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Notational Convention
- In]=A{1,...,n}

- X,y,V: vectors

- A, B: matrices

- X, Y, K: domain

d, m,n: dimensions

I': identity matrix

X,Y: random variables

D, q: probability distributions
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Function

* Function mapping f:dom f C X CR" - Y CR™

Definition 1 (Continuous Function). A function f : R” — R™ is continuous at
x € dom f if for all € > 0 there exists a 6 > 0 with y € dom f, such that

Iy =xll2 <0 = [If(y) = fFx)[]2 < e

o
[}
T
Eimcamnz
PV-n

Continuous Optimization Discrete Optimization
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Part 1. Calculus

e Gradient and Derivatives

e Hessian

 Chain Rule
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Gradient and Derivatives (First Order)

- The gradient and derivative of a scalar function (f : R — R) is the same.

- The derivative of vector functions (f : X C R? — R) is the transpose of
its gradient.
we focus on the “qradient” language (i.e., column vector)

Definition 2 (Gradient). Let f : X C R? — R be a differentiable function. Let
X = [x1, -+ ,14]' € X. Then, the gradient of f at x is a vector in R? denoted

by V f(x) and defined by
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Example

Example 1. The gradient of f(x) = Hng = Zle x? is

25131
Vfx)= : = 2X.
QZEd

Example 2. The gradient of f(x) = — Zle x; Inx; is

 —(Inzy +1)
Vfx) = '

—(Inxg+1)
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Hessian (Second Order)

Definition 3 (Hessian). Let f : X C R? — R be a twice differentiable function.
Let x = [z1,---,24]' € X. Then, the Hessian of f at x is the matrix in R%*¢

denoted by V2 f(x) and defined by

0° f
V00 = | o)
0x;, X; 1<i,j<d
Example 3. The Hessian of f(x) = — Zle z;lnx;is VA f(x) = diag(—%, ey —é)

2 2 2
62125 O6xixe — 975

- _ 3.2 3 1ic 72 _
Example 4. The Hessian of f(x) = x725—3x125+1is V* f(x) [6:8%372 022 229 — 18my2s)|

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries 9



Chain Rule

 Consider scalar functions for simplicity.

Chain Rule. For h(x) = f(g(x)),
- the gradient of h(x) is h'(z) = f'(g9(x))g’ (x).
- the Hessian of h(z) is " (z) = f"(g(2))(g'(%))* + f'(9(x))g" (z).

Backpropagation...

d SSR _ d SSR 9 d Predicted
dws d Predicted d ws

d SSR _ d SSR 5 d Predicted
d Predicted

d SSR . d SSR " d Predicted
B i L Src: https://www.youtube.com/watch?v=iyn2zdALii8
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Reference: The Matrix Cookbook

The derivatives of vectors, matrices, norms,

determinants, etc can be found therein.

2.4.1 First Order

oxTa
ox
da’Xb
oX
0a’X"h
oX
da’Xa
oX
0X
0X, ij
O(XA)i;
0X,n
d (XTA) ij
0Xmn

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

0aTXTa
0X
3

Jim (A)nj

Jin(A)mj

aaT

(I A)ij

(I A)ij

(69)
(70)
(71)
(72)
(73)
(74)

(75)

2 Derivatives

This section is covering differentiation of a number of expressions with respect to
a matrix X. Note that it is always assumed that X has no special structure, i.e.
that the elements of X are independent (e.g. not symmetric, Toeplitz, positive
definite). See section for differentiation of structured matrices. The basic
assumptions can be written in a formula as

that is for e.g. vector forms,

B_x _ 3.’1’:1‘
dy ,L._ dy

0Xr
0X;i

= 0,015

6_3: Oz
dy i_ayi

3_)(] _ 61121
dy ij

g O

(32)

The following rules are general and very useful when deriving the differential of

an expression ([19]):

dA
d(aX)

d(det(X)
d(det(X)
8(In(det(X))
ax*
axH

L | | | | O A1

0
adX

0X + 9Y

Tr(6X)

(0X)Y + X(9Y)

(0X) oY + X o (0Y)
(X)®Y+X®(0Y)
-X1ex)x™*
Tr(adj(X)0X)
det(X)Tr(X 10X)
Tr(X~'9X)

(0x)*

(@x)"

(A is a constant)

(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
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https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Part 2. Linear Algebra

* Positive (Semi-)Definite Matrix
 Rank
* Inner Product, Norm, Matrix Norm

* Matrix Decomposition
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Positive (Semi-)Definite Matrix

Definition 4 (Positive Definite, PD). A matrix A € R%*4 is positive definite, if
for all x # 0,x ' Ax > 0, usually denoted as A = 0.

Definition 5 (Positive Semi-Definite, PSD). A matrix A € R%*¢ is positive
semi-definite, if for all x € R%, x' Ax > 0, usually denoted as A = 0.

Especially useful for defining some distance metric
* Ix—ylla

* Sometimes the matrix should be “localized”, like ||X¢ — X« || 4,

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries 13




Rank

* Rank: the dimension of the vector space spanned by its columns,
or the maximal number of linearly independent columns.

Example 5.
1 2 1] 1 2 1 | 1 2 1 ]
A= | —2 —3 1 | Hatfemf ) g 1 g | D3OtHsmAs | g 1 3
3 5 0| '3 5 0 0 -1 -3
1 2 1] i —5 ]
R2—|—}%3—>R3> O 1 3 —2}%24—}%1—)}%1>
0 0 O

mm) The rank of matrix A is 2.

Advanced Optimization (Fall 2025)
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Low rank: Robust PCA

e Robust PCA formulation

min | X = X[+ [1£].

input X low rank HXH* sparse | X — XHl

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Inner Product

* Vector Space: consider x,y € R¢, then

d
(x,y)=x'y = Z TiYi

1=1

Example in ML: linear regression, feature similarity calculation, ....

* Matrix Space: consider A, B € R™*", then

(A,B) =Tr (A" B) Z Z A;;iBi;

=1 5=1

Example in ML: covariance matrix, PCA, LDA, matrix factorization....

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Vector Norm

* The following norm can be induced based on inner product

1/2
Ixlla = (x %)% = /a2 + -+ 22

usually called ¢2-norm, or Euclidean norm.

- {;-norm: - General ¢,-norm:

x|l = (lz1P + - 4 |z, [P)P
x|l = |1 + -+ |24 1x[lp = (|1 zq|")

/ - Quadratic norm:
B |4 = VxTAx,

I%ljoo = max{|a1],... |zdl} where A € R%*4 is positive semi-definite.
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Vector Inner Product vs Norm

* Norm: tells you “how big” a vector is.

* Inner product: tells you “how two vectors align” (geometry).

 Every inner product gives a norm, but not every norm comes from
an inner product.

* Hilbert space = Banach space + geometry (orthogonality, projection).
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Dual Norm

Let || - || be a vector norm on R?. The associated dual norm || - ||, is defined as

|yl =sup {y "x|[x]| < 1}

Proposition 1. The dual of £,-norm is the £,-norm with - + _ = 1.

e.g., the dual of /o-norm is still />-norm,
the dual of ¢/{-norm is ¢.,-norm.

The dualof || - ||ais | - || a-2

Proposition 2. Holder’s inequality: (x,y) < ||x|| - ||y ||«

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Norm Relationship

Qualitative:

Lemma 1 (Mathematical Equivalence of Norms). Suppose that || - ||, and || - ||»
are norms on R?, there exist positive “constants” o and B, for all x & R? such that

allxlla < [Ix[lp < BlIx]la-

Notice: constants may depend on dimension!

For example: for any x € R¢, the following inequalities hold:

o alxlh < lxllo < NIl

o [xlloo < IIx[l2 < Vx|l

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries 20



Matrix Norm

Three different versions:

* operator norm
* entrywise norm

* Schatten norm

Mars \

\ $ AND AP ’
U TR R | R

Hix 3

FBE DTSR SKERIA

related pages can be found in
readings of the course web

Advanced Optimization (Fall 2025)

Lecture 1. Preliminaries

21



Matrix Operator Norm

e Consider a matrix A € R™Mx",

We define its operator norm based on the aforementioned vector norm.

Definition 6 (Matrix Operator Norm). The operator norm (or called induced
norm) of a matrix A € R™*" is defined by

P XERd,X#O}.

|14l , & max
Pr 1|

the norm in the right-hand side is defined over the vector space.

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries 22



Matrix Operator Norm

e Consider a matrix A € R™*"

- {1-norm (max-column-sum norm):

J

™m
[Allop,1 = maXZ Ajjl
clnl i
- fso-norm (max-row-sum norm):

[Allop,c0 = 52[%{] Z | Asj|
=1

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Matrix Operator Norm

e Consider a matrix A € R™*"

- {y-norm (spectral norm):

A — :
I HOp,2 riré???]c\az\

.
where A = ) o,u;v
i=1

T

1

, hamely, o; is the i-th singular value.

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Matrix Entrywise Norm

e Consider a matrix A € R™*"

The entrywise norm is defined by treating matrices as vectors.

Definition 7 (Matrix Entrywise Norm). The entrywise norm of a matrix A &
R™*™ is defined by

1/p

| Allen,, < ZZ A |7

1=1 7=1

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries 25



Matrix Entrywise Norm

e Consider a matrix A € R™*"

- {1-norm (sum norm):
™m n
[Allens =D > |44
i=1 j=1

- Frobenius-norm:

m

1Al[e = \ > > A

i=1 j=1

- {so-norm (max norm):

| Allen,o0 = max max | A;;
i€[m] j€[n]

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Matrix Schatten Norm

e Consider a matrix A € R™*"

The Schatten norm is defined via the singular values.

R™*™ with rank r is defined by

r

( 1/p
(Zaf) . forl<p< oo
| Allsc,p = 4 N7

max |o;]| , for p= o0
\ 2€[7]

where 01, - - , 0, are the singular values of A.

Definition 8 (Matrix Schatten Norm). The Schatten norm of a matrix A €

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Eigen Value Decomposition

Let A be an d x d PSD matrix, then it can be factored as

A=QAQ",
where (a) Q = (v1,...,vq) € R¥*?ig orthogonal, i.e., Q' Q = I and vy, ..., vy
are eigenvectors; and (b) A = diag (\1,--- ,A\g) and Ay, --- , A4 are eigenvalues.

Some concerned terms can be expressed by eigenvalues:

- A=Y Aviv] = [ Allop.2 = max A

- det(4) = [T, A ;
- |Allg = )2
- Tr(A) = 0 N Al \ ; ’L

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries 28



Singular Value Decomposition

Suppose A € R™*™ has rank r, then it can be factored as

values.

A=UxV',
where (a) U = (uq,...,u,) € R™*"satisfiesU ' U = I,V = (vq,...,v,) € R*X"
satisfies V'V = I; and (b) ¥ = diag(oy, -+ ,0,) and oy, , 0, are sigular

Some concerned terms can be expressed by sigular values:

T
- A — Z aiuiv,;r

1=1

-
- [[Allop,2 = max |o| - [[A]lr = o;
i€[r] i=1

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Part 3. Statistics, Information Theory

 Concentration Inequalities
* Entropy
* KL divergence

* Bregman Divergence

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Concentration Inequalities

Theorem 2 (Markov’s Inequality). Let X be a non-negative random variable with
E[X] < oo, then forall t > 0,

Pr[X > tE[X]] < %
Proof. Pr[X >{E[X]]= ) Pr[X =g
x>tE[X]
X . x
< Z PI‘[X — CU] : tE[X] (USIHg tE[X]) > 1)
x>tE[X]

< Z Pr|X = x| - EX] (extending non-negative sum)

=E [i] _! (linearity of expectation)

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Concentration Inequalities

Theorem 2 (Markov’s Inequality). Let X be a non-negative random variable with
E[X] < oo, then forall t > 0,

Pr[X > tE[X]] < %

Theorem 3 (Chebyshev’s Inequality). Let X be a non-negative random variable
with E[X], Var[X| < oo, then for all e > 0,

o Var[X].

Pr[|X — E[X]| > {

Chebyshev’s inequality can be immediately obtained from Markov’s inequality.

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Concentration Inequalities

* [f we have more information: random variables are sampled from
the same distribution independently (i.i.d.) = better concentration

Theorem 4 (Hoeffding’s Inequality). Let X1, ..., X,, be i.i.d. random variables,
and X; € [a,b] forall i € [m)]. Let S,,, = >_.", X;. Then, for any ¢ > 0,

Pr[Sm —E[Sn] > €] <exp (—262/(m (b—a)’ )) )

Pr[Sy, — E[Sy] < —¢] < exp (—262/(m (b— a)’ )) .

Consequently, we have

Pr [|Sm —E[Sm] | > €] <2exp (—262/(m (b — a)2)) :
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Example

* Estimating the probability of heads in a (biased) coin toss. Py

¢ Unknown probability: Pr|X; =1]=p, Pr[X;=0=1-p. ?”
Y.

.

o Estimator: p= 13" X,

o Property: Elp] =p, Varlp]= # > iy Var[X;] = p(;p) .

¢ To ensure:

Prllp—p|>¢€¢ <9 e.g.,d = 0.001

> How many times do we need to toss the coin at a minimum?
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Example

* Estimating the probability of heads in a (biased) coin toss. Py

¢ Unknown probability: Pr|X; =1]=p, Pr[X;=0=1-p. ?ﬂ
RV

.

o Estimator: p= 13" X,

o Property: Elp] =p, Varlp]= # > iy Var[X;] = p(;p) .

Theorem 3 (Chebyshev’s Inequality). Let X be a non-negative random variable
with E[X], Var[X| < oo, then for all e > 0,

Pr[|X —E[X]| > ¢ <

Var|p] :p(l—p) 1 <5 > m> 1 250

Prilp—p|l > €] <
tp—plze < —3 —
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Example

* Estimating the probability of heads in a (biased) coin toss. Py

¢ Unknown probability: Pr|X; =1]=p, Pr[X;=0=1-p. %
RV

.

o Estimator: p= 13" X,

o Property: Elp] =p, Varlp]= # > iy Var[X;] = p(;p) ‘

Theorem 4 (Hoeffding’s Inequality). Let X,..., X,, be i.i.d. random variables,
and X; € [a,b] foralli € [m]. Let S,,, = >_." | X;. Then, for any ¢ > 0,

Pr HSm — E [Sp] ‘ > ¢| < 2exp (—262/(m (b — a)2)) :

1 2 3.8
AN 2 -~
Pr [m|p — p| > me] < 2exp (—2me?) <6 @mzﬁlngf\,?
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Pr{p—p|l>¢€ <9
e.g., 0 = 0.001

Concentration Inequalities

* An example: Estimating the probability of heads in a coin toss.

o Bstimate: 52 LYV, X, Efl=p Varfp] = 5 X7, VarlX,] = 22

m™m

=
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High Probability Bounds

In ML, many papers/theorems state with probability 1 — ¢ ...

* “Fake” high-probability (loose):

144

o Deviation scales as O (polyx) Prip—pl=¢ =<9

¢ polynomial tail = failure probability is not truly small. 2

o Example: Markov inequality, Chebyshev inequality. e.g., 0 = 0.001 )

: e e i
* True high-probability (tight) m > 4125 _ 220
€ €

o Deviation scales as O (log %) . 9 38

o exponential tail = failure probability small. mzoshs~ 5

o Example: Hoeffding’s Inequality.
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Definition 2.3 (PAC-learning) A concept class € is said to be PAC-learnable if there
exists an algorithm A and a polynomial function poly(-,-,-,-) such that for any
e >0 and d > 0, for all distributions D on X and for any target concept ¢ € €, the
following holds for any sample size m > poly(1/€,1/6,n, size(c)):

P [R(hg) <€ >1-04. (2.4)

S‘N f_D T

If A further runs in poly(1/e,1/d,n, size(c)), then C is said to be efficiently PAC-
learnable. When such an algorithm A exists, it is called a PAC-learning algorithm

for €.

Theorem 3.3 Let G be a family of functions mapping from Z to [0,1]. Then, for any
0 > 0, with probability at least 1 — 0 over the draw of an i.i.d. sample S of size m,

each of the following holds for all g € G:

m

E[Q( )] < _Zg Zi ‘|‘2mm(9)

=1

C)«lH

log <

5 (3.3)

Foundations of Machine Learning (2nd Edition)
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Entropy

* Entropy measures the uncertainty, which is the most basic
concept in the information theory.

Definition 9 (Entropy). The entropy of a discrete random variable X with
probability mass function p(z) = Pr[X = x| is denoted by H(X):

— Y p(z)log(p(z)).

reX

An explanation of entropy: log,(1/p(z)) is the code length needed to encode the info.,
then entropy H (X ) measures the expected code length to encode a distribution p.

— The entropy is a lower bound on lossless data compression and is therefore a
critical quantity to consider in information theory.
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KL Divergence (Relative Entropy)

Definition 12 (KL Divergence). The Kullback-Leibler (KL) divergence (relative
entropy) of two distributions p and q is defined by KL(p||q):

L(pllg) = ) p(= log[ E;]

reX

with the conventions 0log 0 = 0, 0 log % = 0,and alog § = +oo for a > 0.

Proposition 1.

- KL divergence is always non-negative;

- Pinsker’s inequality: KL(p|lq) > L ||p — q||.
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Bregman Divergence

Definition 13 (Bregman Divergence). Let i) be a convex and differentiable
function over a convex set I, then for any x,y € K, the bregman divergence
D,, associated to v is defined as

Dy (x|ly) = ¥(x) — ¥(y) — (Vi(y), x —y).

Table 1: Choice of 9 (-) and the Bregman divergence.

W (x) Dy (x]ly)
Squared L»-distance 1x|13 Ix—yl3
Mahalanobis distance HXHé |x — YHEQ .
negative entropy > i rilogx;  KL(x[|y) y L

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries 42



Bregman Divergence

Definition 13 (Bregman Divergence). Let i) be a convex and differentiable
function over a convex set I, then for any x,y € K, the bregman divergence
D,, associated to v is defined as

Dy (x|ly) = ¥(x) — ¥(y) — (Vi(y), x —y).

Q: Is its importance due to generality?

Not exactly, consider more general one like
D5 (x[ly) = (%) —(y)? — (Vi(y), x — y)7.

:> Bregman divergence measures the difference

of a function and its linear approximation y X

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Part 4. Asymptotic Notations

e Definition
e [llustration

* Example

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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Definition

O©(g(n)) = {f(n) | there exist positive constants ¢y, ¢, and ng such that
%

0<cig(n) < f(n) <cog(n)forall n >mng}.
)

- O(g(n)) = {f(n) | there exist positive constants ¢ and ng such that 0 <
f(n) <cg(n) forall n > ng}.
- Q(g(n)) = {f(n) | there exist positive constants ¢ and ngy such that 0 <
cg(n) < f(n) forall n > ng}.
o(g(n)) = {f(n) | for any positive constant ¢ > 0, there exists a constant

o0 > 0suchthat0 < f(n) < cg(n) forall n > ng}.

S

&

(9(n)) = {f(n) | for any positive constant ¢ > 0, there exists a constant
ng > 0 such that 0 < cg(n) < f(n) forall n > ng}.

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries
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[llustration

c28(n) cg(n)
f(n)
7 /)
ci18(n) cg(n)
| 5 CONCRETE MATHEMATICS
n n : n

Ho no " A FOUNDATION FOR COMPUTER SCIENCE
f(n) = QM)

f(n) = B(g(n)) f(n) = 0(g(n))

GRAHAM o KNUTH © PATASHNIK

O Q
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Example

- 3n® +2n? +n +logn = O(n?)

) A 2 n )

- O(1) < O(logn) < B(n) < B(nlogn) < O (n?) < O (2") < O(n!)

Theorem 4. Under Assumptions 1, 2, and 3, set the pool of candidate step sizes H as Theorem 6 (Dynamic NE-Regret). When x-player fol-

lows Algorithm 1 and y-player follows Algorithm 2, we

_ i 1 D? i1\ |, have the following dynamic NE-regret bound:
H{nzmln{SL, 8G2T.2 }ZE[N]}, (26)
T i
i : i

where N = [2711ogy(G?*T/(8D?L?))] + 1 is the number of candidate step sizes; further DynNE-Reg; = th Ayr — Z;g‘i\n ;2%}{ x Ay
set the correction coefficient as X = 2L and the learning rate of the meta-algorithm as t=1 t=1 " o
e =min {1/(8D?L), \/(ln N)/(D2(|Vfi(x1)|13 + Vr))}. Then, Sword++ satisfies = O( min{\/(l +Vr)(1+ Pr)+ Pr,1+ WT})

q /Y
> filox) = 3 fitw) < O (\/(L+ Pr+ V)@ + Pr) )
=1

t=1

two examples of theorem statement

for any comparator sequence uy, ..., up € X. In above, Vp = 1o ||V fi(x¢) =V fr_1(x¢—1) I3
is the variant of gradient variation V.

It is both fine to use “ =" or “\leq”
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Outline

* Math Background

 Calculus, Linear Algebra
* Probability & Statistics

* Information Theory, Asymptotic Notations
* Convex Optimization Basics

* ML as Optimization
* Convex Function, Convex Set

* Convex Optimization Problem
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Learning by/as Optimization

The fundamental goal of (supervised) learning: Risk Minimization (RM),

%173 E(x,y)~plf (h(x),y)],

where
- h denotes the hypothesis (model) from the hypothesis space H.
- (x,y) is an instance chosen from a unknown distribution D.

- f(h(x),y) denotes the loss of using hypothesis h on the instance (x, y).
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Empirical Risk Minimization

Since the distribution of the data, i.e., D, is unavailable to the learner, the risk

is not computable.

In practice, the learner instead tries to optimize the following empirical risk,
which is called empirical risk minimization (ERM):

min — Z
heH m f

ERM approximates RM: All instances are

1.i.d. sampled from the same distribution.

in optimization language: this is called
Sample Average Approximation (SAA)
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Structural ERM

In practice, we often explicitly control |
the complexity of the learner by adding
a regularization term in the optimization
objective, i.e.,

error

o—o generalizationjbound
= penalty term
e=e ecmpirical error

min — Z f(h(x;),y:) + AR(h). : | ———

heH m

This is called Structural ERM. \ @ /
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Example

e Consider the following binary classification task with (i) linear hypothesis
h(x) = w'x;and (ii) x; € RY, y; € {—1,+1} forall i € [m].

Example 6. Taking f(h(x;),y;) = max{0,1 — y;w ' x;} (hinge loss) and R(h) =
HW||§ forms the optimization objective in Support Vector Machine (SVM):

™m
. T 2
Inin ;max{(), 1 —yw X+ A||w]5.

Example 7. Taking f(h(x;),y;) = log(1 + exp(—y;w'x;)) and R(h) = ||w||3
forms the optimization objective in Logistic Regression (LR):

1 | 1 —Y; T i A 2.
v{rrélléld; og(1l +exp(—yiw X)) + A[[w]|;
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(Constrained) Optimization Problem

* We adopt a minimization language
min  f(x)
st. xe &
- optimization variable x € R?
- objective function: f : RY — R

- feasible domain: X C R¢
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Unconstrained Optimization

- The optimization variable is feasible over the whole R%-space.
min  f(x)

s.t. x c R

* It is one of the most basic forms of mathematical optimization and
serves as the foundations.

--- “any optimization problem can be regarded as an unconstrained one”

min  f(x) : min  h(x) = f(x) + dx(x)

st. xe X st. xc¢ ]Rd barrier/indicator function

0, xed,
5X(X)—{OO xé X
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Convex Optimization

* This lecture focuses on the following simplified setting:

* Language: minimization problem
* Objective function: continuous and convex

* Feasible domain: a convex subset of Euclidean space

1 ?
- What is a convex set: Before diving into details, one Q... I d

d What is a convex function? Why should I learn about “convex

d How to minimize? optimization”?
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Convex Set

Definition 1 (Convex Set). A set X is convex if for any x,y € &, all the points
on the line segment connecting x and y also belong to &, i.e.,

Va € 0,1], ax+ (1 —a)y € X.

convex sets?

v X X
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Convex Set

Definition 1 (Convex Set). A set X is convex if for any x,y € &, all the points
on the line segment connecting x and y also belong to &, i.e.,

Va € 0,1], ax+ (1 —a)y € X.

Examples

* A line segment is convex.
e A ray, which has the form {xy + v | § > 0}, where v # 0, is convex.

* Any subspace is convex.
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Convex Set

Definition 2 (Ball). A (Euclidean) ball (or just ball) in R has the form

B(x.,7) = {x:+ru|||ulls <1}.

Definition 3 (Ellipsoids). A ellipsoid in R? has the form
E(Xe, A) = {xc + Au| |lufls <1},

where A is assumed to be symmetric and positive definite.

Au |

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries

59



Convex Set

Definition 4 (Convex Hull). The convex hull of a set X', denoted conv X, is the
set of all convex combinations of points in X :

convX = {61x1 4+ -+ 0kxi | x; € X,0, >0,i€ [k[,01+---+ 0, =1}.

Exam le S. // ’ . f \\\\ o / "
p / > ;‘I‘ \\‘ / \ //
[ ‘J.‘ \ - —
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Projection onto Convex Sets

Definition 5 (Projection). The projection a given point y onto a convex set X is
defined as the closest point inside the convex set. Formally,

x* = Tly[y] 2 argmingg v[x — y|.

Note: the projected point xX* is unique as long as the norm is strictly convex.

Theorem 1 (Pythagoras Theorem). Let X C R be a convex
set, y € R%. Then for any z € X we have

ly =2l = [Tx[y] — 2|

v
24 3
A

.
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Convex Function

Definition 6 (Convex Function). A function f : X — R is called convex if for
any x,y € &,

Vae[0,1], f((I-a)x+ay) < (1-a)f(x)+af(y).

a convex function
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Convex/Concave Function

Definition 6 (Convex Function). A function f : X — R is called convex if for
any x,y € &,

Vae[0,1], f(I-a)x+ay)<(1—-a)f(x)+af(y)

Definition 7 (Concave Function). A function f : X — R is called concave if for
any x,y € &,

Vae[0,1], f(I-a)x+ay)=>(1—-a)f(x)+af(y).

* Both definitions have already assumed a convex feasible domain.

* We focus on the “convex language”, clearly the negative of concave functions are convex.
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Convex Function

How to check whether a function is convex or not?

Theorem 2. A function f is convex if and only if dom [ is convex and one of the following
properties hold, for all x,y € dom f and o € |0, 1],

(i) Zeroth order condition: f((1 —a)x+ay) < (1 —a)f(x) + af(y).

(i1) First order condition (provided f is differentiable): f(x) + (Vf(x),y —x) < f(y).

(iii) Second order condition (provided f is twice differentiable): V2 f(x) = 0.
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Convex Function

If f is convex and differentiable, then f(x) + (Vf(x),y — x) < f(y) for all
X,y € dom f.

the first-order Taylor approximation of f near x

A commonly used equivalent form: f(x) — f(y) < (Vf(x),x —y).
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Convex Function

Examples on R:

Exponential: e?*, where a € R.

Powers: 2%, wherea > 1 ora < 0.

Powers of absolute value: |z|?, where p > 1.

Negative logarithm: — log x.

Negative entropy: z log .
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Convex Function

Examples on R:
- norm: f(x) = ||x||.
- maximum: f(x) = max{x1,...,Tn}.

- Log-sum-exp: f(x) = log (e + --- 4+ €"").
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Jensen’s Inequality

Theorem 3 (Jensen’s Inequality). If X is a random variable such that X € dom f
with probability one, and f is convex, then we have

f(E[X]) < E[f(X)].

Intuition:
\.\\ - ..-:/_/(y, f()

($1 f (:E)\j\‘;;'\ \.,,,,. e

Convexity: f (01x1 + -+ 0px) <601 f (x1)+ -+ O f (xk)
E[X] E[f(X)]
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Convex Optimization Problem

* We adopt a minimization language

min  f(x)

- optimization variable x € R?
- convex objective function: f : R% — R

- convex inequality constraints: g1, ..., gm
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Convex Optimization Problem

Example 1 (SVM).

. 2
min  ||w||
w,b

s.t. (WTXZ'—I-b) >1, 1=1,---,n
Example 2 (NMF decomposition).

. 2
min || X —UV';

S.t. Ui’j,‘/;,j >0

Ref: Lee, DD & Seung, HS (1999). Learning the parts of objects by
non-negative matrix factorization. Nature 401,788-791.
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Convex Optimization

* This lecture focuses on the following simplified setting:

* Language: minimization problem
* Objective function: continuous and convex

* Feasible domain: a convex subset of Euclidean space

1 ?
- What is a convex set: Before diving into details, one Q... I d

d What is a convex function? Why should I learn about “convex

d How to minimize? optimization”?
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Why Convexity is Nice? A\
Local Optima . / /

e Local to Global Phenomenon \ 4

For convex (unconstrained) optimization, local minima are global minima.

Theorem 8. Let f be convex. If x is a local minimum of f then x is a
global minimum of f.

A simple proof:

Assume that x is local minimum of f. Then for v small enough, for any y,

fx) < f(L=y)x+vy) <A =7)f(x)+7f(y)

which implies f(x) < f(y) and thus x is a global minimum of f. O

Advanced Optimization (Fall 2025) Lecture 1. Preliminaries 72



Why Convex Optimization?

* Let’s invent it from “the first principle”

FACT: most OPT problems are HARD.

See [Section 1.1 of Nesterov’s book] for evidence

Without further structure:
» May have multiple local minima, complex landscape.

» Often NP-hard even to approximate.

j‘> Can we identify a class of broad problems that is "EASY" (or "TRACABLE")?
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Why Convex Optimization?

* Let’s invent it from “the first principle”

Assumption 1. For any f € F, the first-order optimality condition suffices to the

global optimality, namely, if V f(z*) = 0 then z* is a global optimal solution.
Assumption 2. If f1, fo € F, then af; 4+ Bf2 € F should hold for any «, 8 > 0.

Assumption 3. The linear function should be in the class, i.e., f(x) = ax + b should
satisty f € F for any a,b € R.

j|> Claim: Under Assumptions 1-3, every f € F must be convex.
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Why Convex Optimization?

Claim: Under Assumptions 1-3, every f € F must be convex.

Proof: (consider 1-dim scalar function for simplicity)

Take any f € F and any fixed point x¢ € R. We construct the function

63 (z) = f(z) = f'(z0).

We simply abbreviate it as ¢(z). By Assumption 2, —f'(zo)z € F and hence
¢(x) € F. Computing its derivative, we have

¢'(x) = f'(x) — f'(z0). = ¢'(z0) =0.
By Assumption 1, xg is the global optimizer of ¢(x).
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Why Convex Optimization?

Claim: Under Assumptions 1-3, every f € F must be convex.

Proof: (consider 1-dim scalar function for simplicity)

By Assumption 1, zq is the global optimizer of ¢(x). So for all z,
o(r) > ¢(wo). = f(x) = f'(z0)r > f(20) — f'(20)T0-
Rearranging yields
f(z) = f(xo) + [ (z0) (z — 20).

This is exactly the definition of the convex function. [
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Why Convex Optimization?

* Math/OPT: Convex OPT offers a unified and elegant framework for a
broad class of problems, with numerous profound theories and

insights developed.

* ML: Provides key algorithmic tools for large-scale ML problems,

such as logistic regression, sparse coding, and PCA.

* Non-convex OPT with NN: Many advances in non-convex OPT are
fundamentally rooted in convex OPT, like SGD, AdaGrad, Adam, etc.
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Summary

Risk Minimization

[ ML AS OPTIMIZATION ] Empirical Risk Minimization (ERM)

Structural ERM

Convex Set

CONVEX OPTIMIZATION Convex Function

Local to Global Property

From First Principle

[ WHY CONVEX OPTIMIZATION ] {

Three Assumptions
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