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Stochastic Bandits

Exploration vs Exploitation

• Exploitation: pull the best arm so far, for high reward

• Exploration: should try some other arms, they may be better

• Multi-Armed Bandits (MAB)
A player is facing 𝐾𝐾 arms, and each time he pulls one arm and then receives a reward:

Arm 1

Arm 2

Arm 3

X1,1 X1,2 X1,4 X1,56

X1,1 7 X1,4 3X1,3

10 X1,2 2 X1,5X1,3

• Stochastic: rewards of the 𝑖𝑖-th arm are i.i.d. with unknown mean 𝜇𝜇𝑖𝑖
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Stochastic Linear Bandits
• Stochastic contextual bandit with a parametric model

Stochastic Linear Bandits

 Linear reward model: stochastic noise

 Goal: minimize the regret cumulative reward of the 
best offline model
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Stochastic Linear Bandits (SLB)
LinUCB

Step2. arm selection

Step1. parameter estimation
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Further Application of SLB
Linear MDPs

Algorithm: LSVI-UCB
Step1. Parameter estimation with Least Squares

Step2. Action selection with UCB
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Heavy-tailed Linear Bandits
• Linear reward with sub-Gaussian noise

In many scenarios, 
the noise can be 

heavy-tailed !

• Linear bandits with heavy-tailed noise
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Challenge

Key difficulty: the large deviation due to heavy-tailed noise. 

Parameter estimation

Basic idea: reduce the impact of outliers
• Truncation: directly removing data pair                if     is extreme data;

• Median-of-Means: repeat sampling same arm to reduce uncertainty; 

• Robust loss function: reduce penalty for large deviation  



11Jing Wang (Nanjing University)

Existing Methods

• Robust loss function
Squared loss

Huber loss

• linear penalty for outliers
• squared penalty for inliers

Median-of-Means require repeated pulling and fixed arm set

Limitation of truncation and Median-of-Means

•
•
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Statistical Optimality
• HEAVY-OFUL Algorithm

 Arm selection: upper confidence bound

 Estimator: adaptive Huber regression
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Efficiency Concern
• Adaptive Huber regression

Require one-pass algorithm for Heavy-tailed Linear Bandits !

• Least squares (closed-form solution) One-pass update
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Online Mirror Descent
• OMD is a powerful online learning framework to optimize regret.

More details of OMD can be found in Lecture 6 of 
Advanced Optimization Course 2024 Fall

https://www.pengzhao-ml.com/course/AOpt2024fall/

We here use OMD framework as a statistical estimation tool!

https://www.pengzhao-ml.com/course/AOpt2024fall/
https://www.pengzhao-ml.com/course/AOpt2024fall/
https://www.pengzhao-ml.com/course/AOpt2024fall/
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Hvt-UCB
• OMD-based one-pass estimator

Computational Efficiency

• Upper confidence bound
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Estimation Error

MLE OMD

Hvt-UCBHEAVY-OFUL
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Instant-dependent Guarantee

•
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Main Result
• Our work improves upon previous works without additional assumptions

• Statistical efficiency: maintain the optimal and instant-dependent regret bound

• Computational efficiency: reduce the per round time and storage cost
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Estimation Error Analysis
• Estimation error decomposition

Recursive normalization factor tunning

Denoised loss: 

Ensure quadratic penalty for denoised data
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Estimation Error Analysis
• Stability term

• Generalization gap

Challenge of using one-pass OMD to approximate full-batch MLE

Challenge of handling Huber loss and heavy-tailed noise

Canceled with negative termConcentration technique

1-dimension self-normalized 
concentration

Concentration technique
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Experimental Results

(a) Student t noise : regret 

(b) Student t: running time (d) Gaussian noise: regret 

(c) Pareto noise: regret (e) Varying arm set

(f) Varying 
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Potential Extension
• Online Linear MDP

• Online Adaptive Control

Known feature map
Heavy-tailed noise

State transition system

Require: reward estimation under time-varying feature map   

Realizable reward

Require: system identification with finite-sample guarantee  

Heavy-tailed noise
Known state and action
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Conclusion
• Problem: heavy-tailed linear bandits

• Approach: Huber loss-based one-pass algorithm

• Employing OMD with tailored local norm to replace the MLE in SLB

• Achieve the optimal and variance-aware regret bound with O(1) cost

Open Questions
• How to handle unknown variance     while maintaining current guarantee

•
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Joint work with

Jing Wang, Yu-Jie Zhang, Peng Zhao, and Zhi-Hua Zhou. Heavy-Tailed
Linear Bandits: Huber Regression with One-Pass Update, ICML2025.

Thanks!

Yu-Jie Zhang (RIKEN AIP) Zhi-Hua Zhou (NJU)Peng Zhao (NJU)
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