

A *Simple* and *Optimal* Approach for Universal Online Learning with Gradient Variations

Joint work with Peng Zhao and Zhi-Hua Zhou

Presented by Yu-Hu Yan

2025.12.26

Problem Setup

□ Online Convex Optimization (OCO)

At each round $t = 1, 2, \dots, T$:

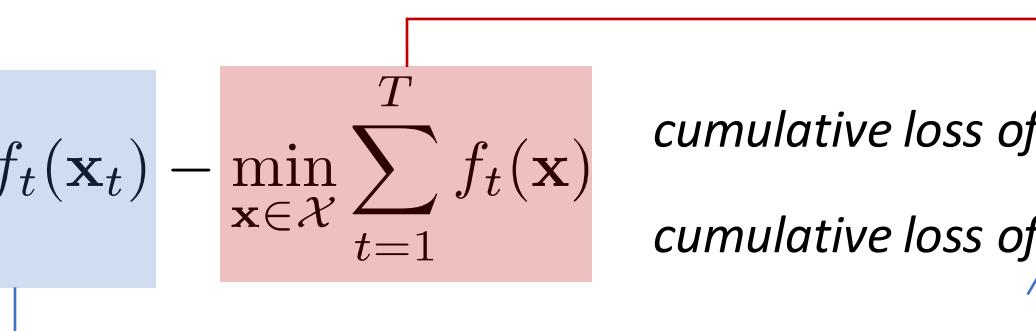
- the learner submits $\mathbf{x}_t \in \mathcal{X} \subseteq \mathbb{R}^d$
- at the same time, environments decide a convex loss function $f_t : \mathcal{X} \mapsto \mathbb{R}$
- the learner suffers $f_t(\mathbf{x}_t)$ and receives gradient information of the loss function

□ **Regret**: Online prediction as good as the best offline model

$$\text{Reg}_T \triangleq \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{x})$$

*cumulative loss of **best offline** model*

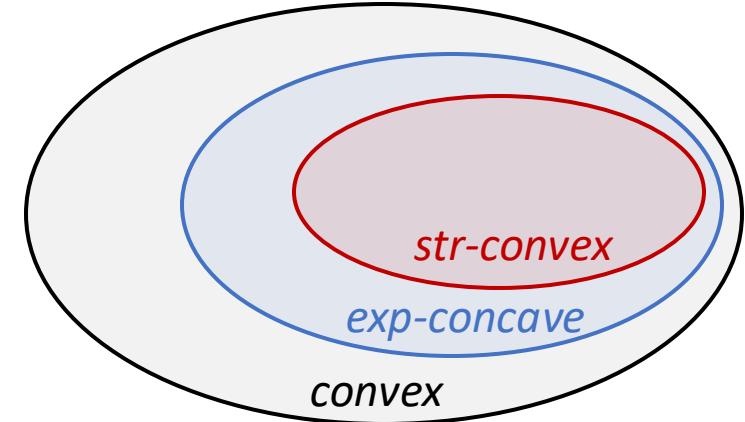
*cumulative loss of the **online** model*



Problem Setup

□ Curvatures in OCO

$$\text{REG}_T \triangleq \sum_{t=1}^T \mathbf{f}_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T \mathbf{f}_t(\mathbf{x})$$



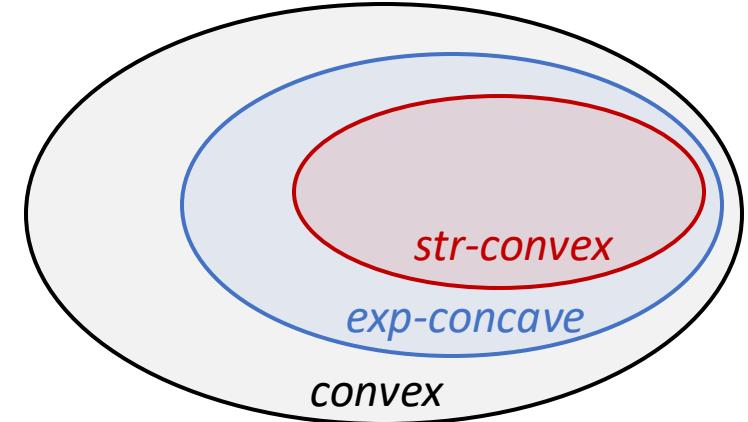
Online learning usually considers three kinds of curvatures:

- **convex**: $f(\mathbf{x}) - f(\mathbf{y}) \leq \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle$ for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.
- **λ -strongly convex**: $f(\mathbf{x}) - f(\mathbf{y}) \leq \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle - \frac{\lambda}{2} \|\mathbf{x} - \mathbf{y}\|^2$.
- **α -exp-concave**: $f(\mathbf{x}) - f(\mathbf{y}) \leq \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle - \frac{\alpha}{2} \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle^2$.

Problem Setup

□ Curvatures in OCO

$$\text{REG}_T \triangleq \sum_{t=1}^T \mathbf{f}_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T \mathbf{f}_t(\mathbf{x})$$



In OCO, the type of *functional curvature* plays an important role in the best attainable regret bounds.

Function type	Algorithm	Regret
<i>convex</i>	Online Gradient Descent with $\eta_t \approx \frac{1}{\sqrt{t}}$	$\mathcal{O}(\sqrt{T})$
<i>λ-strongly convex</i>	Online Gradient Descent with $\eta_t = \frac{1}{\lambda t}$	$\mathcal{O}(\frac{1}{\lambda} \cdot \log T)$
<i>α-exp-concave</i>	Online Newton Step with α	$\mathcal{O}(\frac{1}{\alpha} \cdot d \log T)$

Problem Setup

□ Curvatures in OCO

$$\text{REG}_T \triangleq \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{x})$$

In OCO, the type of *functional curvature* plays an important role in the best attainable regret bounds.

Classical algorithms are only suitable for *one specific curvature type*.

What if the *curvature type is unknown*?

In this talk, we focus on *universal online learning*, where the curvature is unknown.

Problem Setup

□ Universal Online Learning

$$\text{REG}_T(\mathcal{A}, \{f_t\}_{t=1}^T) \triangleq \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{x})$$

In this talk, we focus on *universal online learning*, where the curvature is unknown.

Universal Regret Minimization

$$\text{REG}_T(\mathcal{A}, \{f_t\}_{t=1}^T) = \begin{cases} \text{REG}_T(\mathcal{A}_{\text{sc}}, \mathcal{F}_{\text{sc}}^{\lambda}), & \text{when } \{f_t\}_{t=1}^T \text{ belongs to } \mathcal{F}_{\text{sc}}^{\lambda}, \\ \text{REG}_T(\mathcal{A}_{\text{ec}}, \mathcal{F}_{\text{ec}}^{\alpha}), & \text{when } \{f_t\}_{t=1}^T \text{ belongs to } \mathcal{F}_{\text{ec}}^{\alpha}, \\ \text{REG}_T(\mathcal{A}_{\text{c}}, \mathcal{F}_{\text{c}}), & \text{when } \{f_t\}_{t=1}^T \text{ belongs to } \mathcal{F}_{\text{c}}, \end{cases}$$

Problem Setup

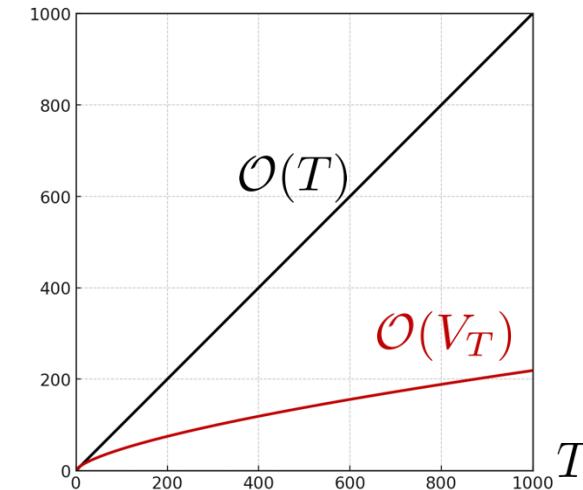
□ Problem-dependent regret

- Regret measured by T only considers the *worst-case* scenarios.
- Can we exploit the *niceness* of environments for improved results?

Gradient variation:

$$V_T \triangleq \sum_{t=2}^T \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla f_t(\mathbf{x}) - \nabla f_{t-1}(\mathbf{x})\|^2$$

*cumulative variations in gradients,
reflecting the difficulty of online problems*



The regret bounds can be strengthened to $\mathcal{O}(\frac{1}{\lambda} \log V_T)$, $\mathcal{O}(\frac{d}{\alpha} \log V_T)$, and $\mathcal{O}(\sqrt{V_T})$.

Problem Setup

□ Why do we study gradient variation?

Gradient variation:

$$V_T \triangleq \sum_{t=2}^T \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla f_t(\mathbf{x}) - \nabla f_{t-1}(\mathbf{x})\|^2$$

*cumulative variations in gradients,
reflecting the difficulty of online problems.*

(i) Gradient variation implies other problem-dependent quantities directly in analysis.

e.g.,

Small-loss term:

$$F_T \triangleq \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{x})$$

cumulative loss of the best model

Gradient-variance term:

$$W_T \triangleq \sum_{t=2}^T \sup_{\mathbf{x} \in \mathcal{X}} \left\| \nabla f_t(\mathbf{x}) - \frac{1}{T} \sum_{s=1}^T \nabla f_s(\mathbf{x}) \right\|^2$$

variance of gradients

(ii) Gradient variation can **bridge stochastic and adversarial online optimization**.

 [Sachs et al., Between stochastic and adversarial online convex optimization: Improved regret bounds via smoothness, NeurIPS 2022]

(iii) Gradient variation in achieving **fast rates in games**.

 [Syrgkanis et al., Fast convergence of regularized learning in games, NIPS 2015 (Best Paper Award)]

(iv) Gradient variation in **accelerated convex smooth optimization**.

□ Our Results

Theorem 1. *Under standard assumptions (boundedness and smoothness), our algorithm*

- *achieves $\mathcal{O}(\log V_T)$ regret for strongly convex functions;*
- *achieves $\mathcal{O}(d \log V_T)$ regret for exp-concave functions;*
- *achieves $\mathcal{O}(\sqrt{V_T})$ regret for convex functions.*

$V_T = \sum_t \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla f_t(\mathbf{x}) - \nabla f_{t-1}(\mathbf{x})\|^2$ is the gradient variation.

A **single** algorithm with simultaneously **optimal gradient-variation regret** bounds for convex/exp-concave/strongly convex functions.

Main Result Overview

□ Comparison with previous works

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex, exp-concave, and convex functions, following the $\mathcal{O}(\cdot)$ -notation. “# Gradient” is the number of gradient queries in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works	Regret Bounds			Efficiency	
	Strongly Convex	Exp-concave	Convex	# Gradient	# Base
van Erven and Koolen [2016]	$d \log T$	$d \log T$	\sqrt{T}	1	$\log T$

The *first* universal result from Tim van Erven.

Main Result Overview

□ Comparison with previous works

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex, exp-concave, and convex functions, following the $\mathcal{O}(\cdot)$ -notation. “# Gradient” is the number of gradient queries in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works	Regret Bounds			Efficiency	
	Strongly Convex	Exp-concave	Convex	# Gradient	# Base
van Erven and Koolen [2016]	$d \log T$	$d \log T$	\sqrt{T}	1	$\log T$
Wang et al. [2019]	$\log T$	$d \log T$	\sqrt{T}	1	$\log T$

Improved by [Wang et al., UAI 2019] for strongly convex functions.

Main Result Overview

□ Comparison with previous works

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex, exp-concave, and convex functions, following the $\mathcal{O}(\cdot)$ -notation. “# Gradient” is the number of gradient queries in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works	Regret Bounds			Efficiency	
	Strongly Convex	Exp-concave	Convex	# Gradient	# Base
van Erven and Koolen [2016]	$d \log T$	$d \log T$	\sqrt{T}	1	$\log T$
Wang et al. [2019]	$\log T$	$d \log T$	\sqrt{T}	1	$\log T$
Zhang et al. [2022]	$\log \min\{V_T, F_T\}$	$d \log \min\{V_T, F_T\}$	$\sqrt{F_T}$	$\log T$	$\log T$

The first ***problem-dependent*** regret in universal OCO.

Main Result Overview

□ Comparison with previous works

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex, exp-concave, and convex functions, following the $\mathcal{O}(\cdot)$ -notation. “# Gradient” is the number of gradient queries in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works	Regret Bounds			Efficiency	
	Strongly Convex	Exp-concave	Convex	# Gradient	# Base
van Erven and Koolen [2016]	$d \log T$	$d \log T$	\sqrt{T}	1	$\log T$
Wang et al. [2019]	$\log T$	$d \log T$	\sqrt{T}	1	$\log T$
Zhang et al. [2022]	$\log \min\{V_T, F_T\}$	$d \log \min\{V_T, F_T\}$	$\sqrt{F_T}$	$\log T$	$\log T$
Yan et al. [2023]	$\log \min\{V_T, F_T\}$	$d \log \min\{V_T, F_T\}$	$\min\{\sqrt{V_T \log V_T}, \sqrt{F_T \log F_T}\}$	1	$(\log T)^2$

Our *improved* gradient-variation bound via a *multi-layer online ensemble* approach.

Main Result Overview

□ Comparison with previous works

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex, exp-concave, and convex functions, following the $\mathcal{O}(\cdot)$ -notation. “# Gradient” is the number of gradient queries in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works	Regret Bounds			Efficiency	
	Strongly Convex	Exp-concave	Convex	# Gradient	# Base
van Erven and Koolen [2016]	$d \log T$	$d \log T$	\sqrt{T}	1	$\log T$
Wang et al. [2019]	$\log T$	$d \log T$	\sqrt{T}	1	$\log T$
Zhang et al. [2022]	$\log \min\{V_T, F_T\}$	$d \log \min\{V_T, F_T\}$	$\sqrt{F_T}$	$\log T$	$\log T$
Yan et al. [2023]	$\log \min\{V_T, F_T\}$	$d \log \min\{V_T, F_T\}$	$\min\{\sqrt{V_T \log V_T}, \sqrt{F_T \log F_T}\}$	1	$(\log T)^2$

An open problem in [Yan et al., NeurIPS 2023]:

Is it possible to achieve the *optimal* universal gradient-variation regret, with an *efficient* approach (i.e., one gradient query and $\mathcal{O}(\log T)$ base learners)?

Main Result Overview

□ Comparison with previous works

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex, exp-concave, and convex functions, following the $\mathcal{O}(\cdot)$ -notation. “# Gradient” is the number of gradient queries in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works	Regret Bounds			Efficiency	
	Strongly Convex	Exp-concave	Convex	# Gradient	# Base
van Erven and Koolen [2016]	$d \log T$	$d \log T$	\sqrt{T}	1	$\log T$
Wang et al. [2019]	$\log T$	$d \log T$	\sqrt{T}	1	$\log T$
Zhang et al. [2022]	$\log \min\{V_T, F_T\}$	$d \log \min\{V_T, F_T\}$	$\sqrt{F_T}$	$\log T$	$\log T$
Yan et al. [2023]	$\log \min\{V_T, F_T\}$	$d \log \min\{V_T, F_T\}$	$\min\{\sqrt{V_T \log V_T}, \sqrt{F_T \log F_T}\}$	1	$(\log T)^2$
Ours	$\log \min\{V_T, F_T\}$	$d \log \min\{V_T, F_T\}$	$\min\{\sqrt{V_T}, \sqrt{F_T}\}$	1	$\log T$

This work: *Optimal* problem-dependent regret with an *efficient* approach.

A General Framework

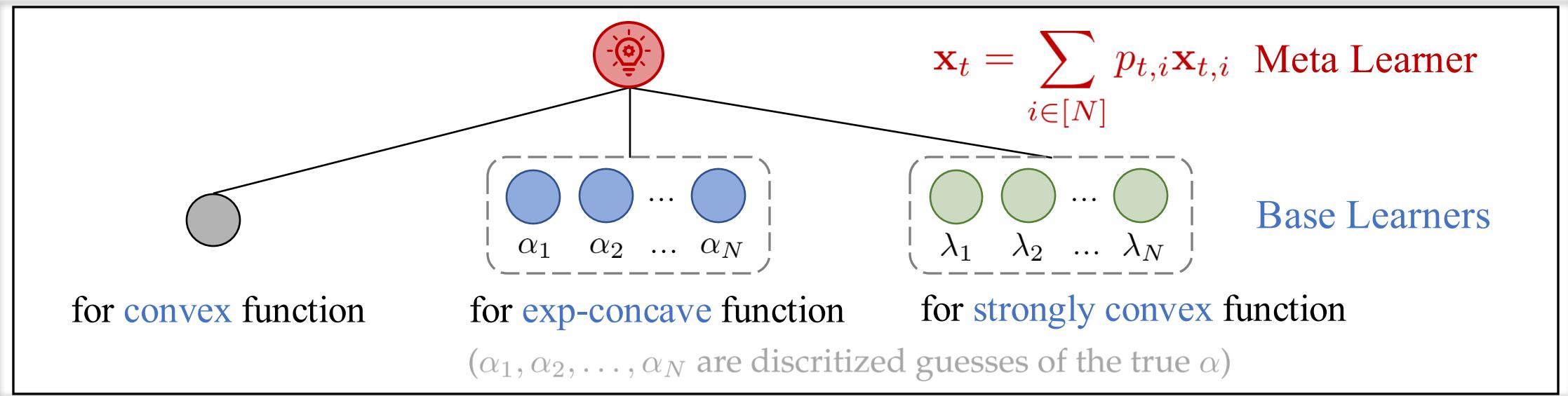
Universal Regret Minimization

$$\text{REG}_T(\mathcal{A}, \{f_t\}_{t=1}^T) = \begin{cases} \text{REG}_T(\mathcal{A}_{\text{sc}}, \mathcal{F}_{\text{sc}}^{\lambda}), & \text{when } \{f_t\}_{t=1}^T \text{ belongs to } \mathcal{F}_{\text{sc}}^{\lambda}, \\ \text{REG}_T(\mathcal{A}_{\text{ec}}, \mathcal{F}_{\text{ec}}^{\alpha}), & \text{when } \{f_t\}_{t=1}^T \text{ belongs to } \mathcal{F}_{\text{ec}}^{\alpha}, \\ \text{REG}_T(\mathcal{A}_{\text{c}}, \mathcal{F}_{\text{c}}), & \text{when } \{f_t\}_{t=1}^T \text{ belongs to } \mathcal{F}_{\text{c}}, \end{cases}$$

□ Online Ensemble

[Zhao-Zhang-Zhang-Zhou, JMLR 2024]

*General goal: To handle the **uncertainty** of environments.*



- **Base learners** guess the curvature (str-convex/exp-concave/cvx).
- **Meta learner** tracks the best base learner.

Basic Idea

□ **Regret decomposition:** How to control meta-regret in two layers

$$\text{REG}_T = \left[\sum_{t=1}^T f_t(\mathbf{x}_t) - \sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) \right] + \left[\sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{x}) \right]$$

meta regret *base regret*

- Key idea: Exploiting the *second-order regret bound* on the meta level

[Zhang et al., ICML 2022]

$$\sum_{t=1}^T \langle p_t, \ell_t \rangle - \sum_{t=1}^T \ell_{t,i} \leq \mathcal{O} \left(\sqrt{\sum_{t=1}^T r_{t,i}^2} \right)$$

(second-order bound,
e.g., Adapt-ML-Prod)
[Gaillard et al, COLT 2014]

$$\xrightarrow{\hspace{1cm}} \ell_{t,i} \triangleq \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_{t,i} \rangle \quad r_{t,i} \triangleq \langle p_t, \ell_t \rangle - \ell_{t,i} \quad \sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle \lesssim \sqrt{\sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle^2}$$

Basic Idea

□ **Regret decomposition:** How to control meta-regret in two layers

$$\text{REG}_T = \left[\sum_{t=1}^T f_t(\mathbf{x}_t) - \sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) \right] + \left[\sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{x}) \right]$$

meta regret *base regret*

- Key idea: Exploiting the *second-order regret bound* on the meta level

$$\xrightarrow{\hspace{1cm}} \quad \ell_{t,i} = \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_{t,i} \rangle \quad \quad r_{t,i} \triangleq \langle p_t, \ell_t \rangle - \ell_{t,i} \quad \quad \sum_{t=1} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^\star} \rangle \lesssim \sqrt{\sum_{t=1} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^\star} \rangle^2}$$

e.g., exp-concave

$$\implies \sum_{t=1}^T f_t(\mathbf{x}_t) - \sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) \leq \sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle - \sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle^2 \leq \mathcal{O}(1)$$

Basic Idea

□ **Regret decomposition:** How to control meta-regret in two layers

$$\text{REG}_T = \left[\sum_{t=1}^T f_t(\mathbf{x}_t) - \sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) \right] + \left[\sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{x}) \right]$$

meta regret *base regret*

- Key idea: Exploiting the *second-order regret bound* on the meta level

$$\xrightarrow{\quad} \quad \ell_{t,i} = \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_{t,i} \rangle \quad r_{t,i} \triangleq \langle p_t, \ell_t \rangle - \ell_{t,i} \quad \sum_{t=1} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^\star} \rangle \lesssim \sqrt{\sum_{t=1} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^\star} \rangle^2}$$

e.g., strongly convex

$$\implies \sum_{t=1}^T f_t(\mathbf{x}_t) - \sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) \leq \sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle - \sum_{t=1}^T \|\mathbf{x}_t - \mathbf{x}_{t,i^*}\|^2 \leq \mathcal{O}(1)$$

Basic Idea

□ **Regret decomposition:** How to control meta-regret in two layers

$$\text{REG}_T = \left[\sum_{t=1}^T f_t(\mathbf{x}_t) - \sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) \right] + \left[\sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{x}) \right]$$

meta regret *base regret*

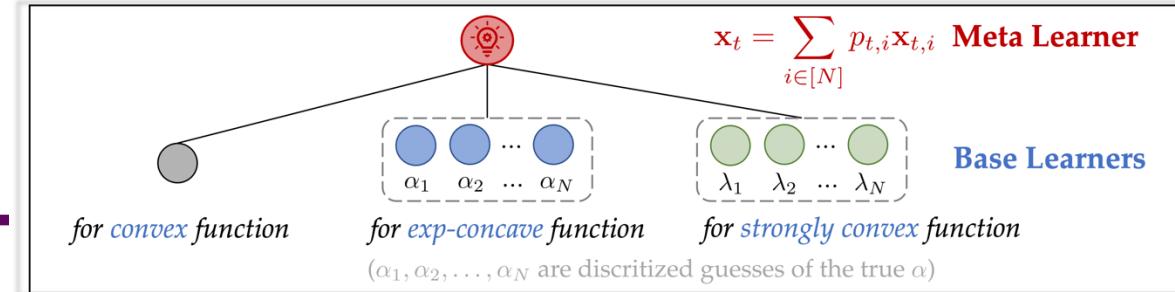
- Key idea: Exploiting the *second-order regret bound* on the meta level

$$\xrightarrow{\hspace{1cm}} \quad \ell_{t,i} \triangleq \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_{t,i} \rangle \\ r_{t,i} \triangleq \langle p_t, \ell_t \rangle - \ell_{t,i} \quad \sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle \lesssim \sqrt{\sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle^2}$$

e.g., convex

$$\implies \sum_{t=1}^T f_t(\mathbf{x}_t) - \sum_{t=1}^T f_t(\mathbf{x}_{t,i^*}) \leq \sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle \lesssim \sqrt{\sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle^2}$$

Key Techniques



□ How to obtain gradient-variation regret?

$$\left\{ \begin{array}{l} \textbf{What we want: } V_T = \sum_{t=2}^T \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla f_t(\mathbf{x}) - \nabla f_{t-1}(\mathbf{x})\|^2 \\ \textbf{What we have: } \bar{V}_T = \sum_{t=2}^T \|\nabla f_t(\mathbf{x}_t) - \nabla f_{t-1}(\mathbf{x}_{t-1})\|^2 \end{array} \right.$$

(in the t -th round, we query the gradient of $\nabla f_t(\mathbf{x}_t)$)

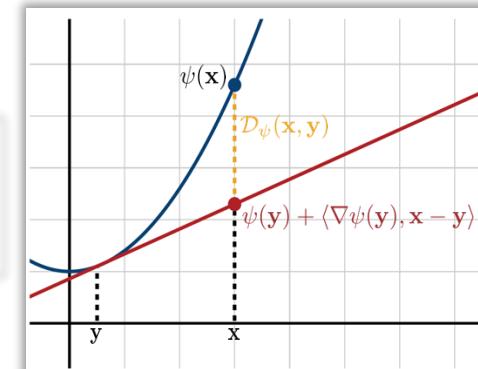
Our Solution:

A **tighter** upper bound for **squared** gradient change:

Definition 1 (Theorem 2.1.5 of (Nesterov, 2018)). $f(\cdot)$ is L -smooth over \mathbb{R}^d if and only if $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2 \leq 2L\mathcal{D}_f(\mathbf{y}, \mathbf{x})$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

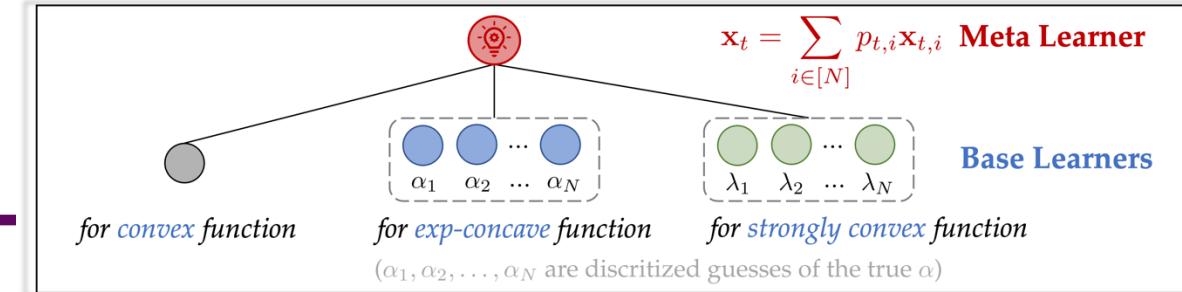
Bregman divergence: $\mathcal{D}_f(\mathbf{x}, \mathbf{y}) \triangleq f(\mathbf{x}) - f(\mathbf{y}) - \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$

tighter than $\|\nabla f_t(\mathbf{x}) - \nabla f_t(\mathbf{y})\|^2 \leq L^2 \|\mathbf{x} - \mathbf{y}\|^2$ by the smoothness assumption



Bregman divergence

Key Techniques



□ How to obtain gradient-variation regret?

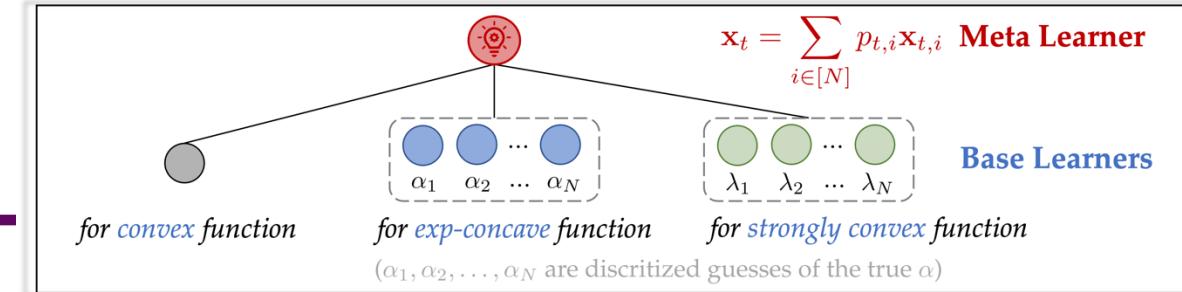
$$\left\{ \begin{array}{l} \textbf{What we want: } V_T = \sum_{t=2}^T \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla f_t(\mathbf{x}) - \nabla f_{t-1}(\mathbf{x})\|^2 \\ \textbf{What we have: } \bar{V}_T = \sum_{t=2}^T \|\nabla f_t(\mathbf{x}_t) - \nabla f_{t-1}(\mathbf{x}_{t-1})\|^2 \\ \text{ (in the } t\text{-th round, we query the gradient of } \nabla f_t(\mathbf{x}_t) \text{)} \end{array} \right.$$

Our Solution:

Definition 1 (Theorem 2.1.5 of (Nesterov, 2018)). $f(\cdot)$ is L -smooth over \mathbb{R}^d if and only if $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2 \leq 2L\mathcal{D}_f(\mathbf{y}, \mathbf{x})$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

$$\begin{aligned} \bar{V}_T &\lesssim \sum_{t=2}^T (\|\nabla f_t(\mathbf{x}_t) - \nabla f_t(\mathbf{x}^*)\|^2 + \|\nabla f_t(\mathbf{x}^*) - \nabla f_{t-1}(\mathbf{x}^*)\|^2 + \|\nabla f_{t-1}(\mathbf{x}^*) - \nabla f_{t-1}(\mathbf{x}_{t-1})\|^2) \\ &\lesssim L \sum_{t=2}^T \mathcal{D}_{f_t}(\mathbf{x}^*, \mathbf{x}_t) + V_T + L \sum_{t=2}^T \mathcal{D}_{f_{t-1}}(\mathbf{x}^*, \mathbf{x}_{t-1}) \leq 2L \sum_{t=1}^T \mathcal{D}_{f_t}(\mathbf{x}^*, \mathbf{x}_t) + V_T, \end{aligned}$$

Key Techniques



□ How to obtain gradient-variation regret?

$$\begin{aligned}
 \bar{V}_T &\lesssim \sum_{t=2}^T (\|\nabla f_t(\mathbf{x}_t) - \nabla f_t(\mathbf{x}^*)\|^2 + \|\nabla f_t(\mathbf{x}^*) - \nabla f_{t-1}(\mathbf{x}^*)\|^2 + \|\nabla f_{t-1}(\mathbf{x}^*) - \nabla f_{t-1}(\mathbf{x}_{t-1})\|^2) \\
 &\lesssim L \sum_{t=2}^T \mathcal{D}_{f_t}(\mathbf{x}^*, \mathbf{x}_t) + V_T + L \sum_{t=2}^T \mathcal{D}_{f_{t-1}}(\mathbf{x}^*, \mathbf{x}_{t-1}) \leq 2L \sum_{t=1}^T \mathcal{D}_{f_t}(\mathbf{x}^*, \mathbf{x}_t) + V_T,
 \end{aligned}$$

Solution:

$$\sum_{t=1}^T f_t(\mathbf{x}_t) - \sum_{t=1}^T f_t(\mathbf{x}^*) = \sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle - \sum_{t=1}^T \mathcal{D}_{f_t}(\mathbf{x}^*, \mathbf{x}_t) \quad (\text{algorithm-independent!})$$

Negative Bregman divergence can be seen as **compensation for linearization**.

Summary

- **Problem:** universal online learning with gradient variations
- **General framework:** online ensemble with adaptivity
- **General analysis:** meta-base regret decomposition
- **Key techniques:** empirical gradient variation decomposition + negative Bregman divergence from linearization

References

❖ Universal Online Learning:

- van Erven et al.. Metagrad: multiple learning rates in online learning, NIPS'16
- Wang et al.. Adaptivity and optimality: a universal algorithm for online convex optimization, UAI'19
- Wang et al.. Adapting to smoothness: a more universal algorithm for online convex optimization, AAAI'20
- Zhang et al.. A simple yet universal strategy for online convex optimization, ICML'22

❖ Collaborative Online Ensemble:

- Zhao et al.. Adaptivity and non-stationarity: Problem-dependent dynamic regret for online convex optimization, JMLR

❖ Our Works:

- Yan-Zhao-Zhou. Universal online learning with gradual variations: A multi-layer online ensemble approach, NeurIPS'23
- Yan-Zhao-Zhou. A Simple and Optimal Approach for Universal Online Learning with Gradient Variations, NeurIPS'24