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Slides from [Advanced OPT, Lecture 12]

Bandits: Interactive Learning

* Multi-armed bandits: a simplest formulation for bandit problems

Ateachroundt=1,2,---

(1) player first chooses an arm a; € [K|;

(2) environment reveals a reward r;(a;) ~ distribution D,,;

(3) player updates the strategy by the pair (a;, r:(a;)).

The goal is to minimize the regret : Exploration-Exploitation tradeoff
T T e ae
* Exploitation: pull the best arm so far
N _
Reg; = fé?%] . tzl re(a) tzl i(a) * Exploration: try other arms that may be better

i.e., difference between the cumulative reward of the best arm and that obtained by the bandit algorithm
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Slides from [Advanced OPT, Lecture 12]

Stochastic Linear Bandits

* A ubiquitous problem in real life: feature information
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* Each arm represent a book and has side information;
* Arm set could be very large or even infinite.
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Slides from [Advanced OPT, Lecture 12]

Stochastic LB: Formulation

Stochastic Linear Bandits
Each arm is associated with a feature vector x € X = {x € R? | ||x||» < L}
Ateachroundt=1,2,---

(1) the player first chooses an arm X; from arm set &’;

(2) and then environment reveals a reward r; € R.

« Linear modeling assumption: r; = X, W, + &
— for some unknown parameter W € W =w | |[w]js < S

— for some unknown noise: €; is R-sub-Gaussian random noise;

Advanced Optimization (Fall 2025) Lecture 12. Stochastic Bandits II 6




Going Beyond Linear Bandits?

We need more expressive models beyond linear classes
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selected arm x;

The feedback is discrete:

1 “b 2
reward: r; = (“buy”)

0 (“not buy”)

<
>

customer with preference 0,

One-Pass GLB

https://yujie-zhang96.github.io/



Generalized Linear Bandits

Generalized linear bandits: natural exponential-family (NEF) rewards

h(r): base measure
shaping the distribution

—— _ rize—m(ze)+h(r
P(r|z = x, w,) = etz —m{ze)Thir N
. m(z): log-partition
function for normalization

B Linear Bandit: real value feedback 7 = XIW* + E¢

possible_ feec!’back
B Logistic Bandit: binary feedback with the logit model o to ehart?
* “do nothing”
1 (“click”) w.p. p(X Wy) _ 1
T+ — Z —
! {O ( “not click” ) otherwise M ( ) 1 _I_eXp ( o Z)

https://yujie-zhang96.github.io/
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Generalized Linear Bandits

Generalized linear bandits: natural exponential-family (NEF) rewards

h(r): base measure
shaping the distribution

—— _ rize—m(ze)+h(r
P(r|z = x, w,) = etz —m{ze)Thir N
. m(z): log-partition
function for normalization

B Linear Bandit: real value feedback 7+ = x, W, + &
B Logistic Bandit: binary feedback with the logit model

B Poisson Bandits: count-based feedback with unbounded reward!

re € {0,1,2,...} drawn from: r, ~ Poisson(u(z, w.))  1(2) = exp(2)

https://yujie-zhang96.github.io/ One-Pass GLB



Generalized Linear Bandits

Generalized linear bandits: natural exponential-family (NEF) rewards

h(r): base measure
shaping the distribution

- XTW _ ertzt—m(zt)—l—h(rt)
( t | t t * ) . m(z): log-partition
function for normalization

NEF properties

Variance: Var[r; | x, w.] = m/ (x] w.) = 1/ (x, w.)

Mean: E[r,|x, w,] =m/(x/ w,) = u(x, w,) » ry = M(X;W*) + E¢

another formulation

https://yujie-zhang96.github.io/

One-Pass GLB



Generalized Linear Bandits

B Goal: select the action x; that achieves the maximum expected reward.

T

[Z?"t‘xt] ZHJ Xt W* | w(z) =1/(1 +exp(—=2)) is

t=1 the probabilityof r; = 1

https://yujie-zhang96.github.io/ One-Pass GLB



Generalized Linear Bandits

B Goal: select the action x; that achieves the maximum expected reward.

T T
E[Z?"t‘xt] — ZHJ(XIW*) | w(z) =1/(1 + exp(—2)) is
t=1

t=1 the probability of r; = 1

B Equal to minimize the regret:

T
_ T T
Regret = Tmaxo(x wy) — » o(x; Wy)
xeX
t=1
reward of the best action reward of our algorithm

https://yujie-zhang96.github.io/ One-Pass GLB



Why GLB?

Learn from human preference in dueling bandits and RLHF: Bradley-Terry Model

To help you
Q: How do | a?alyzeyoufc;/ata
statistical....
analyze this
data statistically? ?Sgtﬁ;?cgf;fn‘;jj;”j Bradley-Terry Model
exXp (T(X1
* Pr(x; = xo| = ( ( ))

exp (r(xl)) + exp (T(X2))

o
- 0:-0
Human preference -

The issue of k appears in many work on dueling
bandits and RLHF: [Saha NeurlPS'21; Zhu et al.,,
ICML’'23; Das et al., ICML 24 workshop; Pasztor

et al., NeurlPS’24; Scheid et al., arXiv’24]
Reward

model ()

https://yujie-zhang96.github.io/
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Why GLB?

To deal with large-scale MDPs: Function Approximation

Markov Decision Process

For iterationsfrom ¢t =1,...,T

* lLearner: observes states s; € §
and plays action a; € A

* Environments: generates next @
state sy ~ P(- |S¢, ag) b The K issug is even more severe in
\_ MNL mixture MDP problem!
c / T
MNL mixture MDPs exp (¢ (s | s,a) W*)

e P(s'|s,a) = ~
to ensure valid distribution: ’ ses. , OXD (o(5 ] s,a)Tw,)

[Hwang and Oh et al., 2022; Li-Z-Zhao-Zhou, 2024]

https://yujie-zhang96.github.io/ Online Logistic Bandit and MDP
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B Statistical and Computational Efficient Challenge
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GLB: Existing Algorithm

B GLM-UCB Algorithm [Filippi et al., NIPS 2010]

> Estimator: maximum likelihood estimator

51l
AN . A .
W; = arg m1n§||w|\% + E 0SB (w), with £,5F(w) = —log Py (7511 | Xs)
wERd s=1

: . N k
Estimation error: |u(x' W) — pu(x'w,)| < C—’“Bt_1||:)c||vt_11
o




GLB: Existing Algorithm

B GLM-UCB Algorithm [Filippi et al., NIPS 2010]

> Estimator: maximum likelihood estimator

t—1

. A .
Wy = argmin= [w(3 + ) £S5 (w), with £,5%%(w) = —log Py (rsi1 | xs)

2
WERd s—1

: : N k : :
Estimation error: |u(x'w;) — pu(x'w.)| < —Bealxlly degree of nonlinearity

7
» Arm selection: upper confidence bound

‘ Regret bound: REGr < O (ﬁ—”dﬁ)
} p

X; = arg max {,LL(XTVvt) + 515—1”7(”1/;_11
xex *Note: ¢, < p'(z) < k,,Vz €[S, 9]



Statistical Challenge

The condition number k,, /¢, could be exponentially large!

= 1/c, is 1 divided the minimum slope
Example: binary logistic bandit k = 1/c, is 1 divided the minimu p

 Reward function: 7(x) = O'(XTW*)

0 x40,

similar issue for Poisson bandits!

https://yujie-zhang96.github.io/ One-Pass GLB



Statistical Challenge

The condition number k,, /¢, could be exponentially large!

Kk =1/c, is 1divided the minimum slope
Example: binary logistic bandit /Cu P
 Reward function: 7(x) = O'(XTW*)

* GLM-UCB |Filippiet al., 2010] ensures:

_ k
REGTg(O(—”d\/T)
Cp

0 x40,

similar issue for Poisson bandits!
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Statistical Challenge

The condition number k,, /¢, could be exponentially large!

=1 is 1 divided th ini |
Example: binary logistic bandit ik =1/cy is 1 divided the minimum slope

 Reward function: 7(x) = O'(XTW*)

* GLM-UCB |Filippiet al., 2010] ensures:

~ [k
REGy < O (—”d\/f)
Cu
* |n the above, the constant
[ K = MaXxex 1/d(xTw*) — O (GHW*HQ)J 0 x ',
is exponentially large w.r.t. ||w|2 similar issue for Poisson bandits!

https://yujie-zhang96.github.io/ One-Pass GLB



Computational Challenge

B Maximum likelihood estimation is computationally inefficient

Per gradient descent step:
* ((t) time complexity per step

e ((t) storage complexity per step

https://yujie-zhang96.github.io/ Online Logistic Bandit and MDP



Statistical and Computational Efficiency Concern

K is 1 divided the minimum slope

Setting Algorithm Regret Comput. per Round Storage Cost
linear OFUL %)
[Abbasi-Yadkori et al., 2011] OWT) o) o)
generalized GLM-UCB _
linear [Filippi et al., 2010] O(KJ\/T) Q) O)

Nonlinearity of the reward function raises concerns about both statistical
and computational efficiency! e K = MaXyecy 1/6(x'wW,)

https://yujie-zhang96.github.io/ One-Pass GLB



Statistical and Computational Efficiency Concern

K is 1 divided the minimum slope

Setting Algorithm Regret Comput. per Round Storage Cost
linear OFUL ~
[Abbasi-Yadkor et al, 2011 OCVT) o(1) o(1)
generalized [Filippi et al., 2010]
linear N
aLoe O(kVT) 0(1) o(1)

[Jun et al., 2017]

e K = MaXyecy 1/6(x'wW,)

statistically inefficient computationally efficient

https://yujie-zhang96.github.io/ One-Pass GLB



Statistical and Computational Efficiency Concern

K is 1 divided the minimum slope

Setting Algorithm Regret Comput. per Round Storage Cost
finear [Abbasi—Ya((:l)kFc‘)IrJiI;t al., 2011] 6(\/T) o) o)
[Fili}i)li‘l:e/fc-gl(.?%om] O(kV/T) o) o(t)
[Jun iLa(,l).,C2017] O(kVT) o) O(1)
et G (ot oy g OVTR) 00 o0 = maeex 1/0 (T w)
Sawarnt et 2, 2024 AVTT) O((og )’ 8 . ki, =1/6(x] w,) is 1 over
nearly minimax optimal computationally inefficient the slope at the optimal arm

X, = argmaxyey o(x ' w,).

https://yujie-zhang96.github.io/ One-Pass GLB



Statistical and Computational Efficiency Concern

K is 1 divided the minimum slope

Setting Algorithm Regret Comput. per Round Storage Cost
linear OFUL ~
[Abbasi-Yadkori et al., 2011] O(VT) o) o(1)
GLM-UCB ~
[Filippi et al., 2010] O(kVT) o(t) o)
GLOC ~
[Jun et al., 2017] O(=VT) o) o(1)
generalized OFUGLB _ o T
. e K = MaXxex l/0(X'W
linear (GLB) (106 ot a1, 2024: Liu et al, 2024] OWVT/A4) o) o) xex 1/6( )
RS-GLinCB ~ +
. O(\/T/k. log t)? o(t . .
[Sawarni et al., 2024] (VT/e.) Alg)’) ) o e = 1/6(x] w.) is 1 over
GLB-OMD O(V/T/kx) (1) o(1) the slope at the optimal arm

[Z-Xu-Zhao-Sugiyama, 2025]
X, = argmaxyey o(x ' w,).

Our jointly efficient alg.!

https://yujie-zhang96.github.io/ One-Pass GLB



Statistical and Computational Efficiency Concern

K is 1 divided the minimum slope

Setting Algorithm Regret Comput. per Round Storage Cost it Y
17 = mears
linear OFUL ~ :
[Abbasi-Yadkori et al., 2011] O(WT) o) o(1) 06
0.4+
GLM-UCB ~
[Filippi et al., 2010] O(xVT) o) o) 02!
GLOC = ° ' T
0 X' W,
[Jun et al., 2017] O(=VT) o) o(1)
generalized OFUGLB _ o T
. e K = MaXxex l/0(X'W
linear (GLB) (106 ot a1, 2024: Liu et al, 2024] OWVT/A4) o) o) xex 1/6( )
RS-GLinCB - ;
: O(\/T/k, log t)? O(t . )
[Sawarni et al., 2024] (VI7k.) Alee)) 2 o e = 1/6(x] w.) is 1 over
GLB-OMD O(V/T/kx) (1) o(1) the slope at the optimal arm

[Z-Xu-Zhao-Sugiyama, 2025]

X, = argmaxyey o(x ' w,).
o GLB is almost as efficient as linear bandits.

o Logistic bandits: improves upon the best-known existing approach.

o Unbounded rewards: applies to Poisson bandits whose rewards are unbounded.

https://yujie-zhang96.github.io/ One-Pass GLB
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B Our Jointly Efficient Method
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OFU For Logistic Bandits

Step 2: construct high

Step 1: Parameter Estimation _ ,
confidence region

Step 3: select the arm

Q ® For each arm, construct UCB

{(xs, Ts)}gzl » W » » UCB,(x) = maxyyec,(5) 0 (W' x)

N~ ® Select the one with highest UCB
[ ' timat —~ —

historical data estimator W — Wellv, < Be(6) X¢41 = argmax, . y UCB;(x)

https://yujie-zhang96.github.io/ One-Pass GLB



OFU For Logistic Bandits

* Step 2: construct high

Step 1: Parameter Estimation _ ,
confidence region

Step 3: select the arm

Q ® For each arm, construct UCB

{(xs, rs)}2=1 » W » » UCB,(x) = maxyyec,(5) 0 (W' x)

N~ ® Select the one with highest UCB
[ ' timat —~ —

historical data estimator W — Wellv, < Be(6) X¢41 = argmax, . y UCB;(x)

The regret scales with the width of the confidence set Regy o< S7(9)

https://yujie-zhang96.github.io/ One-Pass GLB



Why k appears?

B Parameter Estimation: estimate the w, by maximum likelihood estimation (MLE)

witE = argmanE —HW||2
weR? s=1

https://yujie-zhang96.github.io/ One-Pass GLB


https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

Why k appears?

B Parameter Estimation: estimate the w, by maximum likelihood estimation (MLE)

wi® — argmin Z Cs(

wER s=1

B x appears due to improper uncertainty quantification

—-HVVHz

for binary case: ||w, —

wi v,

<r+/dlogT

Filippl, et al, 2010]: the estimation error of the MLE is proportional to k

= Y21 xx [ is the design matrix

https://yujie-zhang96.github.io/

One-Pass GLB


https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

Why k appears?

B Parameter Estimation: estimate the w, by maximum likelihood estimation (MLE)

witE = argmmZE —HW||2
weR? s=1

B x appears due to improper uncertainty quantification

Filippl, et al, 2010]: the estimation error of the MLE is proportional to k

for binary case: [|w. — wi®|\, Skyv/dlogT V, = YiZlxex{ is the design matrix

LE
lw- = wi|ly, =

https://yujie-zhang96.github.io/ One-Pass GLB


https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

Why k appears?

B Parameter Estimation: estimate the w, by maximum likelihood estimation (MLE)

witE = argmmZE —HW||2
weR? s=1

B x appears due to improper uncertainty quantification

Filippl, et al, 2010]: the estimation error of the MLE is proportional to k

for binary case; llw. — wE|| = <p /dlacT 7 _— V‘t—1¥sx;|' is the design matrix

The same closed-form solution as the least squares,

except for the non-linear term

L y,
t—1 o t—1

(zef (xzss>xsxz) | (z x)
s=1 s=1

MLE
lw.c = Wi ly, =

Vi

https://yujie-zhang96.github.io/ One-Pass GLB


https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

Why k appears?

B Parameter Estimation: estimate the w, by maximum likelihood estimation (MLE)

witE = argmmZE —HW||2
weR? s=1

B x appears due to improper uncertainty quantification

Filippl, et al, 2010]: the estimation error of the MLE is proportional to k

for binary case: [|w. — wi®|\, Skyv/dlogT V, = YiZlxex{ is the design matrix

Why k appears? - the local non-linearity of MLE is not taken into account.

<O (HLW)

Vi

MLE
||W* - Wi HMé -

Vi

https://yujie-zhang96.github.io/ One-Pass GLB


https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

Why k appears?

B Parameter Estimation: estimate the w, by maximum likelihood estimation (MLE)

witE = argmmZE —Hw||2
weR? s=1

B x appears due to improper uncertainty quantification

Filippl, et al, 2010]: the estimation error of the MLE is proportional to k

for binary case: [|w. — wi®|\, Skyv/dlogT V, = YiZlxex{ is the design matrix
approximate (xJ &) }

by the term (x/w,)

‘Faury, et al, 2020]: capture the local curvature of the MLE estimator

1w = Wil i, (w.) SVdlog T Hy(w) = Y52, 6 (x] wa) x.x]

https://yujie-zhang96.github.io/ One-Pass GLB


https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

Why k appears o P
» . d, ‘/‘/ \
] . . ENL0) 7 |
B Parameter Estimation: estimate the w, by mi | _ .. - Il
t—1 /,/ . 7/
: /
wME — arg min ZES (w)| | / s
weR? s=1 /. e
. . " /'/
B x appears due to improper uncertainty quant ‘.\ -
'~ . — ’./‘ i
(Filippl, et al, 2010]: the estimation error of the MLE is pre = [Faury et al,, 2020 Figure 2

for binary case: [|w. — wi®|\, Skyv/dlogT V, = YiZlxex{ is the design matrix

approximate (xJ &) }

by the term (x/w,)

‘Faury, et al, 2020]: capture the local curvature of the MLE estimator

W = Wil g, (w.) SVdlog T Hy(w) = Y52 & (x]w.) x,x]

https://yujie-zhang96.github.io/ One-Pass GLB
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Computational Concern

B Maximum likelihood estimation is computationally inefficient

with = argmanE —||W||2
wER s=1

Per gradient descent step:

* (O(t) time complexity per step

* ((t) storage complexity per step

https://yujie-zhang96.github.io/ One-Pass GLB



Our solution

B Online Estimator: learn the parameter with the online mirror descent

—
(=]
o
o

?t-l—l: :j.s

Zi41 — Wi — nﬁt_lv&(wt)

direction
— i v

gradient update step

*n > 0is the st

W, is used to approximate w,
and it is sufficient

o & 'S r o ro I ®» @
T T T T T T T

o H, =\ + Z’;i o(w) 1 xs)xsx) +no(w, x¢)xix/ ;_5
is a carefully designed matrix to exploit 10 0

the local curvature of the loss function.

https://yujie-zhang96.github.io/ One-Pass GLB



Our solution

B Online Estimator: learn the parameter with the online mirror descent

—
(=]

|
o
o

Wit = argming gy ||w — Zt—l—l”fjta

Projection step

o & 'S r o ro I ®» @
T T T T T T T ) |

-
=)

https://yujie-zhang96.github.io/ One-Pass GLB



Our solution

B Online Estimator: learn the parameter with the online mirror descent

—
(=]

|
o
o

Wit = argming gy ||w — Zt—l—l”fjta

Projection step

Our method is free from storing all historical data

o & 'S r o ro I ®» @
T T T T T T T T

-
=)

https://yujie-zhang96.github.io/ One-Pass GLB



Our solution

B Online Estimator: learn the parameter with the online mirror descent

—
(=]

|
o
o

Wit = argming gy ||w — Zt—l—l”_f_jta

Projection step

Our method is free from storing all historical data

o & 'S r o ro I ®» @
T T T T T T T T

How are the statistical properties? Any loss? n

https://yujie-zhang96.github.io/ One-Pass GLB



Our solution

Main Theorem (informal): With appropriate configur

HWEL — W*HHt < Vdlogt,

t—1

ze 1 and

regularization coefficient A, for each iterationt € [T],| Independent of k

where W3~ is the online estimator and H, = M\ + Y\ o(w ., x.)x.x].

T

https://yujie-zhang96.github.io/

One-Pass GLB



Our solution

Main Theorem (informal): With appropriate configuration of the step size n and
regularization coefficient A, for each iterationt € [T], we have

HWEL — w*HHt < Vdlogt,

oL . . . t—1 .
where W, is the online estimator and Hy = [+ Y, 6(w 1 X)XsX, .

B Jointly efficient estimator for multinomial logistic regression:
® Computationally efficient: (1) computational and storage cost per round

@ Statistically efficient: “k-independent” estimation error

https://yujie-zhang96.github.io/ One-Pass GLB



Our solution

Main Theorem (informal): With appropriate configuration of the step size n and
regularization coefficient A, for each iterationt € [T], we have

HWEL — w*HHt < Vdlogt,
T T

where W3- is the online estimator and H, = X\ + '} 6(w], 1 x)x.x].

B Jointly efficient estimator for multinomial logistic regression:
® Computationally efficient: (1) computational and storage cost per round

@ Statistically efficient: “k-independent” estimation error

oL A Moot ellipsoid confidence set
‘ | Ct (5) - {W €4 | ”W - WHH S Vdlogt } to construct UCB

https://yujie-zhang96.github.io/ One-Pass GLB



Joint Efficient Algorithm

Algorithm 1 GLB-OMD

1: Input: regularization coefﬁ(nent A, probability 9, step size n.

2: Initialize H; = M4 and WOL as any point in W
3: fort=1,....,T do
4: Select the arm by x; = arg maxyey UCB;(x) and receive ;.

online update

. Update H, = H, + nu (Wt [ —— of the estimator

6 Update the estimator wy;; for the next iteration by (6)

7. Update Hyy1 = Hy + i/ (Wi 1 x,)x;x, and construct UCB with
8 Construct UCB by UCB;41(x) = arg maxyec,, , (5) (X' W). an ellipsoid

9: end for

Theorem 2: With appropriate configuration of the step size n and regularization
coefficient A, for each iterationt € [T], we have

Regy S dlog T/ + kd*(log T')?

https://yujie-zhang96.github.io/ One-Pass GLB



Joint Efficient Algorithm

Algorithm 1 GLB-OMD

1: Input: regularization coefﬁ(nent A, probability 9, step size n.

2: Initialize H; = M4 and WOL as any point in W
3: fort=1,....,T do

online update

4: Select thg arm by x; = arg maxyey UCB;(x) and receive ;. h )

5 Upd&te Ht — Ht + N (wt Xt)XtX;r Of the eSTImGTOt"

6: Update the estimator wy;; for the next iteration by (6)

7 Update Hy 1 = Hy + p/ (WP 1 x;)x;x, and construct UCB with
[ best-known O (T /k.) regret bound with O (1) cost per round ]

7 —
Theorem 2: With appropriate configuration of the step size n and regularization
coefficient A, for each iterationt € [T], we have

Regy S dlog T/ + kd*(log T')?

https://yujie-zhang96.github.io/ One-Pass GLB



Summary & Future Work

B Forgeneralized linear bandits, a single gradient step is enough to ensure statistical efficiency

Setting Algorithm Regret Comput. per Round Storage Cost
li OFUL ~
e [Abbasi-Yadkori et al., 2011] O(VT) o) o(1)
GLM-UCB ~ . .
(Filippi et al., 2010] O(xVT) o(t) o(t) Future questions:
GLOC ~
[Jun et al., 2017] O(KVT) o) o) * totally free of kappa?
generalized OFUGLB _ .
linear (GLB) (10 ot al., 2024: Liu ot al., 2024] O(VT/%x) O(t) O(t) * beyond the linear class
RS-GLinCB ~ t
[Sawarni et al., 2024] O(V/T/k.) O((logt)?) O(t)
GLB-OMD /TTw) o) o)

[Z-Xu-Zhao-Sugiyama, 2025]

Thanks!
0L

B More potentials: dueling bandits, RLHF, Function Approximation...

https://yujie-zhang96.github.io/ One-Pass GLB
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