} \ell_s(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

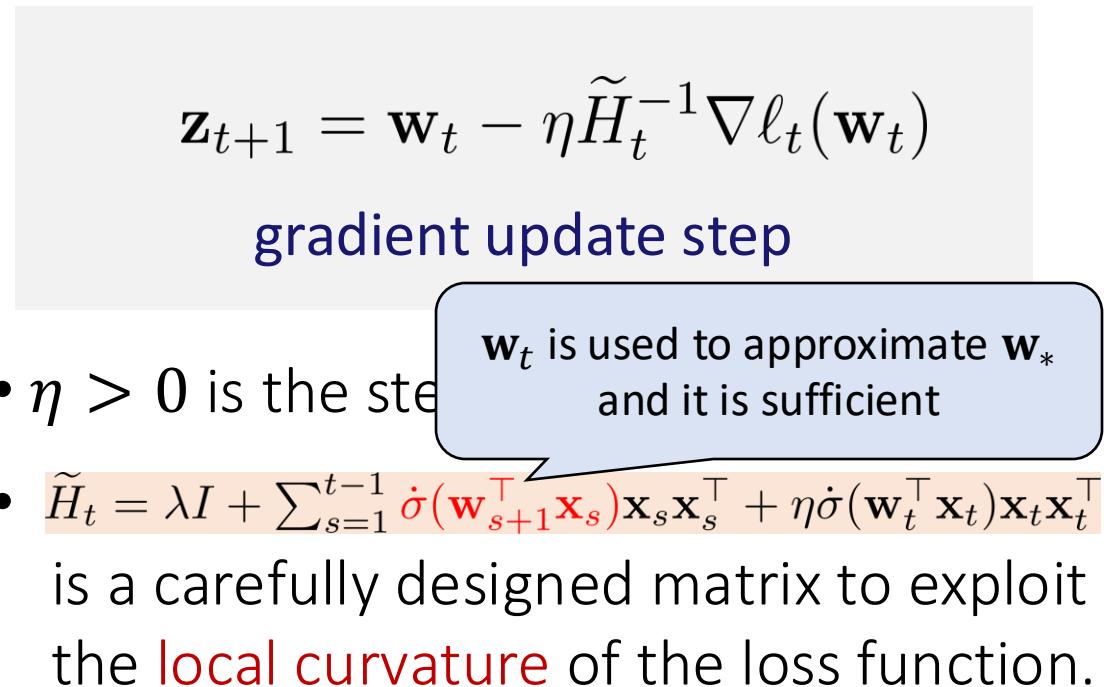
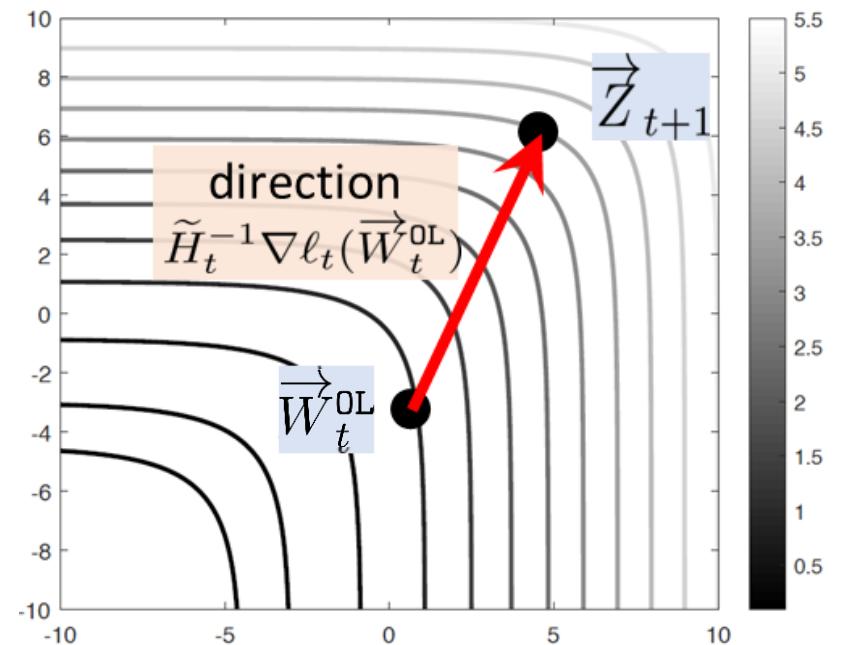
Per gradient descent step:

- $\mathcal{O}(t)$ time complexity per step
- $\mathcal{O}(t)$ storage complexity per step



Our solution

- *Online Estimator*: learn the parameter with the **online mirror descent**

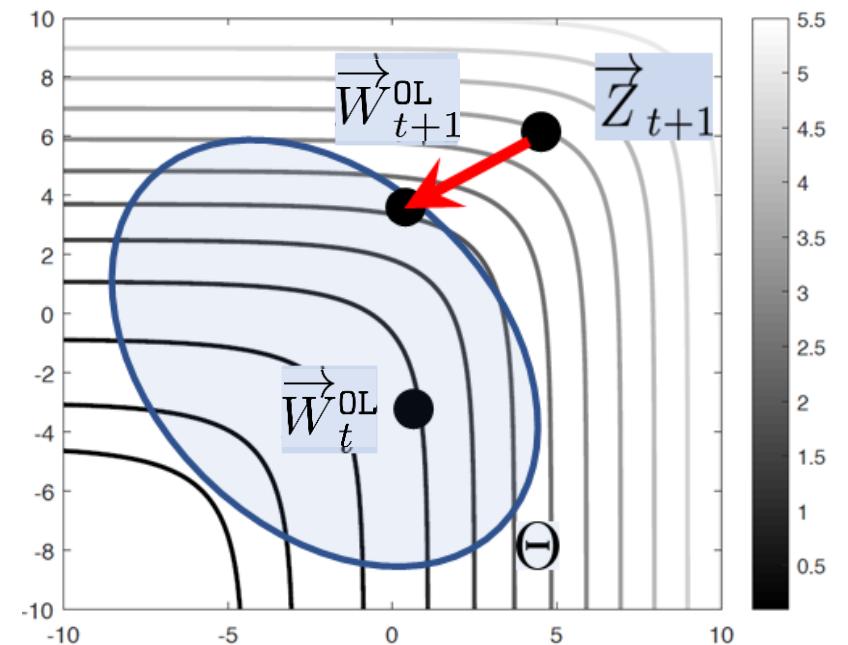


Our solution

- *Online Estimator*: learn the parameter with the **online mirror descent**

$$\mathbf{w}_{t+1}^{\text{OL}} = \arg \min_{\mathbf{w} \in \mathcal{W}} \|\mathbf{w} - \mathbf{z}_{t+1}\|_{\tilde{H}_t},$$

Projection step



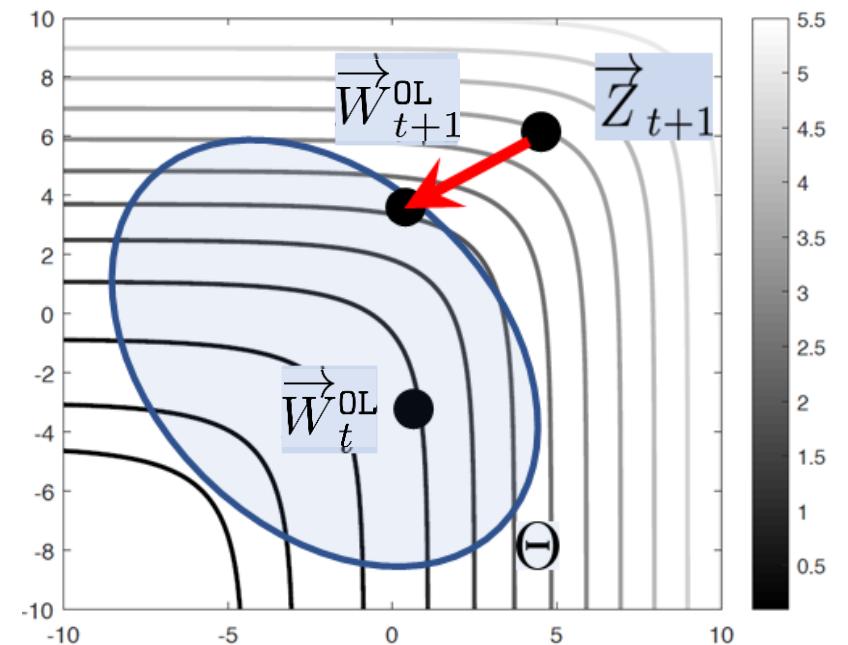
Our solution

- *Online Estimator*: learn the parameter with the **online mirror descent**

$$\mathbf{w}_{t+1}^{\text{OL}} = \arg \min_{\mathbf{w} \in \mathcal{W}} \|\mathbf{w} - \mathbf{z}_{t+1}\|_{\tilde{H}_t},$$

Projection step

Our method is **free from** storing all historical data



Our solution

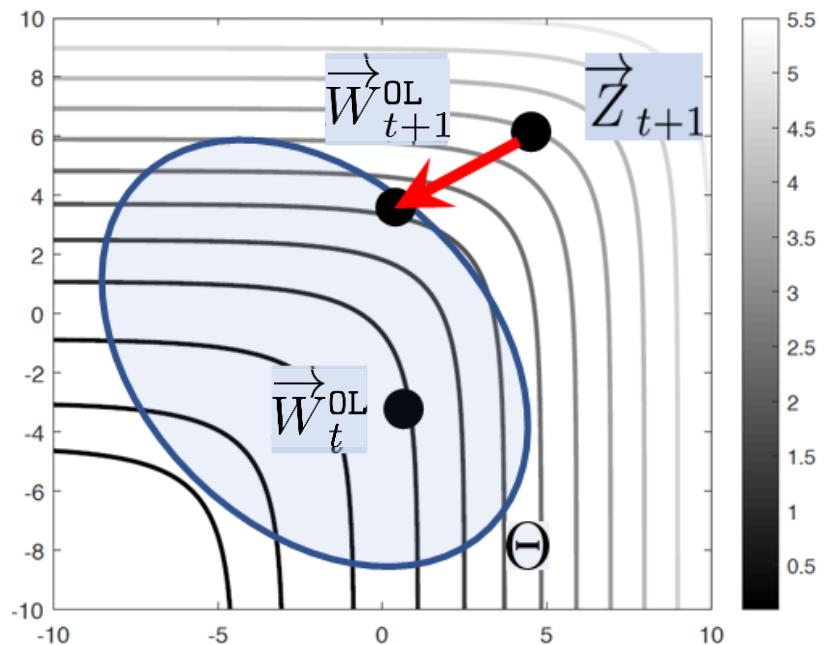
- *Online Estimator*: learn the parameter with the **online mirror descent**

$$\mathbf{w}_{t+1}^{\text{OL}} = \arg \min_{\mathbf{w} \in \mathcal{W}} \|\mathbf{w} - \mathbf{z}_{t+1}\|_{\tilde{H}_t},$$

Projection step

Our method is **free from** storing all historical data

How are the statistical properties? Any loss?



Our solution

Main Theorem (informal): With appropriate configuration of the step size η and regularization coefficient λ , for each iteration $t \in [T]$,

Independent of κ

$$\|\mathbf{w}_t^{\text{OL}} - \mathbf{w}_*\|_{H_t} \lesssim \sqrt{d \log t},$$

where \mathbf{w}_t^{OL} is the online estimator and $H_t = \lambda I + \sum_{s=1}^{t-1} \dot{\sigma}(\mathbf{w}_{s+1}^\top \mathbf{x}_s) \mathbf{x}_s \mathbf{x}_s^\top$.

Our solution

Main Theorem (informal): With appropriate configuration of the step size η and regularization coefficient λ , for each iteration $t \in [T]$, we have

$$\|\mathbf{w}_t^{\text{OL}} - \mathbf{w}_*\|_{H_t} \lesssim \sqrt{d \log t},$$

where \mathbf{w}_t^{OL} is the online estimator and $H_t = \lambda I + \sum_{s=1}^{t-1} \dot{\sigma}(\mathbf{w}_{s+1}^\top \mathbf{x}_s) \mathbf{x}_s \mathbf{x}_s^\top$.

■ Jointly efficient estimator **for multinomial logistic regression:**

- Computationally efficient: $\mathcal{O}(1)$ computational and storage cost per round
- Statistically efficient: “ k -independent” estimation error

Our solution

Main Theorem (informal): With appropriate configuration of the step size η and regularization coefficient λ , for each iteration $t \in [T]$, we have

$$\|\mathbf{w}_t^{\text{OL}} - \mathbf{w}_*\|_{H_t} \lesssim \sqrt{d \log t},$$

where \mathbf{w}_t^{OL} is the online estimator and $H_t = \lambda I + \sum_{s=1}^{t-1} \dot{\sigma}(\mathbf{w}_{s+1}^\top \mathbf{x}_s) \mathbf{x}_s \mathbf{x}_s^\top$.

■ Jointly efficient estimator **for multinomial logistic regression:**

- Computationally efficient: $\mathcal{O}(1)$ computational and storage cost per round
- Statistically efficient: “ k -independent” estimation error

$$\mathcal{C}_t^{\text{OL}}(\delta) \triangleq \left\{ \mathbf{w} \in \mathcal{X} \mid \|\mathbf{w}_t^{\text{OL}} - \mathbf{w}\|_{H_t} \lesssim \sqrt{d \log t} \right\}$$

ellipsoid confidence set
to construct UCB

Joint Efficient Algorithm

Algorithm 1 GLB-OMD

- 1: **Input:** regularization coefficient λ , probability δ , step size η .
- 2: Initialize $H_1 = \lambda I_{Kd}$ and $\overrightarrow{W}_1^{\text{OL}}$ as any point in \mathcal{W}
- 3: **for** $t = 1, \dots, T$ **do**
- 4: Select the arm by $\mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{X}} \text{UCB}_t(\mathbf{x})$ and receive y_t .
- 5: Update $\tilde{H}_t = H_t + \eta \mu'(\mathbf{w}_t^{\text{OL}} \mathbf{x}_t) \mathbf{x}_t \mathbf{x}_t^\top$
- 6: Update the estimator $\mathbf{w}_{t+1}^{\text{OL}}$ for the next iteration by (6)
- 7: Update $H_{t+1} = H_t + \mu'(\mathbf{w}_{t+1}^{\text{OL}} \mathbf{x}_t) \mathbf{x}_t \mathbf{x}_t^\top$ and
- 8: Construct UCB by $\text{UCB}_{t+1}(\mathbf{x}) = \arg \max_{\mathbf{w} \in \mathcal{C}_{t+1}(\delta)} \mu(\mathbf{x}^\top \mathbf{w})$.
- 9: **end for**

online update
of the estimator

construct UCB with
an ellipsoid

Theorem 2: *With appropriate configuration of the step size η and regularization coefficient λ , for each iteration $t \in [T]$, we have*

$$\text{Reg}_T \lesssim d \log T \sqrt{\frac{T}{\kappa_*}} + \kappa d^2 (\log T)^2$$

Joint Efficient Algorithm

Algorithm 1 GLB-OMD

- 1: **Input:** regularization coefficient λ , probability δ , step size η .
- 2: Initialize $H_1 = \lambda I_{Kd}$ and \vec{W}_1^{OL} as any point in \mathcal{W}
- 3: **for** $t = 1, \dots, T$ **do**
- 4: Select the arm by $\mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{X}} \text{UCB}_t(\mathbf{x})$ and receive y_t .
- 5: Update $\tilde{H}_t = H_t + \eta \mu'(\mathbf{w}_t^{\text{OL}} \mathbf{x}_t) \mathbf{x}_t \mathbf{x}_t^\top$
- 6: Update the estimator $\mathbf{w}_{t+1}^{\text{OL}}$ for the next iteration by (6)
- 7: Update $H_{t+1} = H_t + \mu'(\mathbf{w}_{t+1}^{\text{OL}} \mathbf{x}_t) \mathbf{x}_t \mathbf{x}_t^\top$ and

online update
of the estimator

construct UCB with

best-known $\tilde{\mathcal{O}}(T/\kappa_*)$ regret bound with $\mathcal{O}(1)$ cost per round

Theorem 2: *With appropriate configuration of the step size η and regularization coefficient λ , for each iteration $t \in [T]$, we have*

$$\text{Reg}_T \lesssim d \log T \sqrt{\frac{T}{\kappa_*}} + \kappa d^2 (\log T)^2$$

Summary & Future Work

- For generalized linear bandits, a single gradient step is enough to ensure statistical efficiency

Setting	Algorithm	Regret	Comput. per Round	Storage Cost
linear	OFUL [Abbasi-Yadkori et al., 2011]	$\tilde{\mathcal{O}}(\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
	GLM-UCB [Filippi et al., 2010]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$
	GLOC [Jun et al., 2017]	$\tilde{\mathcal{O}}(\kappa\sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
generalized linear (GLB)	OFUGLB [Lee et al., 2024; Liu et al., 2024]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$
	RS-GLinCB [Sawarni et al., 2024]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}((\log t)^2)^\dagger$	$\mathcal{O}(t)$
	GLB-OMD [Z-Xu-Zhao-Sugiyama, 2025]	$\tilde{\mathcal{O}}(\sqrt{T/\kappa_*})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$

- More potentials: dueling bandits, RLHF, Function Approximation...

Future questions:

- totally free of kappa?
- beyond the linear class

Thanks!
Q&A