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Problem Setup LAIVIDA

Learning And Mining from DatA

O Online Convex Optimization (OCO)

Ateachroundt=1,2,...,T":
- the learner submits x; € X C R?

- at the same time, environments decide a convex loss function f; : X — R

- the learner suffers f;(x;) and receives gradient information of the loss function

O Regret: Online prediction as good as the best offline model

|

cumulative loss of best offline model
mm Z ft f if

T
RegT é Z ft (Xt
=1 cumulative loss of the online model

| ]
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Problem Setup LAVIDA

Learning And Mining from DatA

O Curvatures in OCO

REG~+ = Z ft (Xt) — ;%12 Z ft (X) exp-concave
t

convex

Online learning usually considers three kinds of curvatures:
- convex: f(x) — f(y) < (Vf(x),x —y)forany x,y € X.
- A-strongly convex: f(x) — f(y) < (VF(x),x —y) — 3[x — y|%
- a-exp-concave: f(x) — f(y) < (VF(x),x —y) — $(VF(x),x —y)2
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Problem Setup

LAVIDA

Learning And Mining from DatA
O Curvatures in OCO
T T
REGr 2 ;fa»ca —min » _ fi(x)

exp-concave

convex

In OCO, the type of functional curvature plays an important role

in the best attainable regret bounds.

Function type Algorithm Regret
convex Online Gradient Descent with , ~ - O(VT)
A-strongly convex | Online Gradient Descent withn, = {5 | O(+ -logT)
a-exp-concave Online Newton Step with « O(+ - dlogT)
Universal Online Learning with Gradient Variations
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Problem Setup LAIVIDA

Learning And Mining from DatA

O Curvatures in OCO

T
REGT éth(xt mlﬂth
t=1

In OCO, the type of functional curvature plays an important role

in the best attainable regret bounds.

Classical algorithms are only suitable for one specific curvature type.

What if the curvature type is unknown?

In this talk, we focus on universal online learning, where the curvature is unknown.
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Problem Setup LAIVIDA

Learning And Mining from DatA

O Universal Online Learning

T
REGT(A, {fi}i—1) = th(xt mmet
=1

In this talk, we focus on universal online learning, where the curvature 1s unknown.

Universal Regret Minimization

(REGr(Ase, F2), when {f,}7, belongs to F_\

REG (A, {fi},) = ! REG(Aec, Fer); when {f:}1_, belongs to F,
REGT(Ac, Fe), when {f;}/_; belongs to F,

\
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Problem Setup LAIVIDA

Learning And Mining from DatA

O Problem-dependent regret

- Regret measured by T only considers the worst-case scenarios.

- Can we exploit the niceness of environments for improved results?

1000

Gradient variation:
T
Ve £ sup [V fi(x) = Vo (%))

i—o xeX s00]

800

o(T)

. .. : . OV
cumulative variations in gradients, (V)

reflecting the difficulty of online problems

0 R S ‘ T

0 200 400 600 800 1000

The regret bounds can be strengthened to O(5 log Vi), O(£ log V), and O(v/ V7).
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Problem Setup

0 Why do we study gradient variation?

Gradient variation:
T

Ve 23 sup [Vfi(x) — Vi ()]

t=2 xeX

cumulative variations in gradients,
reflecting the difficulty of online problems.

(1) Gradient variation implies other problem-dependent quantities directly in analysis.

e.g.,

Small-loss term:;

cumulative loss of the best model

Gradient—variance term:

U= Z sup

xEX

Vi(x) = = Zw;

variance of grad/ents

(i1) Gradient variation can bridge stochastic and adversarial online optimization.

E [Sachs et al., Between stochastic and adversarial online convex optimization: Improved regret bounds via smoothness, Neurl PS 2022]

(iii) Gradient variation in achieving fast rates in games.

£ [Syrgkanis et al., Fast convergence of regularized learning in games, NIPS 2015 (Best Paper Award)]

(iv) Gradient variation in accelerated convex smooth optimization.
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Main Result Overview LANbA

Learning And Mining from DatA

0 Our Results

Theorem 1. Under standard assumptions (boundedness and smoothness), our algorithm
e achieves O(log Vi) regret for strongly convex functions;
 achieves O(dlog Vi) regret for exp-concave functions;
 achieves O(/Vr) regret for convex functions.

Vr =3, supyex |V fi(x) = Vo1 (x)||? is the gradient variation.

A single algorithm with simultaneously optimal gradient-variation regret bounds

for convex/exp-concave/strongly convex functions.
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Main Result Overview LANbA

Learning And Mining from DatA

[0 Comparison with previous works

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex,
exp-concave, and convex functions, following the O(-)-notation. “# Gradient” is the number of gradient queries
in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works Regret Bounds Efficiency
Strongly Convex Exp-concave Convex # Gradient | # Base
van Erven and Koolen [2016] dlogT dlogT VT 1 logT

The first universal result from Tim van Erven.
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Main Result Overview

[0 Comparison with previous works

LAVIDA

Learning And Mining from DatA

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex,
exp-concave, and convex functions, following the O(-)-notation. “# Gradient” is the number of gradient queries
in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works Regret Bounds Efficiency
Strongly Convex Exp-concave Convex # Gradient | # Base
van Erven and Koolen [2016] dlogT dlogT VT 1 logT
Wang et al. [2019] logT dlogT VT 1 logT
Improved by [Wang et al., UAI 2019] for strongly convex functions.
Universal Online Learning with Gradient Variations Yu-Hu Yan 11



Main Result Overview LANbA

Learning And Mining from DatA

[0 Comparison with previous works

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex,
exp-concave, and convex functions, following the O(-)-notation. “# Gradient” is the number of gradient queries
in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works Regret Bounds Efficiency
Strongly Convex Exp-concave Convex # Gradient | # Base
van Erven and Koolen [2016] dlogT dlogT VT 1 logT
Wang et al. [2019] logT dlogT VT 1 logT
Zhang et al. [2022] log min{Vr, Fr} dlogmin{Vr, Fr} VFr logT log T

The first problem-dependent regret m universal OCO.
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Main Result Overview

[0 Comparison with previous works

LAVIDA

Learning And Mining from DatA

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex,
exp-concave, and convex functions, following the O(-)-notation. “# Gradient” is the number of gradient queries
in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works Regret Bounds Efficiency
Strongly Convex Exp-concave Convex # Gradient | # Base
van Erven and Koolen [2016] dlogT dlogT VT 1 logT
Wang et al. [2019] logT dlogT VT 1 logT
Zhang et al. [2022] log min{Vp, Fr} dlogmin{Vy, Fr} VFr log T logT
Yan et al. [2023] logmin{Vy, Fr} dlogmin{Vy, Fr} min{\/VrlogVr,\/FrlogFr} 1 (log T)?

Our improved gradient-variation bound via a multi-layer online ensemble approach.
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Main Result Overview

[0 Comparison with previous works

LAVIDA

Learning And Mining from DatA

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex,
exp-concave, and convex functions, following the O(-)-notation. “# Gradient” is the number of gradient queries
in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works Regret Bounds Efficiency
Strongly Convex Exp-concave Convex # Gradient | # Base
van Erven and Koolen [2016] dlogT dlogT VT 1 logT
Wang et al. [2019] logT dlogT VT 1 logT
Zhang et al. [2022] log min{Vy, Fr} dlog min{Vr, Fr} VFr logT logT
Yan et al. [2023] logmin{Vy, Fr} dlogmin{Vy, Fr} min{\/VrlogVr,\/FrlogFr} 1 (log T)?

An open problem in [Yan et al., NeurIPS 2023]:

Is 1t possible to achieve the optimal universal gradient-variation regret, with an

efficient approach (i.e., one gradient query and O(log T) base learners)?
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Main Result Overview

[0 Comparison with previous works

LAVIDA

Learning And Mining from DatA

Table 1: Comparison with existing results. The second column shows the regret bounds for strongly convex,
exp-concave, and convex functions, following the O(-)-notation. “# Gradient” is the number of gradient queries
in each round, where “1” represents exactly one gradient query. “# Base” stands for the number of base learners.

Works Regret Bounds Efficiency
Strongly Convex Exp-concave Convex # Gradient | # Base
van Erven and Koolen [2016] dlogT dlogT VT 1 logT
Wang et al. [2019] logT dlogT VT 1 logT
Zhang et al. [2022] log min{Vp, Fr} dlogmin{Vy, Fr} VFr log T logT
Yan et al. [2023] logmin{Vy, Fr} dlogmin{Vy, Fr} min{\/VrlogVr,\/FrlogFr} 1 (log T)?
Ours logmin{Vy, Fr} dlogmin{Vy, Fr} min{+/Vr,VFr} 1 logT

This work: Optimal problem-dependent regret with an efficient approach.
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A General Framework

[0 Online Ensemble

[Zhao-Zhang-Zhang-Zhou, JMLR 2024]

Universal Regret Minimization
REG (Asc, F2).
REG7 (Aec, Fot)s
REGy(Ae, Fo),

when {f;}7_, belongs to F2,
when {f;} 1
when {f,}/_,

_ belongs to 7

ec?

REGT (A, {fi}i1) =
belongs to F,

General goal: To handle the uncertainty of environments.

———— — — — — — —

for convex function for exp-concave function

| I(O Q OI Base Learners
A Ay ..

———— — — — — — —

for strongly convex function

Z Pt.iXt; Meta Learner
i€[N]

» Base learners guess the curvature (str-convex/exp-concave/cvx).

» Meta learner tracks the best base learner.
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Basic Idea

[ Regret decomposition: How to control meta-regret in two layers

T
REGT — Z ft(xt) —
t=1

T
> felxee)
t=1

meta regret
* Key idea: Exploiting the second-order regret bound on the meta level

base regret

T
th(xt,z mlﬂth }
t=1

(second-order bound,
e.g., Adapt-ML-Prod)
[Gaillard et al, COLT 2014]

Universal Online Learning with Gradient Variations

T

(Vfe(Xe), Xe = Xe0) S \ > (Vfilx),

t=1

Xt — Xt,i* >2

LAVIDA

Learning And Mining from DatA

[Zhang et al., ICML 2022]
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Basic Idea AIV

[ Regret decomposition: How to control meta-regret in two layers

T
S i) mmzft }
t=1

base regret

T T
REGr = Z fe(xt) — th(xt,i*)
t=1 t=1

meta regret
* Key idea: Exploiting the second-order regret bound on the meta level

lei &V fu(xe), X4, T T
¢, . (Vfe(x¢)s Xe,4) Z(Vft(xt),xt — Xpi) < \ Z Vfi(x0), X¢ — Xp0 )2
B t=1 t=1

Yu-Hu Yan
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Basic Idea LANbA

Learning And Mining from DatA

[ Regret decomposition: How to control meta-regret in two layers

T P T
REGT = th(xt) — th(xt,v:*) th(xt,z mmet }
t=1 t=1 t=1

meta regret base regret

* Key idea: Exploiting the second-order regret bound on the meta level
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Basic Idea AIV

[ Regret decomposition: How to control meta-regret in two layers

T
th(xtz mlﬂth }
t=1

base regret

T T
REGr = Z fe(xt) — th(xt,i*)
t=1 t=1

meta regret
* Key idea: Exploiting the second-order regret bound on the meta level

A , I -
:> E ; <Vft(Xt) Xt 7,> Z vft Xt — Xy i* > < \ Z Vft Xt s Xt — Xt,f.i*>2
= t=1 t=1

<pt9€t> E
e.g., convex
T T T
:> th (x¢) Z (xt.4+) Z (V fe(x¢), Xt —Xp,4%) \IZ VI(xe), X —Xe,00)% | o~
— t=1 t=1 t=1
Yu-Hu Yan
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Xy = Z ptiX:,; Meta Learner
i€[N]

® e T
A
ves “ee |
Key Techniques | QLD maseeames
(L2 02 - on | (AL Az o A
for convex function for exp-concave function  for strongly convex function

[0 How to obtain gradient-variation regret?
What we want: V; = 22‘;2 SUDye v ||V Fi(x) = Vo1 (x)|]?

What we have: V = Zfzz |V fe(x:) — Vft—1(xt—1)||2

Our Solution:

A tighter upper bound for squared gradient change:

Definition 1 (Theorem 2.1.5 of (Nesterov, 2018)). f(-) is L-smooth over R? if and
only if |V [(x) — V[(y)||? < 2LD;(y,x) for any x,y € R%.

Y X

tighter than |V f;(x) — V f,(y)[|* < L?|x — y||* by the smoothness assumption Bregman divergence

Universal Online Learning with Gradient Variations Yu-Hu Yan 21



Xt = Z ptiXt,i Meta Learner
i€[N]

® e T
A
ves “ee |
Key Techniques | QD] pase eames
(L2 02 - on | (AL Az o A
for convex function for exp-concave function  for strongly convex function

[0 How to obtain gradient-variation regret?

What we want: Vi = 22‘;2 SUDye v ||V fi (%) = Vi1 (%)]?
What we have: V = Zfzz |V fe(x:) — vft—l(f"it—l)HQ

Our Solution: Definition 1 (Theorem 2.1.5 of (Nesterov, 2018)). f(-) is L-smooth over R? if and
only if |V f(x) — Vf(y)|* < 2LD;(y.x) for any x,y € R

T
Ve S ) (IVfelxe) = VAP + IV fo(x") = Vima )P+ [V 1 (x7) = V fima (x0-1) %)

o 7 m

T
SLY Dy (x*.x) + Vo + LY Dy, (x*,x4-1) <20 Dy, (x*,x¢) + Vi,
t=2

t=2 t=1

!

Universal Online Learning with Gradient Variations Yu-Hu Yan 22



Xt = Z ptiXt,i Meta Learner
i€[N]

Key Techniques 000 (00-0) nuetomen

for convex function for exp-concave function  for strongly convex function

[0 How to obtain gradient-variation regret?

T
Vr S ) (IVfilxe) = VAP + IV fo(x™) = Voot )P+ [V fem1 (xF) = Vi1 (x6-1) %)

o e Y

T
LZfo (x*,x¢) +VT+LZD1} (x*,x1) <2LZDfT (x*,%x¢) + Vo,
t=2 t=2 t=1

A

T T
Solution: Z fe(xy) — Z (V fe(xe),xe —x")— Z Dy, (x*,x;) (algorithm-independent!)
= t=1

HMFH
—_
b

Negative Bregman divergence can be seen as compensation for linearization.
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Summary LAIVIDA

Learning And Mining from DatA

O Problem: universal online learning with gradient variations
O General framework: online ensemble with adaptivity
[ General analysis: meta-base regret decomposition

O Key techniques: empirical gradient variation decomposition + negative

Bregman divergence from linearization

Universal online learning with gradient variations: A multi-layer online ensemble approach, NeurIPS’23 (Spotlight) Th k ,
anks.

A simple and optimal approach for universal online learning with gradient variations, NeurIPS’24
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