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Stochastic Bandits
* Multi-Armed Bandits (MAB)

A player is facing K arms, and each time he pulls one arm and then receives a reward:

Arm 1 X1’1 X1}2 6 X1,4 X1,5
Arm 2 10 X192 X1,3 2 X1,5
Arm 3 X1,1 7 X1,3 X1,4 3

 Stochastic: rewards of the i-th arm are i.i.d. with unknown mean y;

Exploration vs Exploitation

 Exploitation: pull the best arm so far, for high reward

* Exploration: should try some other arms, they may be better
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Stochastic Linear Bandits

* Stochastic contextual bandit with a parametric model

Stochastic Linear Bandits

Ateachroundt=1,2,---,7T

(1) the learner first chooses an arm X; € X C RY;

(2) and then environment reveals a reward r; € R.

. I . .
> Linear reward model: 7 = X, 0, +1; stochastic noise

. . . . | —|— [ _|_
» Goal: minimize the regret REGy =max ) X «9*: — E Xy 04 cumulative reward of the
! t=1 I t=1 best offline model
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Stochastic Linear Bandits (SLB)

LinUCB
fort =1to7T do

Play X; and observe reward r; Stepl. parameter estimation

= 7y . 2
Parameter estimation ;. of 6, by Least Squares 0:+1 = argmingcga AN + >y (X0 —r5)

Construct Upper Confidence Bound j; Step2. arm selection
||9t+1 - H*HVt < bt

HxHVt_l1 : the degree of exploration of arm x

Select Xt_|_1 = argmaxy - y {XT9t+1 + Bt”X”Vt—l}

end for

Theorem 1. The regret of LinUCB is bounded with probability at least 1 — 1/T", by

REGr < O (d\/f) .
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Further Application of SLB

Linear MDPs * ¢:S x A+ R*is known feature map
ro(z,a) = (¢(z,a),07) o {0} }1, is the unknown reward parameter

Pr(- | z,a) ={@(z,a), py () o {u;(-)}L, is the unknown transition parameter

Algorithm: LSVI-UCB V(z.a.h) € 8 x Ax [H]|, wehave O} (x,a) = (d(x,a), w]).
Stepl. Parameter estimation with Least Squares

k—1 2
W), = argminz [rh (x7,,a7,) + max Qn+1 (2)1,0) —w' ¢ (2], ap)| + A|w|?

d
WERT 1

Step2. Action selection with UCB ap = argmax,. 4 W, ¢(zf,a) + Bl ¢(z}, a) |-
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Heavy-tailed Linear Bandits

» Linear reward with sub-Gaussian noise r: = X, 6, +n;

Assumption 1 (sub-Gaussian noise). The noise 7, is con-
ditionally R-sub-Gaussian for some R > 0 i.e.

In many scenarios,
the noise can be
heavy-tailed !

)\2R2
VA € RaE [eXp ()‘nt) | Xl:tanlzt—l] S exXp < 9 ) .

* Linear bandits with heavy-tailed noise

Assumption 2 (heavy-tailed noise). The noise {7;, F;} is is martingale difference
(E [n: | F¢+—1] = 0), and satisfies that for some € € (0, 1], v > 0,

B |l

Ft—1i| S th—i_g.
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Challenge

t—1
Parameter estimation 0; — arg min \||6||3 + Z (X - frs)2
o cRd s—1

Key difficulty: the large deviation due to heavy-tailed noise.

Bandits With Heavy Tail
en Bubeck, Nicold Cess-Bianch, and Gébar Lugos, Member, IEEE

Basic idea: reduce the impact of outliers

* Truncation: directly removing data pair { X, rs } if r'sis extreme data;

* Median-of-Means: repeat sampling same arm to reduce uncertainty;

* Robust loss function: reduce penalty for large deviation | X, 0§ — r].
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Existing Methods

Limitation of truncation and Median-of-Means

. . 1 .
e Truncation relies on E {|rt| e ]—‘t_l] < u, cannot recover noiseless case @

* Median-of-Means require repeated pulling and fixed arm set @

 Robust loss function

fT(I) — {wz

2
T|z| = %5

Definition 1 (Huber loss). Huber loss is defined as

if |x| < 7T,
if |x| > T,

where 7 > 0 is the robustification parameter.

Jing Wang (Nanjing University)

Squared loss

Huber loss

* linear penalty for outliers
* squared penalty for inliers
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Statistical Optimality
 HEAVY-OFUL Algorithm

» Estimator: adaptive Huber regression | With z,() = = _JXST ® Huber loss is defined as
t—1

~ DA 2
91: = argm1n§||6’||§ —|— Zﬁs(e> E (9) B {23(9) lf ‘23(6)’ S T,

0O o—1 5
Ts|25(0)| — = if 25(0)] > 7s.

» Arm selection: upper confidence bound

X; = arg max {XT@ + Be—1]|x]|y -1 }
xXeX t=1

Theorem 2. The regret of HEAVY-OFUL is bounded with probability at least 1 — 1/T, by

1

REGT < O <dT1+e) .
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Efficiency Concern

* Adaptive Huber regression

. A ’
0, = are min—||0||2 + /(0
= argminZ 0] + 3 £.(6)

s=1

* Least squares (closed-form solution)

t—1
0, =V,o} (Z rsXs> Vici=M+) XX/

s=1

L1

Require one-pass algorithm for Heavy-tailed Linear Bandits !

Jing Wang (Nanjing University)

t—1

s=1

The cost at round ¢

Computational cost: O(tlog T')
Storage cost: O(t)

One-pass update
Vi =Vioi + Xo X,
Ly = Lip1 + T Xy
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Online Mirror Descent

* OMD is a powerful online learning framework to optimize regret.

X411 = arg min {nt(x, V fi(xt)) + Dy (x, Xt>}
xcX

where Dy (x,y) = ¢(x) = ¢(y) = (Vi (y),x —y) is
the Bregman divergence.

§t+1 — ar@gergin {<9, Vi, (@;>> + Dy, (9, @;)}
X

where 1,(6) = §[16]%, with V; £ A7 + LY,

_l_
SXS
2
O-S

A Summary of OMD Deployment

* Our previous mentioned algorithms can all be covered by OMD.

Algo. OMD/proximal form P(+) M Regret
. 1 :
OSDOr | sy = ang mimme e Vi) + 5 x| |xI3 | & | 0D
xEX
. 1
sgc();rglf}(l)i. X1 = aI‘)E(;Elg(HH”]t(& V fi(xe)) + ) l[x — Xng HXH% % O(% logT)
ONS for _ , L2 2 1 d
DONSIor [xees =g it D)+ x| e, | | O oe)
N
Helglgifor Xi41 = arg iﬂin m(x, Vfi(xe)) + KLx[x0) | S 2 log oy /2N | O(v/Tlog N)
XEAN 1=1

vvvvv d Optimization (Fall 2024)

Lecture 6. Online Mirror Descent 64

We here use OMD framework as a statistical estimation tool! More details of OMD can be found in Lecture 6 of

Jing Wang (Nanjing University)

Advanced Optimization Course 2024 Fall
https://www.pengzhao-ml.com/course/AOpt2024fall/
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Hvt-UCB

* OMD-based one-pass estimator

6A)t 41 = argmin {<97 VY, (@\t) > + Dy, (97 @\t) } Computational Efficiency
7ee | b1 =B - vt (5)
bo(0) = 3160]12, with V, & AT+ L300, Xeo Orir = argmin [0~ B
s € t

» Upper confidence bound

Lemma 1. (Estimation error). If oy, 74, 7o are set as where w;, = —— || 2t and let the step
velloe flvy
size o = 4, then with probability at least 1 — 46,Vt > 1, we have ét-l—l — 0, < By with
Vi

2

2T 1—c L?T
Bt é 107 log TTOtQ(H_a) + \/)\ (2 + 452), Where K é dlog (]. —+ —)\d>
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Estimation Error

HEAVY-OFUL Hvt-UCB
MLE aregerging 16112 + ;;:68(0) OMD arg min {(6.ve () +Dy, (0.6,)}

Comp. cost per round O(1)

~ 1—e
Estimation error O (t 2(1+e) )

Theorem 3. The regret of Hvt-UCB is bounded with probability at least 1 — 1/, by

Jing Wang (Nanjing University) 17



Instant-dependent Guarantee

» When 14 is time-varying and known, Hvt-UCB can further achieve

Jing Wang (Nanjing University) 18



Main Result

* Our work improves upon previous works without additional assumptions

* Statistical efficiency: maintain the optimal and instant-dependent regret bound

* Computational efficiency: reduce the per round time and storage cost

Method Algorithm Regret Comp. cost Remark
MENU [Shao et al., 2018] ~ 1 O(logT) fixed arm set and
MOM O (dT e )
CRMM [Xue et al., 2023] O(1) repeated pulling
_ TOFU [Shao et al., 2018] B 1 O(t) absolute moment
Truncation O (dT 1+€) .
CRTM [Xue et al., 2023] O(1) El|lre] ¢ | Fic1] < u
Huber HEAVY-OFUL [Huang et al., 2023] | O (dTQ(HE) \/Zt Vit dT2(1+€)> O(tlogT) instance-dependent bound
Huber Hvt-UCB (Corollary 1) ©) (dT 1+€) O(1) Wl | Pan] £
Huber Hvt-UCB (Theorem 1) O (d 2o \/Zt Vit dT2(1+€)) O(1) instance-dependent bound

Jing Wang (Nanjing University) 19



Estimation Error Analysis

* Estimation error decomposmon

-0, <2 GR@) - 5 (3) -0+ e (0]

v -~

Ht—i—l

vl

7

generalization gap term stability term

Gs

\ - 7

Denoised loss: £+(0) = 5 (XT (0. —0) /Ut) (— — 1)

negatlve term

Ensure quadratic penalty for denoised data Recursive normalization factor tunning

A3y |
S 5 Ot = IMaX § V¢, Omin, '._72__1115 HXtHV_l
Toy/at T =

Jing Wang (Nanjing University) 20
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Estimation Error Analysis

* Stability term Challenge of using one-pass OMD to approximate full-batch MLE

~ 2
L 2 2 t T T 2
R /rls XS XS 9* - XS 98 XS
2 g min-< |—|,Ts — + 2 g —
S:1 0-8 O-S Vs_l S:l O-S O-S Vs_l
stochastic term deterministic term
Concentration technique Canceled with negative term

* Generalization gap Challenge of handling Huber loss and heavy-tailed noise

t ~ R R R t .
\221 <ws (9) VL, (0,) — VI, (9) 0. — 9*>J+\2 ; <—w8 6.),0, — 9*>

J/

WV VO

Huber-loss term self-normalized term
Concentration technique 1-dimension self-normalized
concentration

Jing Wang (Nanjing University) 21



Experimental Results
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Potential Extension

* Online Linear MDP

< K feature ma
Realizable reward Rn(s,a) = (¢(s,a),0},) + en(s; a) NOWR feattire map

\

Require: reward estimation under time-varying feature map

Heavy-tailed noise

* Online Adaptive Control py

Known state and action

iti o1 = Azy + Bug + w
State transition system i1 t + Dug + Wiy Heavy-taile 31 Hoise

L

Require: system identification with finite-sample guarantee

Jing Wang (Nanjing University) 23
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Conclusion

* Problem: heavy-tailed linear bandits

* Only (1 4 ¢)—moment of noise is finite with € € (0,1)

* Approach: Huber loss-based one-pass algorithm
* Employing OMD with tailored local norm to replace the MLE in SLB

* Achieve the optimal and variance-aware regret bound with O(1) cost

Open Questions

* How to handle unknown variance v; while maintaining current guarantee

Jing Wang (Nanjing University) 25



Joint work with

Yu-Jie Zhang (RIKEN AIP) Peng Zhao (NJU) Zhi-Hua Zhou (N]JU)

B Jing Wang, Yu-Jie Zhang, Peng Zhao, and Zhi-Hua Zhou. Heavy-Tailed
Linear Bandits: Huber Regression with One-Pass Update, ICML2025.

Thanks!
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