
Generalized Linear Bandits:

Almost Optimal Regret with One-Pass Update

Yu-Jie Zhang, Sheng-An Xu, Peng Zhao, Masashi Sugiyama

Advanced OPT, Dec 26 2025

Outline

◼ Generalized Linear Bandits

◼ Statistical and Computational Efficient Challenge

◼ Jointly efficient Method

◼ Conclusion

https://yujie-zhang96.github.io/ One-Pass GLB3

https://yujie-zhang96.github.io/ One-Pass GLB4

Slides from [Advanced OPT, Lecture 12]

Slides from [Advanced OPT, Lecture 12]

Slides from [Advanced OPT, Lecture 12]

Going Beyond Linear Bandits?

We need more expressive models beyond linear classes

https://yujie-zhang96.github.io/ One-Pass GLB7

customer with preference 𝜽∗selected arm 𝐱𝑡

The feedback is discrete:

Generalized Linear Bandits

https://yujie-zhang96.github.io/ One-Pass GLB8

◼ Linear Bandit: real value feedback

◼ Logistic Bandit: binary feedback with the logit model

Generalized linear bandits: natural exponential-family (NEF) rewards

𝑚 𝑧 : log-partition
function for normalization

ℎ 𝑟 : base measure
shaping the distribution

Generalized Linear Bandits

https://yujie-zhang96.github.io/ One-Pass GLB9

◼ Linear Bandit: real value feedback

Generalized linear bandits: natural exponential-family (NEF) rewards

𝑚 𝑧 : log-partition
function for normalization

◼ Logistic Bandit: binary feedback with the logit model

◼ Poisson Bandits: count-based feedback with unbounded reward!

ℎ 𝑟 : base measure
shaping the distribution

Generalized Linear Bandits

https://yujie-zhang96.github.io/ One-Pass GLB10

Generalized linear bandits: natural exponential-family (NEF) rewards

𝒎 𝒛 : log-partition
function for normalization

NEF properties

Mean:

Variance:

𝒉 𝒓 : base measure
shaping the distribution

another formulation

Generalized Linear Bandits
◼ Goal: select the action 𝐱𝑡 that achieves the maximum expected reward.

https://yujie-zhang96.github.io/ One-Pass GLB11

is
the probability of 𝑟𝑡 = 1

Generalized Linear Bandits
◼ Goal: select the action 𝐱𝑡 that achieves the maximum expected reward.

◼ Equal to minimize the regret:

reward of the best action reward of our algorithm

https://yujie-zhang96.github.io/ One-Pass GLB12

is
the probability of 𝑟𝑡 = 1

When performing
a statistical analysis…

Learn from human preference in dueling bandits and RLHF: Bradley-Terry Model

To help you
analyze your data
statistical….

Why GLB?

Bradley-Terry Model

The issue of 𝜅 appears in many work on dueling
bandits and RLHF: [Saha NeurIPS’21; Zhu et al.,
ICML’23; Das et al., ICML’24 workshop; Pásztor
et al., NeurIPS’24; Scheid et al., arXiv’24]

A B

Reward
model 𝑟(⋅)

Human preference

A

B

Q:

https://yujie-zhang96.github.io/ Online Logistic Bandit and MDP13

Why GLB?

To deal with large-scale MDPs: Function Approximation

For iterations from

• Learner: observes states 𝑠𝑡 ∈ 𝒮
and plays action 𝑎𝑡 ∈ 𝒜

• Environments: generates next
state 𝑠𝑡+1 ∼ ℙ(⋅ |𝑠𝑡 , 𝑎𝑡)

…… …

…

…

…
Markov Decision Process

MNL mixture MDPs
to ensure valid distribution:

[Hwang and Oh et al., 2022; Li-Z-Zhao-Zhou, 2024]

The 𝜅 issue is even more severe in
MNL mixture MDP problem!

https://yujie-zhang96.github.io/ Online Logistic Bandit and MDP14

Outline

◼ Logistic Bandits Problem

◼ Statistical and Computational Efficient Challenge

◼ Our jointly efficient Method

◼ Extension to Logistic Function Approximation

https://yujie-zhang96.github.io/ One-Pass GLB15

GLB: Existing Algorithm

◼ GLM-UCB Algorithm [Filippi et al., NIPS 2010]

➢ Estimator: maximum likelihood estimator

Estimation error:

GLB: Existing Algorithm

◼ GLM-UCB Algorithm [Filippi et al., NIPS 2010]

➢ Estimator: maximum likelihood estimator

Estimation error:

Regret bound:
➢ Arm selection: upper confidence bound

degree of nonlinearity

Statistical Challenge

Example: binary logistic bandit

• Reward function:

The condition number 𝑘𝜇 /𝑐𝜇 could be exponentially large!

https://yujie-zhang96.github.io/ One-Pass GLB18

𝜅 = 1/𝑐𝜇 is 1 divided the minimum slope

similar issue for Poisson bandits!

Statistical Challenge

Example: binary logistic bandit

• Reward function:

• GLM-UCB [Filippi et al., 2010] ensures:

https://yujie-zhang96.github.io/ One-Pass GLB19

The condition number 𝑘𝜇 /𝑐𝜇 could be exponentially large!

𝜅 = 1/𝑐𝜇 is 1 divided the minimum slope

similar issue for Poisson bandits!

Statistical Challenge

Example: binary logistic bandit

• Reward function:

• GLM-UCB [Filippi et al., 2010] ensures:

https://yujie-zhang96.github.io/ One-Pass GLB20

The condition number 𝑘𝜇 /𝑐𝜇 could be exponentially large!

𝜅 = 1/𝑐𝜇 is 1 divided the minimum slope

similar issue for Poisson bandits!

• In the above, the constant

 is exponentially large w.r.t.

Computational Challenge

◼ Maximum likelihood estimation is computationally inefficient

https://yujie-zhang96.github.io/ Online Logistic Bandit and MDP21

Per gradient descent step:

• 𝒪 𝑡 time complexity per step

• 𝒪(𝑡) storage complexity per step

Statistical and Computational Efficiency Concern

https://yujie-zhang96.github.io/ One-Pass GLB22

Nonlinearity of the reward function raises concerns about both statistical
and computational efficiency! •

Statistical and Computational Efficiency Concern

https://yujie-zhang96.github.io/ One-Pass GLB23

•
statistically inefficient computationally efficient

Statistical and Computational Efficiency Concern

https://yujie-zhang96.github.io/ One-Pass GLB24

•

nearly minimax optimal computationally inefficient

• is 1 over

the slope at the optimal arm

Statistical and Computational Efficiency Concern

https://yujie-zhang96.github.io/ One-Pass GLB25

•

• is 1 over

the slope at the optimal arm

Our jointly efficient alg.!

Statistical and Computational Efficiency Concern

https://yujie-zhang96.github.io/ One-Pass GLB26

•

• is 1 over

the slope at the optimal arm

⚬ GLB is almost as efficient as linear bandits.

⚬ Logistic bandits: improves upon the best-known existing approach.

⚬ Unbounded rewards: applies to Poisson bandits whose rewards are unbounded.

Outline

◼ Logistic Bandits Problem

◼ Statistical and Computational Efficient Concern

◼ Our Jointly Efficient Method

◼ Extension to Logistic Function Approximation

https://yujie-zhang96.github.io/ One-Pass GLB27

OFU For Logistic Bandits

https://yujie-zhang96.github.io/ One-Pass GLB28

historical data

Step 1: Parameter Estimation

estimator

Step 2: construct high
confidence region

ı

Step 3: select the arm

⚫ For each arm, construct UCB

⚫ Select the one with highest UCB

ı

OFU For Logistic Bandits

https://yujie-zhang96.github.io/ One-Pass GLB29

historical data

Step 1: Parameter Estimation Step 3: select the arm

estimator

⚫ For each arm, construct UCB

⚫ Select the one with highest UCB

The regret scales with the width of the confidence set

Step 2: construct high
confidence region

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE)

https://yujie-zhang96.github.io/ One-Pass GLB30

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE)

https://yujie-zhang96.github.io/ One-Pass GLB31

◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE)

https://yujie-zhang96.github.io/ One-Pass GLB32

◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE)

https://yujie-zhang96.github.io/ One-Pass GLB33

◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

The same closed-form solution as the least squares,
except for the non-linear term

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE)

https://yujie-zhang96.github.io/ One-Pass GLB34

◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

Why 𝜅 appears? → the local non-linearity of MLE is not taken into account.

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears?

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE)

https://yujie-zhang96.github.io/ One-Pass GLB35

◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

[Faury, et al, 2020]: capture the local curvature of the MLE estimator

approximate ሶ𝜎 𝐱𝑠
⊤𝜉𝑠

by the term ሶ𝜎 𝐱𝑠
⊤𝐰∗

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

[Filippi, et al, 2010]: the estimation error of the MLE is proportional to 𝜅

𝑉𝑡 = σ𝑠=1
𝑡−1 𝐱𝐬𝐱𝒔

⊤ is the design matrix

Why 𝜅 appears

◼ Parameter Estimation: estimate the 𝐰∗ by maximum likelihood estimation (MLE)

https://yujie-zhang96.github.io/ One-Pass GLB36

◼ 𝜅 appears due to improper uncertainty quantification

for binary case:

[Faury, et al, 2020]: capture the local curvature of the MLE estimator

approximate ሶ𝜎 𝐱𝑠
⊤𝜉𝑠

by the term ሶ𝜎 𝐱𝑠
⊤𝐰∗

[Faury et al., 2020 Figure 2]

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

Computational Concern

◼ Maximum likelihood estimation is computationally inefficient

https://yujie-zhang96.github.io/ One-Pass GLB37

Per gradient descent step:

• 𝒪 𝑡 time complexity per step

• 𝒪(𝑡) storage complexity per step

◼ Online Estimator: learn the parameter with the online mirror descent

Our solution

gradient update step

• 𝜂 > 0 is the step size

•
 is a carefully designed matrix to exploit
 the local curvature of the loss function.

https://yujie-zhang96.github.io/ One-Pass GLB38

𝐰𝑡 is used to approximate 𝐰∗
and it is sufficient

◼ Online Estimator: learn the parameter with the online mirror descent

Our solution

Projection step

https://yujie-zhang96.github.io/ One-Pass GLB39

Our solution

Projection step

Our method is free from storing all historical data

◼ Online Estimator: learn the parameter with the online mirror descent

https://yujie-zhang96.github.io/ One-Pass GLB40

Our solution

Projection step

Our method is free from storing all historical data

◼ Online Estimator: learn the parameter with the online mirror descent

https://yujie-zhang96.github.io/ One-Pass GLB41

How are the statistical properties? Any loss?

Our solution

https://yujie-zhang96.github.io/ One-Pass GLB42

Main Theorem (informal): With appropriate configuration of the step size 𝜂 and

regularization coefficient 𝜆, for each iteration 𝑡 ∈ 𝑇 , we have

where is the online estimator and

Independent of 𝜅

Our solution

https://yujie-zhang96.github.io/ One-Pass GLB43

Main Theorem (informal): With appropriate configuration of the step size 𝜂 and

regularization coefficient 𝜆, for each iteration 𝑡 ∈ 𝑇 , we have

where is the online estimator and

◼ Jointly efficient estimator for multinomial logistic regression:

⚫ Computationally efficient: 𝒪 1 computational and storage cost per round

⚫ Statistically efficient: “𝜅-independent” estimation error

Our solution

https://yujie-zhang96.github.io/ One-Pass GLB44

Main Theorem (informal): With appropriate configuration of the step size 𝜂 and

regularization coefficient 𝜆, for each iteration 𝑡 ∈ 𝑇 , we have

where is the online estimator and

◼ Jointly efficient estimator for multinomial logistic regression:

⚫ Computationally efficient: 𝒪 1 computational and storage cost per round

⚫ Statistically efficient: “𝜅-independent” estimation error

ellipsoid confidence set
to construct UCB

Joint Efficient Algorithm

online update
of the estimator

https://yujie-zhang96.github.io/ One-Pass GLB45

construct UCB with
an ellipsoid

Theorem 2: With appropriate configuration of the step size 𝜂 and regularization

coefficient 𝜆, for each iteration 𝑡 ∈ 𝑇 , we have

Joint Efficient Algorithm

online update
of the estimator

https://yujie-zhang96.github.io/ One-Pass GLB46

construct UCB with
an ellipsoid

Theorem 2: With appropriate configuration of the step size 𝜂 and regularization

coefficient 𝜆, for each iteration 𝑡 ∈ 𝑇 , we have

best-known ෨𝒪(𝑇/𝜅∗) regret bound with 𝒪(1) cost per round

◼ For generalized linear bandits, a single gradient step is enough to ensure statistical efficiency

◼ More potentials: dueling bandits, RLHF, Function Approximation…

Summary & Future Work

https://yujie-zhang96.github.io/ One-Pass GLB47

Thanks!
Q&A

Future questions:

• totally free of kappa?

• beyond the linear class

	Slide 2: Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update
	Slide 3: Outline
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Going Beyond Linear Bandits?
	Slide 8: Generalized Linear Bandits
	Slide 9: Generalized Linear Bandits
	Slide 10: Generalized Linear Bandits
	Slide 11: Generalized Linear Bandits
	Slide 12: Generalized Linear Bandits
	Slide 13: Why GLB?
	Slide 14: Why GLB?
	Slide 15: Outline
	Slide 16: GLB: Existing Algorithm
	Slide 17: GLB: Existing Algorithm
	Slide 18: Statistical Challenge
	Slide 19: Statistical Challenge
	Slide 20: Statistical Challenge
	Slide 21: Computational Challenge
	Slide 22: Statistical and Computational Efficiency Concern
	Slide 23: Statistical and Computational Efficiency Concern
	Slide 24: Statistical and Computational Efficiency Concern
	Slide 25: Statistical and Computational Efficiency Concern
	Slide 26: Statistical and Computational Efficiency Concern
	Slide 27: Outline
	Slide 28: OFU For Logistic Bandits
	Slide 29: OFU For Logistic Bandits
	Slide 30: Why kappa appears?
	Slide 31: Why kappa appears?
	Slide 32: Why kappa appears?
	Slide 33: Why kappa appears?
	Slide 34: Why kappa appears?
	Slide 35: Why kappa appears?
	Slide 36: Why kappa appears
	Slide 37: Computational Concern
	Slide 38: Our solution
	Slide 39: Our solution
	Slide 40: Our solution
	Slide 41: Our solution
	Slide 42: Our solution
	Slide 43: Our solution
	Slide 44: Our solution
	Slide 45: Joint Efficient Algorithm
	Slide 46: Joint Efficient Algorithm
	Slide 47: Summary & Future Work

