

Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update

Jing Wang

LAMDA Group

School of Artificial Intelligence
Nanjing University

Outline

- Stochastic Linear Bandits
- Heavy-tailed Linear Bandits
- Our Results
- Conclusion

Outline

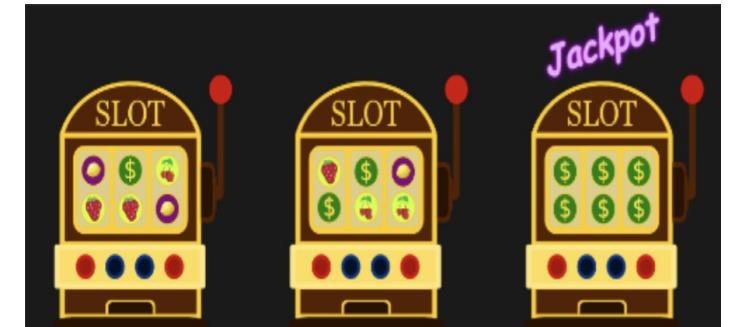
- Stochastic Linear Bandits
- Heavy-tailed Linear Bandits
- Our Results
- Conclusion

Stochastic Bandits

- Multi-Armed Bandits (MAB)

A player is facing K arms, and each time he pulls one arm and then receives a reward:

Arm 1	$X_{1,1}$	$X_{1,2}$	6	$X_{1,4}$	$X_{1,5}$
Arm 2	10	$X_{1,2}$	$X_{1,3}$	2	$X_{1,5}$
Arm 3	$X_{1,1}$	7	$X_{1,3}$	$X_{1,4}$	3



- Stochastic: rewards of the i -th arm are i.i.d. with unknown mean μ_i

Exploration vs Exploitation

- *Exploitation*: pull the best arm so far, for high reward
- *Exploration*: should try some other arms, they may be better

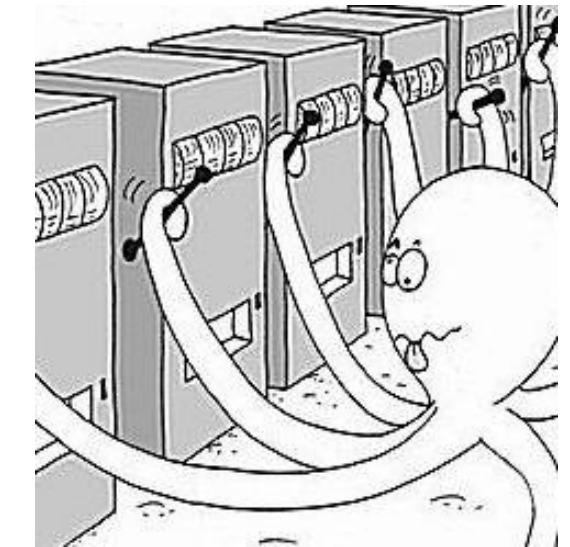
Stochastic Linear Bandits

- Stochastic contextual bandit with a parametric model

Stochastic Linear Bandits

At each round $t = 1, 2, \dots, T$

- (1) the learner first chooses an arm $X_t \in \mathcal{X} \subseteq \mathbb{R}^d$;
- (2) and then environment reveals a reward $r_t \in \mathbb{R}$.



➤ Linear reward model: $r_t = X_t^\top \theta_* + \eta_t$ **stochastic noise**

➤ Goal: minimize the regret $\text{REG}_T = \max_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T \mathbf{x}^\top \theta_* - \sum_{t=1}^T X_t^\top \theta_*$

$$\max_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T \mathbf{x}^\top \theta_* - \sum_{t=1}^T X_t^\top \theta_*$$

*cumulative reward of the
best offline model*

Stochastic Linear Bandits (SLB)

LinUCB

for $t = 1$ to T do

Play X_t and observe reward r_t

Parameter estimation $\hat{\theta}_{t+1}$ of θ_* by **Least Squares**

Construct **Upper Confidence Bound** β_t

Select $X_{t+1} = \arg \max_{\mathbf{x} \in \mathcal{X}} \left\{ \mathbf{x}^\top \hat{\theta}_{t+1} + \beta_t \|\mathbf{x}\|_{V_t^{-1}} \right\}$

Step1. parameter estimation

$$\hat{\theta}_{t+1} = \arg \min_{\theta \in \mathbb{R}^d} \lambda \|\theta\|_2^2 + \sum_{s=1}^t (X_s^\top \theta - r_s)^2$$

Step2. arm selection

$$\|\hat{\theta}_{t+1} - \theta_*\|_{V_t} \leq \beta_t$$

$\|\mathbf{x}\|_{V_t^{-1}}$: the degree of exploration of arm \mathbf{x}

end for

Theorem 1. *The regret of LinUCB is bounded with probability at least $1 - 1/T$, by*

$$\text{REG}_T \leq \tilde{\mathcal{O}} \left(d\sqrt{T} \right).$$

Further Application of SLB

Linear MDPs

$$r_h(x, a) = \langle \phi(x, a), \theta_h^* \rangle$$

$$\mathbb{P}_h(\cdot \mid x, a) = \langle \phi(x, a), \mu_h^*(\cdot) \rangle$$

- $\phi : \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}^d$ is known feature map
- $\{\theta_h^*\}_{h=1}^H$ is the **unknown** reward parameter
- $\{\mu_h^*(\cdot)\}_{h=1}^H$ is the **unknown** transition parameter

Algorithm: LSVI-UCB $\forall (x, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]$, we have $Q_h^\pi(x, a) = \langle \phi(x, a), \mathbf{w}_h^\pi \rangle$.

Step1. Parameter estimation with Least Squares

$$\hat{\mathbf{w}}_h = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{\tau=1}^{k-1} \left[r_h(x_h^\tau, a_h^\tau) + \max_{a \in \mathcal{A}} Q_{h+1}(x_{h+1}^\tau, a) - \mathbf{w}^\top \phi(x_h^\tau, a_h^\tau) \right]^2 + \lambda \|\mathbf{w}\|^2$$

Step2. Action selection with UCB $a_h^k = \operatorname{argmax}_{a \in \mathcal{A}} \hat{\mathbf{w}}_h^\top \phi(x_h^k, a) + \beta \|\phi(x_h^k, a)\|_{\Lambda_h^{-1}}$

Outline

- Stochastic Linear Bandits
- Heavy-tailed Linear Bandits
- Our Results
- Conclusion

Heavy-tailed Linear Bandits

- Linear reward with sub-Gaussian noise $r_t = X_t^\top \theta_* + \eta_t$

Assumption 1 (sub-Gaussian noise). The noise η_t is conditionally R -sub-Gaussian for some $R \geq 0$ i.e.

$$\forall \lambda \in \mathbb{R}, \mathbb{E} [\exp (\lambda \eta_t) \mid X_{1:t}, \eta_{1:t-1}] \leq \exp \left(\frac{\lambda^2 R^2}{2} \right).$$

In many scenarios,
the noise can be
heavy-tailed!

- Linear bandits with heavy-tailed noise

Assumption 2 (heavy-tailed noise). The noise $\{\eta_t, \mathcal{F}_t\}$ is a martingale difference ($\mathbb{E} [\eta_t \mid \mathcal{F}_{t-1}] = 0$), and satisfies that for some $\varepsilon \in (0, 1]$, $\nu_t > 0$,

$$\mathbb{E} \left[|\eta_t|^{1+\varepsilon} \mid \mathcal{F}_{t-1} \right] \leq \nu_t^{1+\varepsilon}.$$

Challenge

Parameter estimation

$$\widehat{\theta}_t = \arg \min_{\theta \in \mathbb{R}^d} \lambda \|\theta\|_2^2 + \sum_{s=1}^{t-1} (X_s^\top \theta - r_s)^2$$

Key difficulty: the *large deviation* due to heavy-tailed noise

Basic idea: reduce the impact of outliers

- *Truncation*: directly removing data pair $\{X_s, r_s\}$ if r_s is extreme data;
- *Median-of-Means*: repeat sampling same arm to reduce uncertainty;
- *Robust loss function*: reduce penalty for large deviation $|X_s^\top \theta - r_s|$.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

Bandits With Heavy Tail

matching lower bounds that also show that the best achievable regret deteriorates when $\varepsilon < 1$.

INTRODUCTION

In this paper, we propose a new statistical stochastic multi-armed bandit problem introduced by [1] and discussed as follows: an agent K faces a problem of K arms which selects one at a time. Suppose that with each arm $i \in \{1, \dots, K\}$ there is an associated probability distribution with support \mathbb{R}_+ . This distribution is denoted by ν_i for each arm i . At each time $t = 1, \dots, n$, the agent chooses i_t from $\{1, \dots, K\}$, and observes a reward drawn from ν_{i_t} , independently from the given i_t . The

We refer to reader [1] for a survey of the extensive literature of this problem and its variations. The main majority of authors assume that the unknown distributions ν_i are sub-Gaussian, i.e., that the generating function of each is such that if X is a random variable with distribution ν_i , then the distribution ν_i is at most λ times as variable as the standard normal distribution, that is, $E|\nu_i(X)|^p \leq \lambda E|N(0, 1)|^p$ for all $p \geq 1$.¹ Since $\lambda \geq 1$, the so-called λ -sub-Gaussian is a refinement of the λ -subnormal. In particular, if ν is a random variable taking values in $[0, 1]$, then, by Hoeffding's bound, one may take $\lambda = \sqrt{2}$. Similarly to the asymptotic bound, one has this moment bound for the λ -sub-Gaussian ν .² It can be proved that this function ν is convex, $\nu \leq R - R\chi$, for such that

$$E|\nu(X)|^p \leq \lambda E|N(0, 1)|^p \quad \text{and} \quad E|\nu(X)|^p \leq \lambda^p, \quad (2)$$

Manuscript received September 04, 2012; accepted May 12, 2013. Date of publication August 06, 2013; date of current version October 14, 2013. This work was supported by grants from the National Science Foundation (NSF) under grants DMS-0804540 and DMS-1004540. S. Borek is with the Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08540 USA (e-mail: borek@princeton.edu). N. S. Breslin is with the Department of Industrial, University degli Studi di Milano, Via La Malfa 15, 20131 Milano, Italy (e-mail: n.breslin@unimi.it). G. Logini is with the Department of Economics, ICER, and University of Perugia, Italy (e-mail: gabriele.logini@unipg.it). G. S. P. Tsatsas is with the Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109 USA (e-mail: tsatsas@umich.edu). © 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to a journal or other is not granted. For more information, please refer to the Terms and Conditions on the publisher's website. This paper is a revised version of a paper presented at the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, Digital Object Identifier 10.1109/ICASSP.2012.6227869.

Existing Methods

Limitation of truncation and Median-of-Means

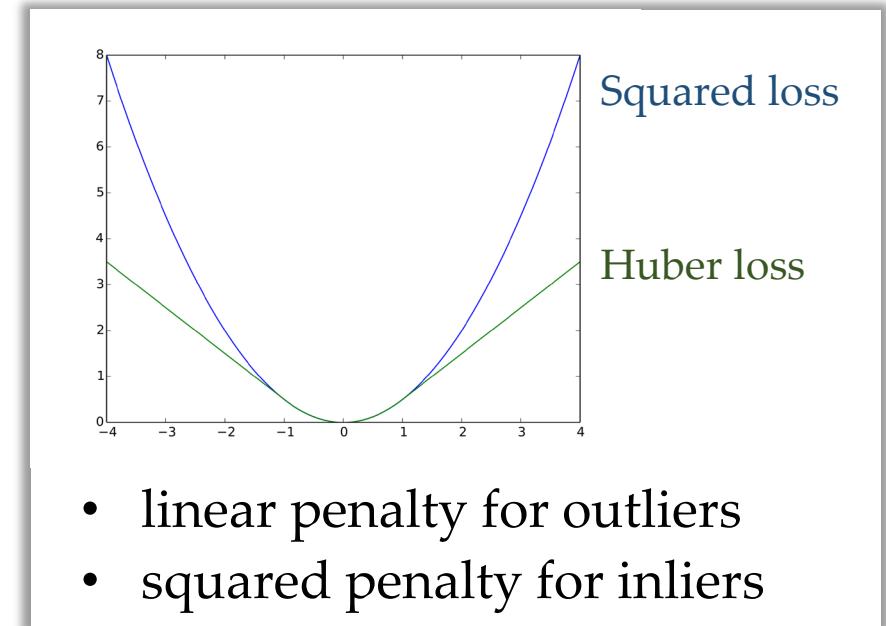
- Truncation relies on $\mathbb{E} \left[|r_t|^{1+\varepsilon} \mid \mathcal{F}_{t-1} \right] \leq u$, cannot recover noiseless case 😞
- Median-of-Means require repeated pulling and fixed arm set 😞

- Robust loss function

Definition 1 (Huber loss). Huber loss is defined as

$$f_\tau(x) = \begin{cases} \frac{x^2}{2} & \text{if } |x| \leq \tau, \\ \tau|x| - \frac{\tau^2}{2} & \text{if } |x| > \tau, \end{cases}$$

where $\tau > 0$ is the robustification parameter.



Statistical Optimality

- HEAVY-OFUL Algorithm

- *Estimator*: adaptive Huber regression

$$\hat{\theta}_t = \arg \min_{\theta \in \Theta} \frac{\lambda}{2} \|\theta\|_2^2 + \sum_{s=1}^{t-1} \ell_s(\theta)$$

- *Arm selection*: upper confidence bound

$$X_t = \arg \max_{\mathbf{x} \in \mathcal{X}} \left\{ \mathbf{x}^\top \hat{\theta}_t + \beta_{t-1} \|\mathbf{x}\|_{V_{t-1}^{-1}} \right\}$$

With $z_s(\theta) = \frac{r_s - X_s^\top \theta}{\sigma_s}$, Huber loss is defined as

$$\ell_s(\theta) = \begin{cases} \frac{z_s(\theta)^2}{2} & \text{if } |z_s(\theta)| \leq \tau_s, \\ \tau_s |z_s(\theta)| - \frac{\tau_s^2}{2} & \text{if } |z_s(\theta)| > \tau_s. \end{cases}$$

Theorem 2. *The regret of HEAVY-OFUL is bounded with probability at least $1 - 1/T$, by*

$$\text{REG}_T \leq \tilde{\mathcal{O}} \left(d T^{\frac{1}{1+\varepsilon}} \right).$$

Efficiency Concern

- Adaptive Huber regression

$$\hat{\theta}_t = \arg \min_{\theta \in \Theta} \frac{\lambda}{2} \|\theta\|_2^2 + \sum_{s=1}^t \ell_s(\theta)$$

- Least squares (closed-form solution)

$$\hat{\theta}_t = V_{t-1}^{-1} \left(\sum_{s=1}^{t-1} r_s X_s \right), V_{t-1} = \lambda I + \sum_{s=1}^{t-1} X_s X_s^\top$$

$$Z_{t-1}$$

The cost at round t

Computational cost: $\mathcal{O}(t \log T)$

Storage cost: $\mathcal{O}(t)$

One-pass update

$$V_t = V_{t-1} + X_t X_t^\top$$

$$Z_t = Z_{t-1} + r_t X_t$$

Require one-pass algorithm for Heavy-tailed Linear Bandits !

Outline

- Stochastic Linear Bandits
- Heavy-tailed Linear Bandits
- Our Results
- Conclusion

Online Mirror Descent

- OMD is a powerful online learning framework to optimize regret.

$$\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \mathcal{X}} \left\{ \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \mathcal{D}_\psi(\mathbf{x}, \mathbf{x}_t) \right\}$$

where $\mathcal{D}_\psi(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$ is the Bregman divergence.

$$\widehat{\theta}_{t+1} = \arg \min_{\theta \in \Theta} \left\{ \left\langle \theta, \nabla \ell_t \left(\widehat{\theta}_t \right) \right\rangle + \mathcal{D}_{\psi_t} \left(\theta, \widehat{\theta}_t \right) \right\}$$

$$\text{where } \psi_t(\theta) = \frac{1}{2} \|\theta\|_{V_t}^2 \text{ with } V_t \triangleq \lambda I + \frac{1}{\alpha} \sum_{s=1}^t \frac{X_s X_s^\top}{\sigma_s^2}$$

A Summary of OMD Deployment

- Our previous mentioned algorithms can **all be covered** by OMD.

Algo.	OMD/proximal form	$\psi(\cdot)$	η_t	Regret _T
OGD for convex	$\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _2^2$	$\ \mathbf{x}\ _2^2$	$\frac{1}{\sqrt{t}}$	$\mathcal{O}(\sqrt{T})$
OGD for strongly c.	$\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _2^2$	$\ \mathbf{x}\ _2^2$	$\frac{1}{\sigma t}$	$\mathcal{O}(\frac{1}{\sigma} \log T)$
ONS for exp-concave	$\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _{A_t}^2$	$\ \mathbf{x}\ _{A_t}^2$	$\frac{1}{\gamma}$	$\mathcal{O}(\frac{d}{\gamma} \log T)$
Hedge for PEA	$\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \Delta_N} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \text{KL}(\mathbf{x} \ \mathbf{x}_t)$	$\sum_{i=1}^N x_i \log x_i \sqrt{\frac{\ln N}{T}}$		$\mathcal{O}(\sqrt{T \log N})$

We here use OMD framework as a statistical estimation tool! More details of OMD can be found in Lecture 6 of Advanced Optimization Course 2024 Fall <https://www.pengzhao-ml.com/course/AOpt2024fall/>

Hvt-UCB

- OMD-based one-pass estimator

$$\hat{\theta}_{t+1} = \arg \min_{\theta \in \Theta} \left\{ \left\langle \theta, \nabla \ell_t \left(\hat{\theta}_t \right) \right\rangle + \mathcal{D}_{\psi_t} \left(\theta, \hat{\theta}_t \right) \right\}$$

$$\psi_t(\theta) = \frac{1}{2} \|\theta\|_{V_t}^2 \text{ with } V_t \triangleq \lambda I + \frac{1}{\alpha} \sum_{s=1}^t \frac{X_s X_s^\top}{\sigma_s^2}$$

Computational Efficiency

$$\hat{\theta}_{t+1} = \hat{\theta}_t - V_t^{-1} \nabla \ell_t \left(\hat{\theta}_t \right)$$

$$\hat{\theta}_{t+1} = \arg \min_{\theta \in \Theta} \left\| \theta - \hat{\theta}_{t+1} \right\|_{V_t}$$

- Upper confidence bound

Lemma 1. (Estimation error). If σ_t, τ_t, τ_0 are set as where $w_t \triangleq \frac{1}{\sqrt{\alpha}} \left\| \frac{X_t}{\sigma_t} \right\|_{V_{t-1}^{-1}}$ and let the step size $\alpha = 4$, then with probability at least $1 - 4\delta$, $\forall t \geq 1$, we have $\left\| \hat{\theta}_{t+1} - \theta_* \right\|_{V_t} \leq \beta_t$ with

$$\beta_t \triangleq 107 \log \frac{2T^2}{\delta} \tau_0 t^{\frac{1-\varepsilon}{2(1+\varepsilon)}} + \sqrt{\lambda (2 + 4S^2)}, \quad \text{where } \kappa \triangleq d \log \left(1 + \frac{L^2 T}{4\sigma_{\min}^2 \lambda d} \right).$$

Estimation Error

HEAVY-OFUL

$$\text{MLE} \quad \arg \min_{\theta \in \Theta} \frac{\lambda}{2} \|\theta\|_2^2 + \sum_{s=1}^t \ell_s(\theta)$$

Estimation error $\tilde{\mathcal{O}}\left(t^{\frac{1-\epsilon}{2(1+\epsilon)}}\right)$

Hvt-UCB

$$\text{OMD} \quad \arg \min_{\theta \in \Theta} \left\{ \left\langle \theta, \nabla \ell_t(\hat{\theta}_t) \right\rangle + \mathcal{D}_{\psi_t}(\theta, \hat{\theta}_t) \right\}$$

Comp. cost per round $\mathcal{O}(1)$

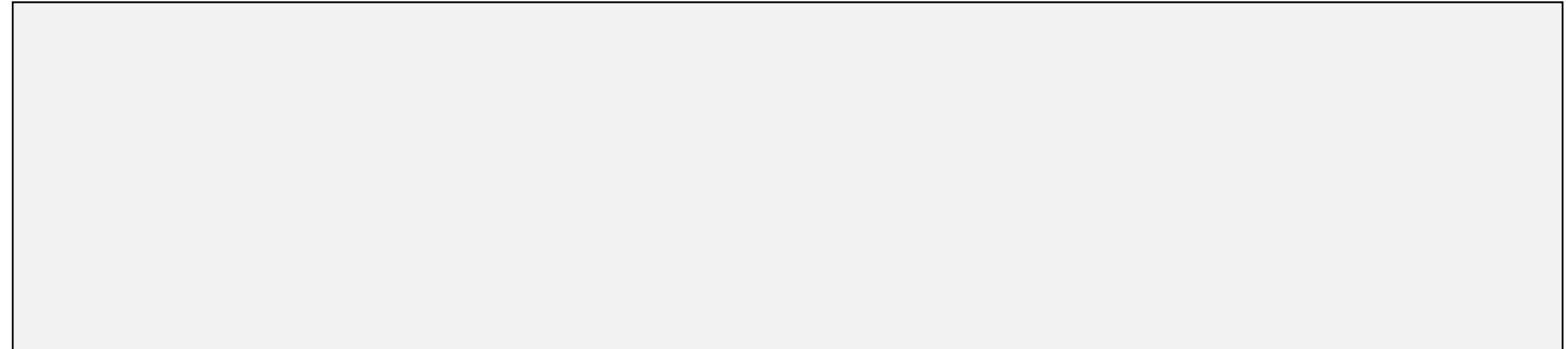
Estimation error $\tilde{\mathcal{O}}\left(t^{\frac{1-\epsilon}{2(1+\epsilon)}}\right)$

Theorem 3. *The regret of Hvt-UCB is bounded with probability at least $1 - 1/T$, by*

$$\text{REG}_T \leq \tilde{\mathcal{O}}\left(dT^{\frac{1}{1+\epsilon}}\right).$$

Instant-dependent Guarantee

- When ν_t is time-varying and known, Hvt-UCB can further achieve



Main Result

- Our work improves upon previous works **without additional assumptions**
 - *Statistical efficiency*: maintain the optimal and instant-dependent regret bound
 - *Computational efficiency*: reduce the per round time and storage cost

Method	Algorithm	Regret	Comp. cost	Remark
MOM	MENU [Shao et al., 2018]	$\tilde{\mathcal{O}}\left(dT^{\frac{1}{1+\varepsilon}}\right)$	$\mathcal{O}(\log T)$	fixed arm set and repeated pulling
	CRMM [Xue et al., 2023]		$\mathcal{O}(1)$	
Truncation	TOFU [Shao et al., 2018]	$\tilde{\mathcal{O}}\left(dT^{\frac{1}{1+\varepsilon}}\right)$	$\mathcal{O}(t)$	absolute moment
	CRTM [Xue et al., 2023]		$\mathcal{O}(1)$	$\mathbb{E}[r_t ^{1+\varepsilon} \mid \mathcal{F}_{t-1}] \leq u$
Huber	HEAVY-OFUL [Huang et al., 2023]	$\tilde{\mathcal{O}}\left(dT^{\frac{1-\varepsilon}{2(1+\varepsilon)}} \sqrt{\sum_{t=1}^T \nu_t^2} + dT^{\frac{1-\varepsilon}{2(1+\varepsilon)}}\right)$	$\mathcal{O}(t \log T)$	instance-dependent bound
Huber	Hvt-UCB (Corollary 1)	$\tilde{\mathcal{O}}\left(dT^{\frac{1}{1+\varepsilon}}\right)$	$\mathcal{O}(1)$	$\mathbb{E}[\eta_t ^{1+\varepsilon} \mid \mathcal{F}_{t-1}] \leq \nu^{1+\varepsilon}$
Huber	Hvt-UCB (Theorem 1)	$\tilde{\mathcal{O}}\left(dT^{\frac{1-\varepsilon}{2(1+\varepsilon)}} \sqrt{\sum_{t=1}^T \nu_t^2} + dT^{\frac{1-\varepsilon}{2(1+\varepsilon)}}\right)$	$\mathcal{O}(1)$	instance-dependent bound

Estimation Error Analysis

- Estimation error decomposition

$$\left\| \hat{\theta}_{t+1} - \theta_* \right\|_{V_t}^2 \leq \underbrace{2 \sum_{s=1}^t \left\langle \nabla \tilde{\ell}_s \left(\hat{\theta}_s \right) - \nabla \ell_s \left(\hat{\theta}_s \right), \hat{\theta}_s - \theta_* \right\rangle}_{\text{generalization gap term}} + \underbrace{\sum_{s=1}^t \left\| \nabla \ell_s \left(\hat{\theta}_s \right) \right\|_{V_s^{-1}}^2}_{\text{stability term}}$$

Denoised loss: $\tilde{\ell}_t(\theta) = \frac{1}{2} \left(X_t^\top (\theta_* - \theta) / \sigma_t \right)^2$

$$+ \underbrace{\left(\frac{1}{\alpha} - 1 \right) \sum_{s=1}^t \left\| \hat{\theta}_s - \theta_* \right\|_{\frac{X_s X_s^\top}{\sigma_s^2}}^2}_{\text{negative term}} + 4\lambda S$$

Ensure quadratic penalty for denoised data

$$\left| \left(X_t^\top \hat{\theta}_t - X_t^\top \theta_* \right) / \sigma_t \right| \leq \frac{\tau_t}{2}$$

Recursive normalization factor tuning

$$\sigma_t = \max \left\{ \nu_t, \sigma_{\min}, \sqrt{\frac{2\beta_{t-1}}{\tau_0 \sqrt{\alpha} t^{\frac{1-\varepsilon}{2(1+\varepsilon)}}} \|X_t\|_{V_{t-1}^{-1}}} \right\}$$

Estimation Error Analysis

- **Stability term** *Challenge of using one-pass OMD to approximate full-batch MLE*

$$2 \underbrace{\sum_{s=1}^t \left(\min \left\{ \left| \frac{\eta_s}{\sigma_s} \right|, \tau_s \right\} \right)^2 \left\| \frac{X_s}{\sigma_s} \right\|_{V_s^{-1}}^2}_{\text{stochastic term}} + 2 \underbrace{\sum_{s=1}^t \left(\frac{X_s^\top \theta_* - X_s^\top \hat{\theta}_s}{\sigma_s} \right)^2 \left\| \frac{X_s}{\sigma_s} \right\|_{V_s^{-1}}^2}_{\text{deterministic term}}$$

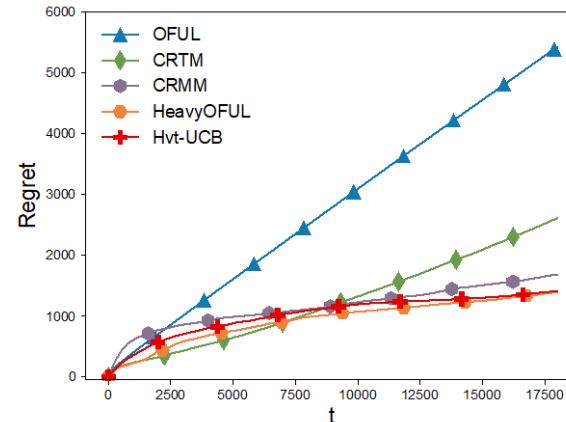
Concentration technique *Canceled with negative term*

- **Generalization gap** *Challenge of handling Huber loss and heavy-tailed noise*

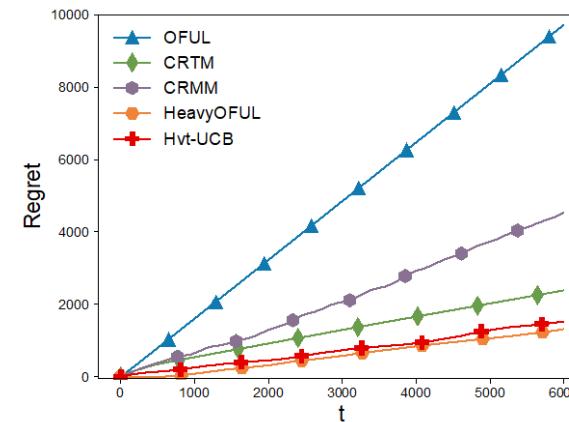
$$2 \underbrace{\sum_{s=1}^t \left\langle \nabla \tilde{\ell}_s \left(\hat{\theta}_s \right) + \nabla \ell_s \left(\theta_* \right) - \nabla \ell_s \left(\hat{\theta}_s \right), \hat{\theta}_s - \theta_* \right\rangle}_{\text{Huber-loss term}} + 2 \underbrace{\sum_{s=1}^t \left\langle -\nabla \ell_s \left(\theta_* \right), \hat{\theta}_s - \theta_* \right\rangle}_{\text{self-normalized term}}$$

Concentration technique *1-dimension self-normalized concentration*

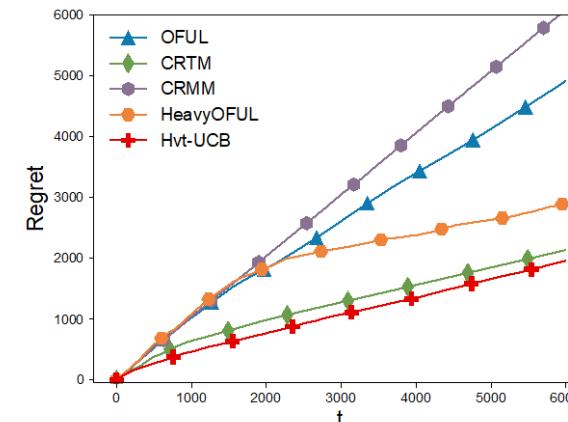
Experimental Results



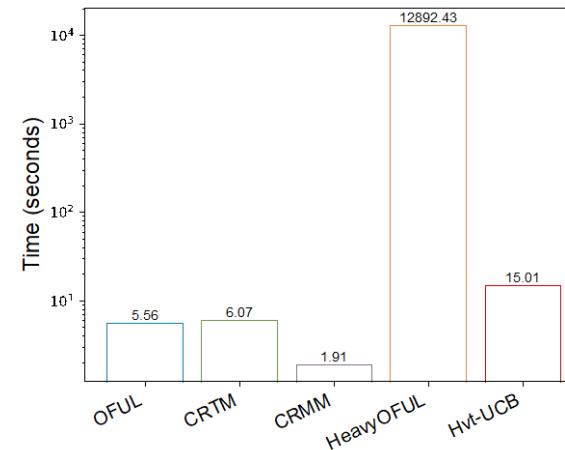
(a) Student t noise : regret



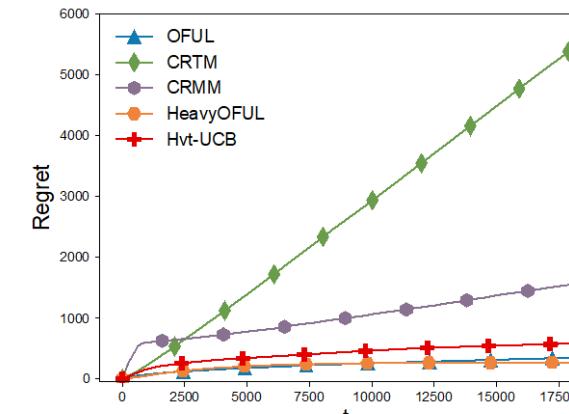
(c) Pareto noise: regret



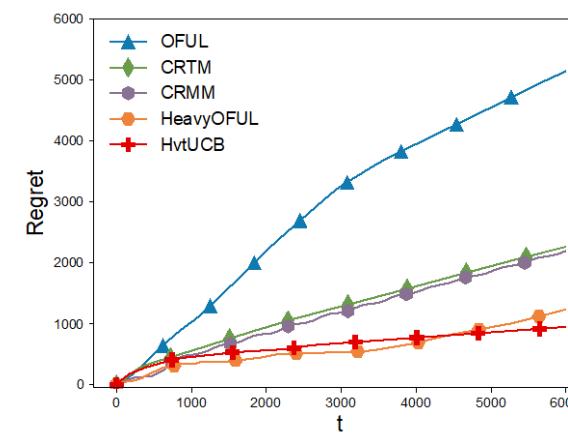
(e) Varying arm set



(b) Student t: running time



(d) Gaussian noise: regret

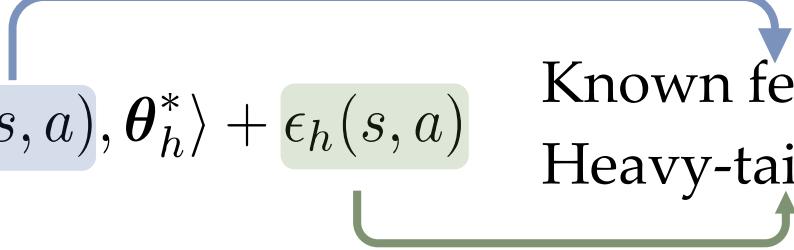


(f) Varying ν_t

Potential Extension

- Online Linear MDP

$$\text{Realizable reward } R_h(s, a) = \langle \phi(s, a), \theta_h^* \rangle + \epsilon_h(s, a)$$

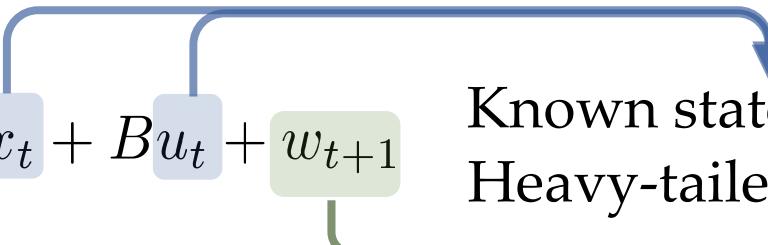


Known feature map
Heavy-tailed noise

Require: reward estimation under *time-varying* feature map

- Online Adaptive Control

$$\text{State transition system } x_{t+1} = Ax_t + Bu_t + w_{t+1}$$



Known state and action
Heavy-tailed noise

Require: system identification with *finite-sample* guarantee

Outline

- Stochastic Linear Bandits
- Heavy-tailed Linear Bandits
- Our Results
- Conclusion

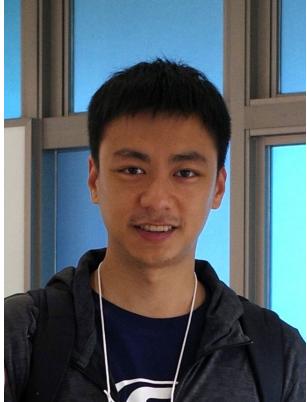
Conclusion

- **Problem:** heavy-tailed linear bandits
 - Only $(1 + \epsilon)$ -moment of noise is finite with $\epsilon \in (0, 1)$
- **Approach:** Huber loss-based one-pass algorithm
 - Employing OMD with tailored local norm to replace the MLE in SLB
 - Achieve the optimal and variance-aware regret bound with $O(1)$ cost

Open Questions

- How to handle unknown variance ν_t while maintaining current guarantee

Joint work with



Yu-Jie Zhang (RIKEN AIP)

Peng Zhao (NJU)

Zhi-Hua Zhou (NJU)

📄 Jing Wang, Yu-Jie Zhang, Peng Zhao, and Zhi-Hua Zhou. Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update, ICML2025.

Thanks!

Other References

- Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear quadratic systems. COLT 2011.
- Yasin Abbasi-yadkori, Dávid Pál, Csaba Szepesvári. Improved Algorithms for Linear Stochastic Bandits. NIPS 2011.
- Sébastien Bubeck, Nicolò Cesa-Bianchi, and Gábor Lugosi. Bandits with heavy tail. TIT 2013.
- Han Shao, Xiaotian Yu, Irwin King, and Michael R. Lyu. Almost optimal algorithms for linear stochastic bandits with heavy-tailed payoffs. NeurIPS 2018
- Qiang Sun, Wen-Xin Zhou, and Jianqing Fan. Adaptive Huber regression. JASA 2020
- Y.-J. Zhang and M. Sugiyama. Online (Multinomial) Logistic Bandit: Improved Regret and Constant Computation Cost. NeurIPS 2023.
- Jiayi Huang, Han Zhong, Liwei Wang, and Lin Yang. Tackling heavy-tailed rewards in reinforcement learning with function approximation: Minimax optimal and instance-dependent regret bounds. NeurIPS 2023
- Bo Xue, Yimu Wang, Yuanyu Wan, Jinfeng Yi, and Lijun Zhang. Efficient algorithms for generalized linear bandits with heavy-tailed rewards. NeurIPS 2023.