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Outline

◼ Generalized Linear Bandits

◼ Statistical and Computational Efficient Challenge

◼ Jointly efficient Method

◼ Conclusion
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Going Beyond Linear Bandits?

We need more expressive models beyond linear classes

https://yujie-zhang96.github.io/ One-Pass GLB7

customer with preference 𝜽∗selected arm 𝐱𝑡

The feedback is discrete:



Generalized Linear Bandits

https://yujie-zhang96.github.io/ One-Pass GLB8

◼ Linear Bandit: real value feedback

◼ Logistic Bandit: binary feedback with the logit model

Generalized linear bandits: natural exponential-family (NEF) rewards

𝑚 𝑧 : log-partition 
function for normalization

ℎ 𝑟 : base measure 
shaping the distribution



Generalized Linear Bandits
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◼ Linear Bandit: real value feedback

Generalized linear bandits: natural exponential-family (NEF) rewards

𝑚 𝑧 : log-partition 
function for normalization

◼ Logistic Bandit: binary feedback with the logit model

◼ Poisson Bandits: count-based feedback with unbounded reward!

ℎ 𝑟 : base measure 
shaping the distribution



Generalized Linear Bandits
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Generalized linear bandits: natural exponential-family (NEF) rewards

𝒎 𝒛 : log-partition 
function for normalization

NEF properties

Mean:

Variance: 

𝒉 𝒓 : base measure 
shaping the distribution

another formulation



Generalized Linear Bandits
◼  Goal: select the action 𝐱𝑡 that achieves the maximum expected reward. 

https://yujie-zhang96.github.io/ One-Pass GLB11

is 
the probability of 𝑟𝑡 = 1



Generalized Linear Bandits
◼  Goal: select the action 𝐱𝑡 that achieves the maximum expected reward. 

◼ Equal to minimize the regret:

reward of the best action reward of our algorithm

https://yujie-zhang96.github.io/ One-Pass GLB12

is 
the probability of 𝑟𝑡 = 1



When performing 
a statistical analysis…

Learn from human preference in dueling bandits and RLHF: Bradley-Terry Model

To help you 
analyze your data 
statistical….

Why GLB?

Bradley-Terry Model

The issue of 𝜅 appears in many work on dueling 
bandits and RLHF: [Saha NeurIPS’21; Zhu et al., 
ICML’23; Das et al., ICML’24 workshop; Pásztor 
et al., NeurIPS’24; Scheid et al., arXiv’24]

A B

Reward 
model 𝑟(⋅)

Human preference

A

B

Q:

https://yujie-zhang96.github.io/ Online Logistic Bandit and MDP13



Why GLB?

To deal with large-scale MDPs: Function Approximation

For iterations from

• Learner: observes states 𝑠𝑡 ∈ 𝒮  
and plays action 𝑎𝑡 ∈ 𝒜 

• Environments: generates next 
state 𝑠𝑡+1 ∼ ℙ(⋅ |𝑠𝑡 , 𝑎𝑡)

…… …

…

…

…
Markov Decision Process

MNL mixture MDPs
to ensure valid distribution: 

[Hwang and Oh et al., 2022; Li-Z-Zhao-Zhou, 2024] 

The 𝜅 issue is even more severe in 
MNL mixture MDP problem!

https://yujie-zhang96.github.io/ Online Logistic Bandit and MDP14



Outline

◼ Logistic Bandits Problem

◼ Statistical and Computational Efficient Challenge

◼ Our jointly efficient Method

◼ Extension to Logistic Function Approximation 

https://yujie-zhang96.github.io/ One-Pass GLB15



GLB: Existing Algorithm

◼ GLM-UCB Algorithm [Filippi et al., NIPS 2010]

➢ Estimator: maximum likelihood estimator 

Estimation error:



GLB: Existing Algorithm

◼ GLM-UCB Algorithm [Filippi et al., NIPS 2010]

➢ Estimator: maximum likelihood estimator 

Estimation error:

Regret bound: 
➢ Arm selection: upper confidence bound

degree of nonlinearity



Statistical Challenge

Example: binary logistic bandit

• Reward function:

The condition number 𝑘𝜇 /𝑐𝜇 could be exponentially large!

https://yujie-zhang96.github.io/ One-Pass GLB18

𝜅 = 1/𝑐𝜇 is 1 divided the minimum slope

similar issue for Poisson bandits!



Statistical Challenge

Example: binary logistic bandit

• Reward function:

• GLM-UCB [Filippi et al., 2010] ensures:
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The condition number 𝑘𝜇 /𝑐𝜇 could be exponentially large!

𝜅 = 1/𝑐𝜇 is 1 divided the minimum slope

similar issue for Poisson bandits!



Statistical Challenge

Example: binary logistic bandit

• Reward function:

• GLM-UCB [Filippi et al., 2010] ensures:
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The condition number 𝑘𝜇 /𝑐𝜇 could be exponentially large!

𝜅 = 1/𝑐𝜇 is 1 divided the minimum slope

similar issue for Poisson bandits!

• In the above, the constant

     is exponentially large w.r.t.  



Computational Challenge

◼ Maximum likelihood estimation is computationally inefficient 

https://yujie-zhang96.github.io/ Online Logistic Bandit and MDP21

Per gradient descent step:

• 𝒪 𝑡 time complexity per step

• 𝒪(𝑡) storage complexity per step



Statistical and Computational Efficiency Concern

https://yujie-zhang96.github.io/ One-Pass GLB22

Nonlinearity of the reward function raises concerns about both statistical 
and computational efficiency! •  



Statistical and Computational Efficiency Concern
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•  
statistically inefficient computationally efficient



Statistical and Computational Efficiency Concern
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•  

nearly minimax optimal computationally inefficient

•  is 1 over 

the slope at the optimal arm



Statistical and Computational Efficiency Concern
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•  

•  is 1 over 

the slope at the optimal arm

Our jointly efficient alg.! 



Statistical and Computational Efficiency Concern
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•  

•  is 1 over 

the slope at the optimal arm

⚬ GLB is almost as efficient  as linear bandits.

⚬ Logistic bandits: improves upon the best-known existing approach.

⚬ Unbounded rewards: applies to Poisson bandits whose rewards are unbounded.



Outline

◼ Logistic Bandits Problem

◼ Statistical and Computational Efficient Concern

◼ Our Jointly Efficient Method

◼ Extension to Logistic Function Approximation 
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OFU For Logistic Bandits

https://yujie-zhang96.github.io/ One-Pass GLB28

historical data

Step 1: Parameter Estimation

estimator

Step 2: construct high 
confidence region

ı

Step 3: select the arm

⚫ For each arm, construct UCB

⚫ Select the one with highest UCB



ı

OFU For Logistic Bandits

https://yujie-zhang96.github.io/ One-Pass GLB29

historical data

Step 1: Parameter Estimation Step 3: select the arm

estimator

⚫ For each arm, construct UCB

⚫ Select the one with highest UCB

The regret scales with the width of the confidence set

Step 2: construct high 
confidence region



Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE) 

https://yujie-zhang96.github.io/ One-Pass GLB30

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation


[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE) 
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◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation


[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE) 
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◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation


[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE) 
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◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

The same closed-form solution as the least squares, 
except for the non-linear term

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation


[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE) 
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◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

Why 𝜅 appears? → the local non-linearity of MLE is not taken into account.

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation


[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE) 
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◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

[Faury, et al, 2020]: capture the local curvature of the MLE estimator

approximate ሶ𝜎 𝐱𝑠
⊤𝜉𝑠

by the term ሶ𝜎 𝐱𝑠
⊤𝐰∗

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation


[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE) 
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◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

[Faury, et al, 2020]: capture the local curvature of the MLE estimator

approximate ሶ𝜎 𝐱𝑠
⊤𝜉𝑠

by the term ሶ𝜎 𝐱𝑠
⊤𝐰∗

[Faury et al., 2020 Figure 2]

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation


Computational Concern

◼ Maximum likelihood estimation is computationally inefficient 

https://yujie-zhang96.github.io/ One-Pass GLB37

Per gradient descent step:

• 𝒪 𝑡 time complexity per step

• 𝒪(𝑡) storage complexity per step



◼ Online Estimator: learn the parameter with the online mirror descent

Our solution

gradient update step

• 𝜂 > 0 is the step size

• 
    is a carefully designed matrix to exploit     
    the local curvature of the loss function. 

https://yujie-zhang96.github.io/ One-Pass GLB38

𝐰𝑡 is used to approximate 𝐰∗ 
and it is sufficient



◼ Online Estimator: learn the parameter with the online mirror descent

Our solution 

Projection step

https://yujie-zhang96.github.io/ One-Pass GLB39



Our solution

Projection step

Our method is free from storing all historical data

◼ Online Estimator: learn the parameter with the online mirror descent
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Our solution

Projection step

Our method is free from storing all historical data

◼ Online Estimator: learn the parameter with the online mirror descent

https://yujie-zhang96.github.io/ One-Pass GLB41

How are the statistical properties? Any loss?



Our solution
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Main Theorem (informal): With appropriate configuration of the step size 𝜂 and 

regularization coefficient 𝜆,  for each iteration 𝑡 ∈ 𝑇 , we have 

where         is the online estimator and  

Independent of 𝜅



Our solution
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Main Theorem (informal): With appropriate configuration of the step size 𝜂 and 

regularization coefficient 𝜆,  for each iteration 𝑡 ∈ 𝑇 , we have 

where         is the online estimator and  

◼ Jointly efficient estimator for multinomial logistic regression:

⚫ Computationally efficient: 𝒪 1 computational and storage cost per round

⚫ Statistically efficient: “𝜅-independent” estimation error



Our solution
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Main Theorem (informal): With appropriate configuration of the step size 𝜂 and 

regularization coefficient 𝜆,  for each iteration 𝑡 ∈ 𝑇 , we have 

where         is the online estimator and  

◼ Jointly efficient estimator for multinomial logistic regression:

⚫ Computationally efficient: 𝒪 1 computational and storage cost per round

⚫ Statistically efficient: “𝜅-independent” estimation error

ellipsoid confidence set
to construct UCB 



Joint Efficient Algorithm

online update 
of the estimator

https://yujie-zhang96.github.io/ One-Pass GLB45

construct UCB with 
an ellipsoid

Theorem 2: With appropriate configuration of the step size 𝜂 and regularization 

coefficient 𝜆,  for each iteration 𝑡 ∈ 𝑇 , we have 



Joint Efficient Algorithm

online update 
of the estimator

https://yujie-zhang96.github.io/ One-Pass GLB46

construct UCB with 
an ellipsoid

Theorem 2: With appropriate configuration of the step size 𝜂 and regularization 

coefficient 𝜆,  for each iteration 𝑡 ∈ 𝑇 , we have 

best-known ෨𝒪(𝑇/𝜅∗) regret bound with 𝒪(1) cost per round 



◼ For generalized linear bandits, a single gradient step is enough to ensure statistical efficiency

◼ More potentials: dueling bandits, RLHF, Function Approximation…

Summary & Future Work

https://yujie-zhang96.github.io/ One-Pass GLB47

Thanks!
Q&A

Future questions: 

• totally free of kappa? 

• beyond the linear class
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