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Preview

* Reducing offline opt. as via (stabilized) online-to-batch conversion
_ N Z Dgm1 XsXs
TOTN e VI A
> Vfi(x:) £ V(%) > (AOpt lec4&9)
Offline function Vf(xe) Conversion e Online algorithm
Reg ' (x*)

Convergence rate bounded by: f(Xr) — f(x7) <

Ar  sumof weights

» G-Lipschitz case: O <GTZT)>

» L-Smooth case: O (LT—D;) by 00GD: O(LD?) regret with ay = ¢, Ap =~ T?

> Unknown case...

e.g., an interpolation between Ta r g e t:

smoothness and non-smoothness

ONE (online) algorithm, adapt to
an unknown level of smoothness

This is called “universality” in offline optimization [Nesterov, 2015]
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Preview

* We aim at universality by reducing offline opt. as

VT
» [-Smooth case: O (LT—QQ)

» G-Lipschitz case: O (G—D)

> Unknown case...

e.g., an interpolation between Ta r g e t.'

smoothness and non-smoothness

ONE (online) algorithm, adapt to
an unknown level of smoothness

This is called “universality” in offline optimization [Nesterov, 2015]

* A function class the algorithm will adapt to: Holder Smoothness

G-Lipschitz: L, = 2G,v =0

> (L,,v)-Hoélder Smooth: ||[Vf(x)—Vfy)| <L, ||x-y||" = L-Smooth: L, = L.v = 1

L, >0,vel0,1]
L,D'tv What’s the online algorithm
Lp") by OCO:

> Universal optimal rate: O ( R E 5 and what’s the regret bound?
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Contents

* Review of AOpt-lec9: Acceleration via online OPT
* Online OPT: Universal gradient-variation online learning

* Our results: Universal offline OPT via GV online adaptivity
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Review of AOpt-lec9: Acceleration

* Recall that accelerated rates can be achieved for smooth convex optimization
using Nesterov’s Accelerated GD, and also using OOGD w. O2B conversion

e Stabilized Online-to-Batch Conversion [cutkosky, 2019]

Lemma 1. Suppose f : X — R is a convex function with a convex and compact
set X. Then, for the following output with weighted average (regardless of how the
{x;}L_, are generated): X; = A% S asx,, with Ay 2 3o, and oy > 0, we

have the following online-to-batch conversion:

_ o i (e Vf(Re), % — x*) o Reg(x*)
il == == Arp - ZT " sum of weights

Set weights o, = ¢ for all t € [T], then Ay = ©(T?).
() « We aim to use online algorithm ensuring (1) regret.

Offline function | Vf(X:) | Optimistic OGD with a suitable optimism design!
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Review of AOpt-lec9: Acceleration

* Recall that accelerated rates can be achieved for smooth convex optimization
using Nesterov’s Accelerated GD, and also using OOGD w. O2B conversion

* We achieve an O(1) regret using Optimistic OGD

C . : : 1 .
Optimistic online learning;: x; = arg minn (M,,x) + 5 1% — %4 |2
— ~ xeX
Vi) = aV &), M=,V f (%) . - Lo o
(with x; to be determined) i+l = ar}g{elilmn <vft (Xt)’ X> T 9 HX - XtHQ

T T D2

Y filx) =D fi(w) < o + 772 |V f(Re) — V(X3 —— Z 1 — %15

t=1 =

D2 T 1 T
(L-smoothness) < % + n;a?lﬁ X — itHg _E ; %101 — %3

optimism design: approximate X; as possible as we can
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Review of AOpt-lec9: Acceleration

* Recall that accelerated rates can be achieved for smooth convex optimization
using Nesterov’s Accelerated GD, and also using OOGD w. O2B conversion

* We achieve an O(1) regret using Optimistic OGD

Optimism design: | by def x; = L S ax, + Xt), = = _

472
ensure that (7701‘47:%[/ — ﬁ) < 0 with (e = — n < ﬁ

> Therefore, by setting n = -, we have Reg$ < 2LD? = O(1).

But not universal: Require a prior knowledge of smoothness parameter
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Universal Gradient-variation OL

* Motivation: Accelerated OPT via gradient-variation online learning
> Universal OPT via universal gradient-variation online learning?
* We have learned gradient-variation OL in AOpt lec8:

i.e., adapts to an unknown level of smoothness

Not universal!

Theorem 4 (Gradient Variation Regret Bound). Assume that w(x) = 2||x[|3 and
CeLL
Proof. Finally, putting three terms together yields N — min and M t —
T |{4£ | \V/ 1—|—Vt—1 }
vern (2) €23 m LIP3t + 4DVIH Vi + (1D + 167 any comparator u € X is
term (b) < = max{4LD, D\/1+ Vi'}
’ / \

term (c) > E%\M (n =min{sp, =2—=} I fact we do not need to do this clipping with L!

> Regret; = term (a) + term (b) — tern (c)

2 . .. .
.1)||5 1s the empirical estimates of V;.
<5D\V1+Vr+ (4D +1)G*+2LD =01+ Vr). O

~ Advanced Optimization (Fall 2025) Lecture 8. Adaptive Online Optimization 101 ¢
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Universal Gradient-variation OL

* Motivation: Accelerated OPT via gradient-variation online learning
—> Universal OPT via universal gradient-variation online learning?

i.e., adapts to an unknown level of smoothness

* In OOGD, we do not need to do clipping with L!

Algorithm: OOGD with step size Kavis et al. [2019)] _
D —> We can perform in analysis

Tt = =
VI s (e) = Mo |12 . . : : .
Since step size is non-increasing, there exist some t:
. . . . l ) ) )
Consider the previous analysis: cancel when 7, < 7 O ¢ > 7: step size is small enough for cancellation

Proof. Finally, putting three terms together yields Vi > T, N < %
T . . .
tern (a) < Qng + 4D+ Vi + (4D + 1)G2 O ¢ < 1: step size is still large, but...
t=2 Ny = D > 1
term (b) < 1Hlax{élLD,D\/l—|—VT} ! \/Z;;11||st(xs)—Ms||2 — L
T—1 2
o (6)2 3 el (- i 2 =D VI IVAGe) - M| < LD

Sum of empirical GV is small!
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Universal Gradient-variation OL

* Motivation: Accelerated OPT via gradient-variation online learning
—> Universal OPT via universal gradient-variation online learning?

i.e., adapts to an unknown level of smoothness

* In OOGD, we do not need to do clipping with L!

Algorithm: OOGD with step size Kavis et al. [2019)] _
D —> We can perform in analysis

= VI NIV s (%) — M, |12

Since step size is non-increasing, there exist some 7:

T T
S D? 1 . o .
fegr 5 2 Vi) = MtHg i nre1 E : — ||lx¢ — x¢41][5 O ¢ > 1: step size is small enough for cancellation
t=1

21 Vi>T, < T

T 9 O ¢ < 1: step size is still large, but...

T
S D IV filxe) = Milly = 5—lIxe — x4 13 —
\ tzzl i z 2n; \/25:11 IV fs(xs) — MSH2 <LD

t=1

L Similar analysis for
7.2 Mt§+DJ ST VA ) DRIV 5 lxe = xealdi Do ysis f

=l — 2 Holder Smoothness

t=1

<!D

i ™M

1

\
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Universal Gradient-variation OL

* Motivation: Accelerated OPT via gradient-variation online learning
—> Universal OPT via universal gradient-variation online learning?

i.e., adapts to an unknown level of smoothness

* Universal GV regret under Holder smoothness

Key technique: regarding Holder smoothness as [Devolder et al., 2014]

Lemma 1. Suppose the function f is (L, ,v)-Holder smooth. Then, for any|d > 0, denoting by
v—1 2
L =67 L™, it holds that for all x,y € R%:
IVf(x) = VI(y)* < L|x - y|* +4Ld. (8)

The rest is the same as before... (and a virtual clipping really helps because this L only exists in analysis)

Algorithm: OOGD with step size Regr 5 D/ Vp + LD? + DV LT

B D
T IV o) ML 1 G-Lip.: L, = 2G,v = 0, O(GDV/T)
1+rmizy -G-L1p.s Ly = 26,V = U,
O (D V VT T LVD 1z ) - L-smo.: L, = L,v =1,0(D+/Vr)

( tuning%)

Yuheng Zhao (Nanjing University) We can apply this universality to offline optimization! 1,



Our Results

* Motivation: Accelerated OPT via gradient-variation online learning
—> Universal OPT via universal gradient-variation online learning?

i.e., adapts to an unknown level of smoothness

* Gradient-variation regret
under Holder smoothness

* Implications to offline OPT

 Take aways:

v' Accelerated optimization can be
understood by gradient-variation OL

v We can achieve universality in OL,
then

(and maybe not only
for universality)

Yuheng Zhao (Nanjing University)

Our regrets interpolate between the optimal guarantees in smooth and non-smooth regimes

——————————————————————————————————————————————————————————————————————————————————————————

. AS.C. REGr <O <

A A

1 1 1—y
~log Vr + ~L2(log T)1+—v>

-smooth (v =1) O G log VT)

1 1
- non-smooth (v = 0) O 5 log T> |

__________________________________________________________________________________________

Stochastic  ,p < (9( L, )

Convex

-smooth (v =1) 0O (1/7?)
-non-smooth (v = 0) O (1 /\/’f)

For the first time, we provide a universal method that
- achieves accelerated convergence in the smooth regime

- maintaining near-optimal convergence in the non-smooth one

solving open problem
since [Levy, 2017]

Deterministic
A-S.C.

GAarr <O (% min {exp (

=T

6k

). 2})
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