

Lecture 1. Preliminaries

Advanced Optimization (Fall 2025)

Peng Zhao

zhaop@lamda.nju.edu.cn Nanjing University

Outline

- Math Background
 - Calculus, Linear Algebra
 - Probability & Statistics
 - Information Theory, Asymptotic Notations
- Convex Optimization Basics
 - ML as Optimization
 - Convex Function, Convex Set
 - Convex Optimization Problem

Outline

- Math Background
 - Calculus, Linear Algebra
 - Probability & Statistics
 - Information Theory, Asymptotic Notations
- Convex Optimization Basics
 - ML as Optimization
 - Convex Function, Convex Set
 - Convex Optimization Problem

Notational Convention

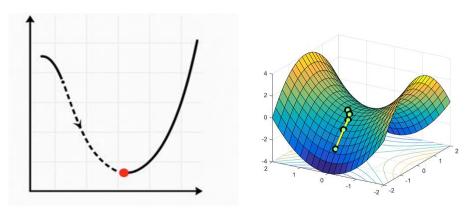
- $[n] = \{1, \dots, n\}$
- x, y, v: vectors
- A, B: matrices
- $\mathcal{X}, \mathcal{Y}, \mathcal{K}$: domain
- d, m, n: dimensions
- *I*: identity matrix
- X, Y: random variables
- p, q: probability distributions

Function

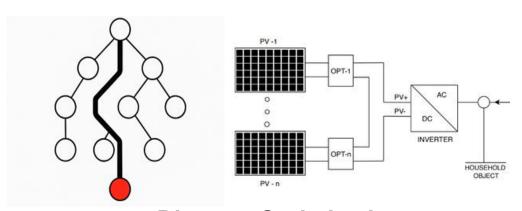
• Function mapping $f : \text{dom } f \subseteq \mathcal{X} \subseteq \mathbb{R}^n \to \mathcal{Y} \subseteq \mathbb{R}^m$

Definition 1 (Continuous Function). A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $\mathbf{x} \in \text{dom } f$ if for all $\epsilon > 0$ there exists a $\delta > 0$ with $\mathbf{y} \in \text{dom } f$, such that

$$\|\mathbf{y} - \mathbf{x}\|_2 \le \delta \Rightarrow \|f(\mathbf{y}) - f(\mathbf{x})\|_2 \le \epsilon.$$



Continuous Optimization



Discrete Optimization

Part 1. Calculus

Gradient and Derivatives

• Hessian

• Chain Rule

Gradient and Derivatives (First Order)

- The gradient and derivative of a scalar function $(f : \mathbb{R} \to \mathbb{R})$ is the same.
- The derivative of vector functions $(f: \mathcal{X} \subseteq \mathbb{R}^d \mapsto \mathbb{R})$ is the transpose of its gradient.

we focus on the "gradient" language (i.e., column vector)

Definition 2 (Gradient). Let $f: \mathcal{X} \subseteq \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Let $\mathbf{x} = [x_1, \cdots, x_d]^\top \in \mathcal{X}$. Then, the gradient of f at \mathbf{x} is a vector in \mathbb{R}^d denoted by $\nabla f(\mathbf{x})$ and defined by

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix}.$$

Example 1. The gradient of $f(\mathbf{x}) = \|\mathbf{x}\|_2^2 \triangleq \sum_{i=1}^d x_i^2$ is

$$\nabla f(\mathbf{x}) = \begin{vmatrix} 2x_1 \\ \vdots \\ 2x_d \end{vmatrix} = 2\mathbf{x}.$$

Example 2. The gradient of $f(\mathbf{x}) = -\sum_{i=1}^{d} x_i \ln x_i$ is

$$\nabla f(\mathbf{x}) = \begin{bmatrix} -(\ln x_1 + 1) \\ \vdots \\ -(\ln x_d + 1) \end{bmatrix}.$$

Hessian (Second Order)

Definition 3 (Hessian). Let $f: \mathcal{X} \subseteq \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function. Let $\mathbf{x} = [x_1, \cdots, x_d]^\top \in \mathcal{X}$. Then, the Hessian of f at \mathbf{x} is the matrix in $\mathbb{R}^{d \times d}$ denoted by $\nabla^2 f(\mathbf{x})$ and defined by

$$\nabla^2 f(\mathbf{x}) = \left[\frac{\partial^2 f}{\partial x_i, x_j}(\mathbf{x}) \right]_{1 \le i, j \le d}.$$

Example 3. The Hessian of $f(\mathbf{x}) = -\sum_{i=1}^d x_i \ln x_i$ is $\nabla^2 f(\mathbf{x}) = \text{diag}(-\frac{1}{x_1}, \dots, -\frac{1}{x_d})$.

Example 4. The Hessian of $f(\mathbf{x}) = x_1^3 x_2^2 - 3x_1 x_2^3 + 1$ is $\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 6x_1 x_2^2 & 6x_1^2 x_2 - 9x_2^2 \\ 6x_1^2 x_2 - 9x_2^2 & 2x_1^3 - 18x_1 x_2 \end{bmatrix}$.

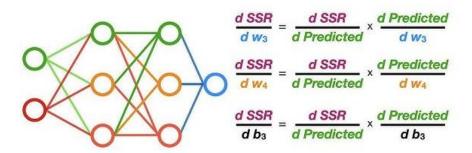
Chain Rule

Consider scalar functions for simplicity.

Chain Rule. For h(x) = f(g(x)),

- the gradient of h(x) is h'(x) = f'(g(x))g'(x).
- the Hessian of h(x) is $h''(x) = f''(g(x))(g'(x))^2 + f'(g(x))g''(x)$.

Backpropagation...



Src: https://www.youtube.com/watch?v=iyn2zdALii8

Reference: The Matrix Cookbook

The derivatives of **vectors**, **matrices**, **norms**,

determinants, etc can be found therein.

2.4.1 First Order

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \tag{69}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^T \tag{70}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^T \tag{71}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^T$$
 (72)

$$\frac{\partial \mathbf{X}}{\partial X_{ij}} = \mathbf{J}^{ij} \tag{73}$$

$$\frac{\partial (\mathbf{X}\mathbf{A})_{ij}}{\partial X_{mn}} = \delta_{im}(\mathbf{A})_{nj} = (\mathbf{J}^{mn}\mathbf{A})_{ij}$$
 (74)

$$\frac{\partial (\mathbf{X}^T \mathbf{A})_{ij}}{\partial X_{mn}} = \delta_{in}(\mathbf{A})_{mj} = (\mathbf{J}^{nm} \mathbf{A})_{ij}$$
 (75)

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

2 Derivatives

This section is covering differentiation of a number of expressions with respect to a matrix **X**. Note that it is always assumed that **X** has no special structure, i.e. that the elements of **X** are independent (e.g. not symmetric, Toeplitz, positive definite). See section 2.8 for differentiation of structured matrices. The basic assumptions can be written in a formula as

$$\frac{\partial X_{kl}}{\partial X_{ij}} = \delta_{ik}\delta_{lj} \tag{32}$$

that is for e.g. vector forms,

$$\begin{bmatrix} \frac{\partial \mathbf{x}}{\partial y} \end{bmatrix}_i = \frac{\partial x_i}{\partial y} \qquad \begin{bmatrix} \frac{\partial x}{\partial \mathbf{y}} \end{bmatrix}_i = \frac{\partial x}{\partial y_i} \qquad \begin{bmatrix} \frac{\partial \mathbf{x}}{\partial \mathbf{y}} \end{bmatrix}_{ij} = \frac{\partial x_i}{\partial y_j}$$

The following rules are general and very useful when deriving the differential of an expression ([19]):

$$\partial \mathbf{A} = 0$$
 (A is a constant) (33)

$$\partial(\alpha \mathbf{X}) = \alpha \partial \mathbf{X} \tag{34}$$

$$\partial(\mathbf{X} + \mathbf{Y}) = \partial\mathbf{X} + \partial\mathbf{Y} \tag{35}$$

$$\partial(\operatorname{Tr}(\mathbf{X})) = \operatorname{Tr}(\partial\mathbf{X}) \tag{36}$$

$$\partial(\mathbf{XY}) = (\partial\mathbf{X})\mathbf{Y} + \mathbf{X}(\partial\mathbf{Y}) \tag{37}$$

$$\partial(\mathbf{X} \circ \mathbf{Y}) = (\partial \mathbf{X}) \circ \mathbf{Y} + \mathbf{X} \circ (\partial \mathbf{Y}) \tag{38}$$

$$\partial(\mathbf{X} \otimes \mathbf{Y}) = (\partial \mathbf{X}) \otimes \mathbf{Y} + \mathbf{X} \otimes (\partial \mathbf{Y}) \tag{39}$$

$$\partial(\mathbf{X}^{-1}) = -\mathbf{X}^{-1}(\partial\mathbf{X})\mathbf{X}^{-1} \tag{4}$$

$$\partial(\det(\mathbf{X})) = \operatorname{Tr}(\operatorname{adj}(\mathbf{X})\partial\mathbf{X})$$
 (41)

$$\partial(\det(\mathbf{X})) = \det(\mathbf{X})\operatorname{Tr}(\mathbf{X}^{-1}\partial\mathbf{X}) \tag{42}$$

$$\partial(\ln(\det(\mathbf{X}))) = \operatorname{Tr}(\mathbf{X}^{-1}\partial\mathbf{X}) \tag{43}$$

$$\partial \mathbf{X}^T = (\partial \mathbf{X})^T \tag{44}$$

$$\mathbf{X}^{H} = (\partial \mathbf{X})^{H} \tag{45}$$

Part 2. Linear Algebra

• Positive (Semi-)Definite Matrix

Rank

• Inner Product, Norm, Matrix Norm

Matrix Decomposition

Positive (Semi-)Definite Matrix

Definition 4 (Positive Definite, PD). A matrix $A \in \mathbb{R}^{d \times d}$ is positive definite, if for all $\mathbf{x} \neq \mathbf{0}, \mathbf{x}^{\top} A \mathbf{x} > 0$, usually denoted as $A \succ 0$.

Definition 5 (Positive Semi-Definite, PSD). A matrix $A \in \mathbb{R}^{d \times d}$ is positive semi-definite, if for all $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{x}^\top A \mathbf{x} \geq 0$, usually denoted as $A \succeq 0$.

Especially useful for defining some distance metric

- $\|\mathbf{x} \mathbf{y}\|_A$
- Sometimes the matrix should be "localized", like $\|\mathbf{x}_t \mathbf{x}_*\|_{A_t}$

Rank

• **Rank**: the dimension of the vector space spanned by its columns, or the maximal number of linearly independent columns.

Example 5.

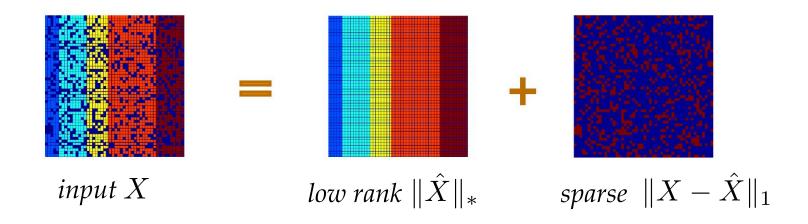
$$A = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \xrightarrow{2R_1 + R_2 \to R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 3 & 5 & 0 \end{bmatrix} \xrightarrow{-3R_1 + R_3 \to R_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \end{bmatrix}$$
$$\xrightarrow{R_2 + R_3 \to R_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{-2R_2 + R_1 \to R_1} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

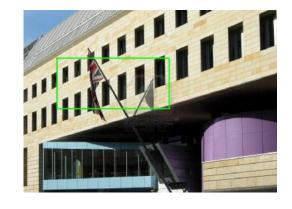
The rank of matrix *A* is 2.

Low rank: Robust PCA

Robust PCA formulation

$$\min_{\hat{X}} \|X - \hat{X}\|_1 + \|\hat{X}\|_*$$





Inner Product

• Vector Space: consider $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{y} = \sum_{i=1}^{d} x_i y_i$$

Example in ML: linear regression, feature similarity calculation,

• Matrix Space: consider $A, B \in \mathbb{R}^{m \times n}$, then

$$\langle A, B \rangle = \operatorname{Tr} \left(A^{\top} B \right) = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ij}$$

Example in ML: covariance matrix, PCA, LDA, matrix factorization....

Vector Norm

• The following norm can be induced based on inner product

$$\|\mathbf{x}\|_2 = (\mathbf{x}^{\top}\mathbf{x})^{1/2} = \sqrt{x_1^2 + \dots + x_d^2}$$

usually called ℓ_2 -norm, or Euclidean norm.

- ℓ_1 -norm:

$$\|\mathbf{x}\|_1 = |x_1| + \dots + |x_d|$$

- ℓ_{∞} -norm:

$$\|\mathbf{x}\|_{\infty} = \max\left\{ \left| x_1 \right|, \dots, \left| x_d \right| \right\}$$

- General ℓ_p -norm:

$$\|\mathbf{x}\|_p = (|x_1|^p + \dots + |x_d|^p)^{1/p}$$

- Quadratic norm:

$$\|\mathbf{x}\|_A = \sqrt{\mathbf{x}^\top A \mathbf{x}},$$

where $A \in \mathbb{R}^{d \times d}$ is positive semi-definite.

Vector Inner Product vs Norm

- *Norm*: tells you "how big" a vector is.
- *Inner product*: tells you "how two vectors align" (geometry).

• Every inner product gives a norm, but not every norm comes from an inner product.

• Hilbert space = Banach space + geometry (orthogonality, projection).

Dual Norm

Let $\|\cdot\|$ be a vector norm on \mathbb{R}^d . The associated dual norm $\|\cdot\|_*$ is defined as

$$\|\mathbf{y}\|_* = \sup \{\mathbf{y}^\top \mathbf{x} \mid \|\mathbf{x}\| \le 1\}.$$

Proposition 1. The dual of ℓ_p -norm is the ℓ_q -norm with $\frac{1}{p} + \frac{1}{q} = 1$.

e.g., the dual of ℓ_2 -norm is still ℓ_2 -norm, the dual of ℓ_1 -norm is ℓ_{∞} -norm.

The dual of $\|\cdot\|_A$ is $\|\cdot\|_{A^{-1}}$

Proposition 2. Hölder's inequality: $\langle \mathbf{x}, \mathbf{y} \rangle \leq \|\mathbf{x}\| \cdot \|\mathbf{y}\|_*$.

Norm Relationship

Qualitative:

Lemma 1 (Mathematical Equivalence of Norms). Suppose that $\|\cdot\|_a$ and $\|\cdot\|_b$ are norms on \mathbb{R}^d , there exist positive "constants" α and β , for all $\mathbf{x} \in \mathbb{R}^d$, such that

$$\alpha \|\mathbf{x}\|_a \le \|\mathbf{x}\|_b \le \beta \|\mathbf{x}\|_a.$$

Notice: constants may depend on dimension!

For example: for any $\mathbf{x} \in \mathbb{R}^d$, the following inequalities hold:

- $\frac{1}{d} \|\mathbf{x}\|_1 \le \|\mathbf{x}\|_\infty \le \|\mathbf{x}\|_1$
- $\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \sqrt{d} \|\mathbf{x}\|_{\infty}$

Matrix Norm

Three different versions:

- operator norm
- entrywise norm
- Schatten norm

矩阵分析与应用. 张贤达 related pages can be found in readings of the course web

Matrix Operator Norm

• Consider a matrix $A \in \mathbb{R}^{m \times n}$.

We define its *operator norm* based on the aforementioned *vector norm*.

Definition 6 (Matrix Operator Norm). The operator norm (or called induced norm) of a matrix $A \in \mathbb{R}^{m \times n}$ is defined by

$$\|A\|_{\text{op},p} \triangleq \max \left\{ \frac{\|A\mathbf{x}\|_p}{\|\mathbf{x}\|_p} \,\middle|\, \mathbf{x} \in \mathbb{R}^d, \mathbf{x} \neq \mathbf{0} \right\}.$$

the norm in the right-hand side is defined over the *vector space*.

Matrix Operator Norm

- Consider a matrix $A \in \mathbb{R}^{m \times n}$
 - ℓ_1 -norm (max-column-sum norm):

$$||A||_{\text{op},1} = \max_{j \in [n]} \sum_{i=1}^{m} |A_{ij}|$$

- ℓ_{∞} -norm (max-row-sum norm):

$$||A||_{\text{op},\infty} = \max_{i \in [m]} \sum_{j=1}^{n} |A_{ij}|$$

Matrix Operator Norm

- Consider a matrix $A \in \mathbb{R}^{m \times n}$
 - ℓ_2 -norm (spectral norm):

$$||A||_{\text{op},2} = \max_{i \in [r]} |\sigma_i|$$

where $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$, namely, σ_i is the *i*-th singular value.

Matrix Entrywise Norm

• Consider a matrix $A \in \mathbb{R}^{m \times n}$

The entrywise norm is defined by *treating matrices as vectors*.

Definition 7 (Matrix Entrywise Norm). The entrywise norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined by

$$||A||_{\text{en},p} \triangleq \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |A_{ij}|^p\right)^{1/p}.$$

Matrix Entrywise Norm

- Consider a matrix $A \in \mathbb{R}^{m \times n}$
 - ℓ_1 -norm (sum norm):

$$||A||_{\text{en},1} = \sum_{i=1}^{m} \sum_{j=1}^{n} |A_{ij}|$$

- Frobenius-norm:

$$||A||_{\mathcal{F}} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}$$

- ℓ_{∞} -norm (max norm):

$$||A||_{\mathrm{en},\infty} = \max_{i \in [m]} \max_{j \in [n]} |A_{ij}|$$

Matrix Schatten Norm

• Consider a matrix $A \in \mathbb{R}^{m \times n}$

The Schatten norm is defined via the *singular values*.

Definition 8 (Matrix Schatten Norm). The Schatten norm of a matrix $A \in \mathbb{R}^{m \times n}$ with rank r is defined by

$$||A||_{\mathrm{Sc},p} \triangleq \begin{cases} \left(\sum_{i=1}^{r} \sigma_{i}^{p}\right)^{1/p}, & \text{for } 1 \leq p < \infty \\ \max_{i \in [r]} |\sigma_{i}|, & \text{for} \quad p = \infty \end{cases}$$

where $\sigma_1, \dots, \sigma_r$ are the singular values of A.

Eigen Value Decomposition

Let A be an $d \times d$ PSD matrix, then it can be factored as

$$A = Q\Lambda Q^{\top},$$

where (a) $Q = (\mathbf{v}_1, \dots, \mathbf{v}_d) \in \mathbb{R}^{d \times d}$ is orthogonal, i.e., $Q^{\top}Q = I$ and $\mathbf{v}_1, \dots, \mathbf{v}_d$ are eigenvectors; and (b) $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$ and $\lambda_1, \dots, \lambda_d$ are eigenvalues.

Some concerned terms can be expressed by eigenvalues:

-
$$A = \sum_{i=1}^{d} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\top}$$

-
$$A = \sum_{i=1}^{d} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\top}$$
 - $||A||_{\text{op},2} = \max_{i \in [d]} |\lambda_i|$

-
$$\det(A) = \prod_{i=1}^d \lambda_i$$

$$- \|A\|_{\mathrm{F}} = \sqrt{\sum_{i=1}^{d} \lambda_i^2}$$

-
$$\operatorname{Tr}(A) = \sum_{i=1}^{d} \lambda_i$$

Singular Value Decomposition

Suppose $A \in \mathbb{R}^{m \times n}$ has rank r, then it can be factored as

$$A = U\Sigma V^{\top},$$

where (a) $U = (\mathbf{u}_1, \dots, \mathbf{u}_r) \in \mathbb{R}^{m \times r}$ satisfies $U^{\top}U = I, V = (\mathbf{v}_1, \dots, \mathbf{v}_r) \in \mathbb{R}^{n \times r}$ satisfies $V^{\top}V = I$; and (b) $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ and $\sigma_1, \dots, \sigma_r$ are sigular values.

Some concerned terms can be expressed by sigular values:

-
$$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

- $||A||_{\text{op},2} = \max_{i \in [r]} |\sigma_i|$ - $||A||_{\text{F}} = \sqrt{\sum_{i=1}^{r} \sigma_i^2}$

Part 3. Statistics, Information Theory

Concentration Inequalities

Entropy

• KL divergence

• Bregman Divergence

Concentration Inequalities

Theorem 2 (Markov's Inequality). Let X be a non-negative random variable with $\mathbb{E}[X] < \infty$, then for all t > 0,

$$\Pr[X \ge t\mathbb{E}[X]] \le \frac{1}{t}.$$

$$\begin{array}{ll} \textit{Proof.} & \Pr[X \geq t\mathbb{E}[X]] = \sum_{x \geq t\mathbb{E}[X]} \Pr[X = x] \\ & \leq \sum_{x \geq t\mathbb{E}[X]} \Pr[X = x] \cdot \frac{x}{t\mathbb{E}[X]} & \text{(using } \frac{x}{t\mathbb{E}[X])} \geq 1\text{)} \\ & \leq \sum_{x} \Pr[X = x] \cdot \frac{x}{t\mathbb{E}[X]} & \text{(extending non-negative sum)} \\ & = \mathbb{E}\left[\frac{X}{t\mathbb{E}[X]}\right] = \frac{1}{t} & \text{(linearity of expectation)} \end{array}$$

Concentration Inequalities

Theorem 2 (Markov's Inequality). Let X be a non-negative random variable with $\mathbb{E}[X] < \infty$, then for all t > 0,

$$\Pr[X \ge t\mathbb{E}[X]] \le \frac{1}{t}.$$

Theorem 3 (Chebyshev's Inequality). Let X be a non-negative random variable with $\mathbb{E}[X]$, $\mathrm{Var}[X] < \infty$, then for all $\epsilon > 0$,

$$\Pr[|X - \mathbb{E}[X]| \ge \epsilon] \le \frac{\operatorname{Var}[X]}{\epsilon^2}.$$

Chebyshev's inequality can be immediately obtained from Markov's inequality.

Concentration Inequalities

• If we have more information: random variables are sampled from the same distribution independently $(i.i.d.) \rightarrow$ better concentration

Theorem 4 (Hoeffding's Inequality). Let X_1, \ldots, X_m be *i.i.d.* random variables, and $X_i \in [a,b]$ for all $i \in [m]$. Let $S_m = \sum_{i=1}^m X_i$. Then, for any $\epsilon > 0$,

$$\Pr[S_m - \mathbb{E}[S_m] \ge \epsilon] \le \exp\left(-2\epsilon^2 / \left(m(b-a)^2\right)\right),$$

$$\Pr[S_m - \mathbb{E}[S_m] \le -\epsilon] \le \exp\left(-2\epsilon^2 / \left(m(b-a)^2\right)\right).$$

Consequently, we have

$$\Pr\left[\left|S_m - \mathbb{E}\left[S_m\right]\right| \ge \epsilon\right] \le 2\exp\left(-2\epsilon^2/\left(m\left(b-a\right)^2\right)\right).$$

• Estimating the probability of heads in a (biased) coin toss.

- \diamond Unknown probability: $\Pr[X_i = 1] = p$, $\Pr[X_i = 0] = 1 p$.
- \diamond Estimator: $\widehat{p} \triangleq \frac{1}{m} \sum_{i=1}^{m} X_i$.
- \diamond Property: $\mathbb{E}[\widehat{p}] = p$, $\operatorname{Var}[\widehat{p}] = \frac{1}{m^2} \sum_{i=1}^m \operatorname{Var}[X_i] = \frac{p(1-p)}{m}$
- ♦ To ensure:

$$\Pr[|\widehat{p} - p| \ge \epsilon] \le \delta$$
 e.g., $\delta = 0.001$

⇒ How many times do we need to toss the coin at a minimum?

• Estimating the probability of heads in a (biased) coin toss.

- \diamond Unknown probability: $\Pr[X_i = 1] = p$, $\Pr[X_i = 0] = 1 p$.
- \diamond Estimator: $\widehat{p} \triangleq \frac{1}{m} \sum_{i=1}^{m} X_i$.
- \diamond Property: $\mathbb{E}[\widehat{p}] = p$, $\operatorname{Var}[\widehat{p}] = \frac{1}{m^2} \sum_{i=1}^m \operatorname{Var}[X_i] = \frac{p(1-p)}{m}$

Theorem 3 (Chebyshev's Inequality). Let X be a non-negative random variable with $\mathbb{E}[X]$, $\mathrm{Var}[X] < \infty$, then for all $\epsilon > 0$,

$$\Pr[|X - \mathbb{E}[X]| \ge \epsilon] \le \frac{\operatorname{Var}[X]}{\epsilon^2}.$$

$$\Pr\left[|\widehat{p} - p| \ge \epsilon\right] \le \frac{\operatorname{Var}[\widehat{p}]}{\epsilon^2} = \frac{p(1 - p)}{m\epsilon^2} \le \frac{1}{4m\epsilon^2} \le \delta \quad \implies m \ge \frac{1}{4\epsilon^2 \delta} = \frac{\mathbf{250}}{\epsilon^2}$$

• Estimating the probability of heads in a (biased) coin toss.

- \diamond Unknown probability: $\Pr[X_i = 1] = p$, $\Pr[X_i = 0] = 1 p$.
- \diamond Estimator: $\widehat{p} \triangleq \frac{1}{m} \sum_{i=1}^{m} X_i$.
- \diamond Property: $\mathbb{E}[\widehat{p}] = p$, $\operatorname{Var}[\widehat{p}] = \frac{1}{m^2} \sum_{i=1}^m \operatorname{Var}[X_i] = \frac{p(1-p)}{m}$

Theorem 4 (Hoeffding's Inequality). Let X_1, \ldots, X_m be *i.i.d.* random variables, and $X_i \in [a,b]$ for all $i \in [m]$. Let $S_m = \sum_{i=1}^m X_i$. Then, for any $\epsilon > 0$,

$$\Pr\left[\left|S_m - \mathbb{E}\left[S_m\right]\right| \ge \epsilon\right] \le 2\exp\left(-2\epsilon^2/\left(m\left(b-a\right)^2\right)\right).$$

$$\Pr\left[m|\widehat{p} - p| \ge m\epsilon\right] \le 2\exp\left(-2m\epsilon^2\right) \le \delta \qquad \Longrightarrow \quad m \ge \frac{1}{2\epsilon^2}\ln\frac{2}{\delta} \approx \frac{3.8}{\epsilon^2}$$

Concentration Inequalities

- An example: Estimating the probability of heads in a coin toss.
 - \diamond Estimate: $\widehat{p} \triangleq \frac{1}{m} \sum_{i=1}^{m} X_i$, $\mathbb{E}[\widehat{p}] = p$, $\operatorname{Var}[\widehat{p}] = \frac{1}{m^2} \sum_{i=1}^{m} \operatorname{Var}[X_i] = \frac{p(1-p)}{m}$

High Probability Bounds

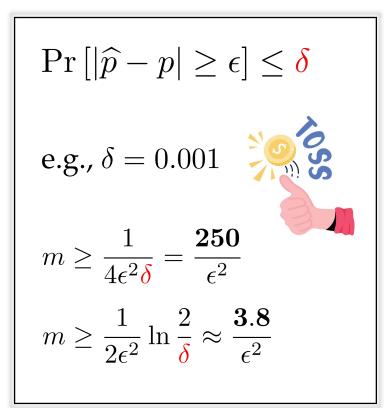
In ML, many papers/theorems state *with probability* $1 - \delta \dots$ "

• "Fake" high-probability (loose):

- \diamond Deviation scales as $\mathcal{O}\left(\operatorname{poly}\frac{1}{\delta}\right)$
- \diamond polynomial tail \Rightarrow failure probability is not truly small.
- Example: Markov inequality, Chebyshev inequality.

True high-probability (tight)

- \diamond Deviation scales as $\mathcal{O}\left(\log \frac{1}{\delta}\right)$
- \diamond exponential tail \Rightarrow failure probability small.
- Example: Hoeffding's Inequality.



Definition 2.3 (PAC-learning) A concept class \mathfrak{C} is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathfrak{D} on \mathfrak{X} and for any target concept $c \in \mathfrak{C}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[R(h_S) \le \epsilon] \ge 1 - \delta. \tag{2.4}$$

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, n, size(c))$, then \mathcal{C} is said to be efficiently PAC-learnable. When such an algorithm \mathcal{A} exists, it is called a PAC-learning algorithm for \mathcal{C} .

Theorem 3.3 Let \mathfrak{G} be a family of functions mapping from \mathfrak{Z} to [0,1]. Then, for any $\delta > 0$, with probability at least $1 - \delta$ over the draw of an i.i.d. sample S of size m, each of the following holds for all $g \in \mathfrak{G}$:

$$\mathbb{E}[g(z)] \le \frac{1}{m} \sum_{i=1}^{m} g(z_i) + 2\mathfrak{R}_m(\mathfrak{G}) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}$$
(3.3)

Foundations of Machine Learning (2nd Edition)

Entropy

• Entropy measures the uncertainty, which is the most basic concept in the information theory.

Definition 9 (Entropy). The entropy of a discrete random variable X with probability mass function $p(x) = \Pr[X = x]$ is denoted by H(X):

$$H(X) = -\sum_{x \in X} \mathbf{p}(x) \log(\mathbf{p}(x)).$$

An explanation of entropy: $\log_2(1/\mathbf{p}(x))$ is the code length needed to encode the info., then entropy H(X) measures the *expected code length* to encode a distribution \mathbf{p} .

The entropy is a lower bound on *lossless data compression* and is therefore a critical quantity to consider in information theory.

KL Divergence (Relative Entropy)

Definition 12 (KL Divergence). The Kullback-Leibler (KL) divergence (relative entropy) of two distributions p and q is defined by KL(p||q):

$$KL(\boldsymbol{p}||\boldsymbol{q}) = \sum_{x \in \mathcal{X}} \boldsymbol{p}(x) \log \left[\frac{\boldsymbol{p}(x)}{\boldsymbol{q}(x)} \right]$$

with the conventions $0 \log 0 = 0$, $0 \log \frac{0}{0} = 0$, and $a \log \frac{a}{0} = +\infty$ for a > 0.

Proposition 1.

- KL divergence is always non-negative;
- Pinsker's inequality: $KL(\boldsymbol{p}\|\boldsymbol{q}) \geq \frac{1}{2} \|\boldsymbol{p} \boldsymbol{q}\|_1^2$.

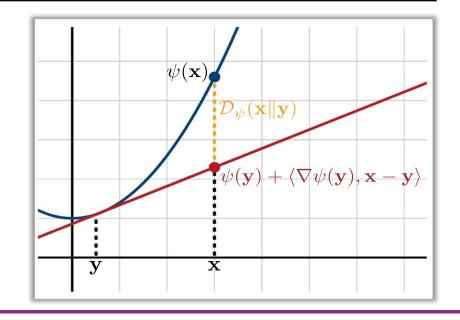
Bregman Divergence

Definition 13 (Bregman Divergence). Let ψ be a convex and differentiable function over a convex set \mathcal{K} , then for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$, the bregman divergence \mathcal{D}_{ψ} associated to ψ is defined as

$$\mathcal{D}_{\psi}(\mathbf{x}||\mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

Table 1: Choice of $\psi(\cdot)$ and the Bregman divergence.

	$\psi(\mathbf{x})$	$\mathcal{D}_{\psi}(\mathbf{x} \ \mathbf{y})$
Squared L_2 -distance	$\ \mathbf{x}\ _2^2$	$\ \mathbf{x} - \mathbf{y}\ _2^2$
Mahalanobis distance	$\left\ \mathbf{x} ight\ _{Q}^{2}$	$\ \mathbf{x} - \mathbf{y}\ _Q^2$
negative entropy		$KL(\mathbf{x} \ \mathbf{y})$



Bregman Divergence

Definition 13 (Bregman Divergence). Let ψ be a convex and differentiable function over a convex set \mathcal{K} , then for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$, the bregman divergence \mathcal{D}_{ψ} associated to ψ is defined as

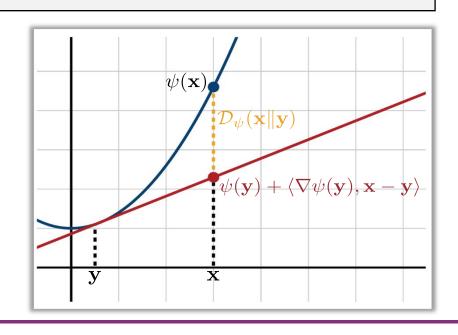
$$\mathcal{D}_{\psi}(\mathbf{x}||\mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

Q: Is its importance due to generality?

Not exactly, consider more general one like

$$\mathcal{D}_{\psi}^{\alpha,\beta,\gamma}(\mathbf{x}||\mathbf{y}) = \psi(\mathbf{x})^{\alpha} - \psi(\mathbf{y})^{\beta} - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle^{\gamma}.$$

Bregman divergence measures the difference of a function and its *linear approximation*



Part 4. Asymptotic Notations

Definition

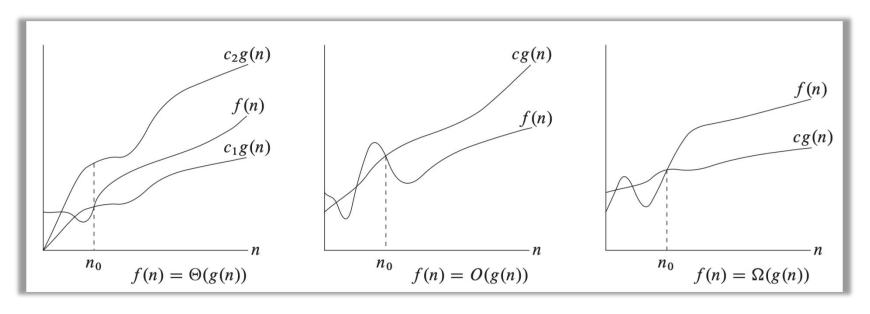
• Illustration

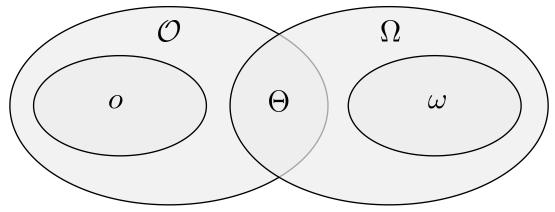
Example

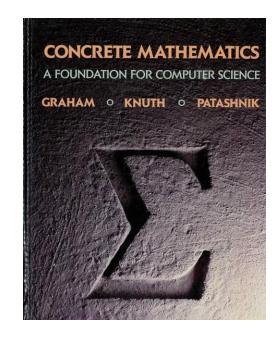
Definition

- $\Theta(g(n)) = \{f(n) \mid \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.
- $\mathcal{O}(g(n)) = \{f(n) \mid \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$
- $\Omega(g(n)) = \{f(n) \mid \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}.$
- $o(g(n)) = \{f(n) \mid \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}.$
- $\omega(g(n)) = \{f(n) \mid \text{ for any positive constant } c > 0 \text{, there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}.$

Illustration







Example

$$-3n^3 + 2n^2 + n + \log n = \Theta(n^3)$$

$$-\mathcal{O}(1) < \mathcal{O}(\log n) < \mathcal{O}(n) < \mathcal{O}(n\log n) < \mathcal{O}\left(n^2\right) < \mathcal{O}\left(2^n\right) < \mathcal{O}(n!)$$

$$-\Theta(1) < \Theta(\log n) < \Theta(n) < \Theta(n\log n) < \Theta\left(n^2\right) < \Theta\left(2^n\right) < \Theta(n!)$$

Theorem 4. Under Assumptions 1, 2, and 3, set the pool of candidate step sizes \mathcal{H} as

$$\mathcal{H} = \left\{ \eta_i = \min \left\{ \frac{1}{8L}, \sqrt{\frac{D^2}{8G^2T}} \cdot 2^{i-1} \right\} \mid i \in [N] \right\}, \tag{26}$$

where $N = \lceil 2^{-1} \log_2(G^2T/(8D^2L^2)) \rceil + 1$ is the number of candidate step sizes; further set the correction coefficient as $\lambda = 2L$ and the learning rate of the meta-algorithm as $\varepsilon = \min \{1/(8D^2L), \sqrt{(\ln N)/(D^2(\|\nabla f_1(\mathbf{x}_1)\|_2^2 + \bar{V}_T))}\}$. Then, Sword++ satisfies

$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{u}_t) \le \mathcal{O}\left(\sqrt{(1 + P_T + V_T)(1 + P_T)}\right)$$

for any comparator sequence $\mathbf{u}_1, \dots, \mathbf{u}_T \in \mathcal{X}$. In above, $\bar{V}_T = \sum_{t=2}^T \|\nabla f_t(\mathbf{x}_t) - \nabla f_{t-1}(\mathbf{x}_{t-1})\|_2^2$ is the variant of gradient variation V_T .

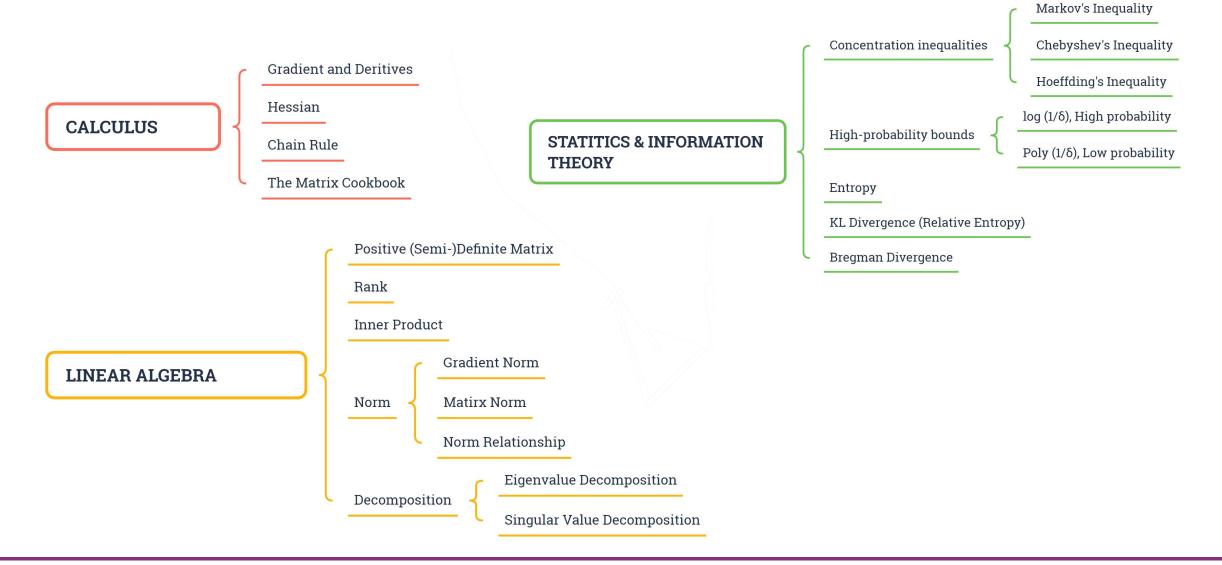
Theorem 6 (Dynamic NE-Regret). When x-player follows Algorithm 1 and y-player follows Algorithm 2, we have the following dynamic NE-regret bound:

$$\begin{aligned} & \text{DynNE-Reg}_T = \left| \sum_{t=1}^T x_t^\top A_t y_t - \sum_{t=1}^T \min_{x \in \Delta_m} \max_{y \in \Delta_n} x^\top A_t y \right| \\ & = \widetilde{\mathcal{O}} \big(\min \{ \sqrt{(1+V_T)(1+P_T)} + P_T, 1 + W_T \} \big). \end{aligned}$$

two examples of theorem statement

It is both fine to use " = " or "\leq"

Summary



Outline

- Math Background
 - Calculus, Linear Algebra
 - Probability & Statistics
 - Information Theory, Asymptotic Notations
- Convex Optimization Basics
 - ML as Optimization
 - Convex Function, Convex Set
 - Convex Optimization Problem

Learning by/as Optimization

The fundamental goal of (supervised) learning: Risk Minimization (RM),

$$\min_{h \in \mathcal{H}} \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{D}}[f(h(\mathbf{x}),y)],$$

where

- h denotes the hypothesis (model) from the hypothesis space \mathcal{H} .
- (\mathbf{x}, y) is an instance chosen from a unknown distribution \mathcal{D} .
- $f(h(\mathbf{x}), y)$ denotes the loss of using hypothesis h on the instance (\mathbf{x}, y) .

Empirical Risk Minimization

Since the distribution of the data, i.e., \mathcal{D} , is unavailable to the learner, the risk is not computable.

In practice, the learner instead tries to optimize the following empirical risk, which is called *empirical risk minimization* (*ERM*):

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} f(h(\mathbf{x}_i), y_i).$$

ERM approximates RM: All instances are

i.i.d. sampled from the same distribution.

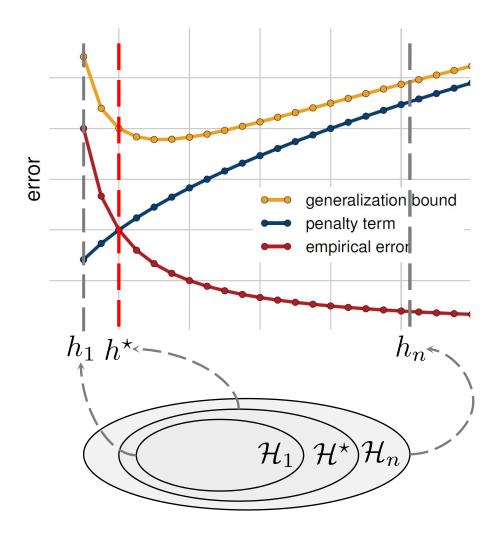
in optimization language: this is called Sample Average Approximation (SAA)

Structural ERM

In practice, we often explicitly control the complexity of the learner by adding a regularization term in the optimization objective, i.e.,

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} f(h(\mathbf{x}_i), y_i) + \lambda \mathcal{R}(h).$$

This is called *Structural ERM*.



Example

• Consider the following binary classification task with (i) linear hypothesis $h(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x}$; and (ii) $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$ for all $i \in [m]$.

Example 6. Taking $f(h(\mathbf{x}_i), y_i) = \max\{0, 1 - y_i \mathbf{w}^\top \mathbf{x}_i\}$ (hinge loss) and $\mathcal{R}(h) = \|\mathbf{w}\|_2^2$ forms the optimization objective in *Support Vector Machine (SVM)*:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^m \max\{0, 1 - y_i \mathbf{w}^\top \mathbf{x}_i\} + \lambda \|\mathbf{w}\|_2^2.$$

Example 7. Taking $f(h(\mathbf{x}_i), y_i) = \log(1 + \exp(-y_i \mathbf{w}^{\top} \mathbf{x}_i))$ and $\mathcal{R}(h) = \|\mathbf{w}\|_2^2$ forms the optimization objective in *Logistic Regression (LR)*:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^m \log(1 + \exp(-y_i \mathbf{w}^\top \mathbf{x}_i)) + \lambda \|\mathbf{w}\|_2^2.$$

(Constrained) Optimization Problem

• We adopt a *minimization* language

$$\min \quad f(\mathbf{x})$$
s.t. $\mathbf{x} \in \mathcal{X}$

- optimization variable $\mathbf{x} \in \mathbb{R}^d$
- objective function: $f: \mathbb{R}^d \mapsto \mathbb{R}$
- feasible domain: $\mathcal{X} \subseteq \mathbb{R}^d$

Unconstrained Optimization

• The optimization variable is feasible over the whole \mathbb{R}^d -space.

$$\min \quad f(\mathbf{x})$$
 s.t. $\mathbf{x} \in \mathbb{R}^d$

• It is one of *the most basic* forms of mathematical optimization and serves as the foundations.

--- "any optimization problem can be regarded as an unconstrained one"

Convex Optimization

- This lecture focuses on the following simplified setting:
 - Language: *minimization* problem
 - Objective function: *continuous* and *convex*
 - Feasible domain: a *convex* subset of *Euclidean space*

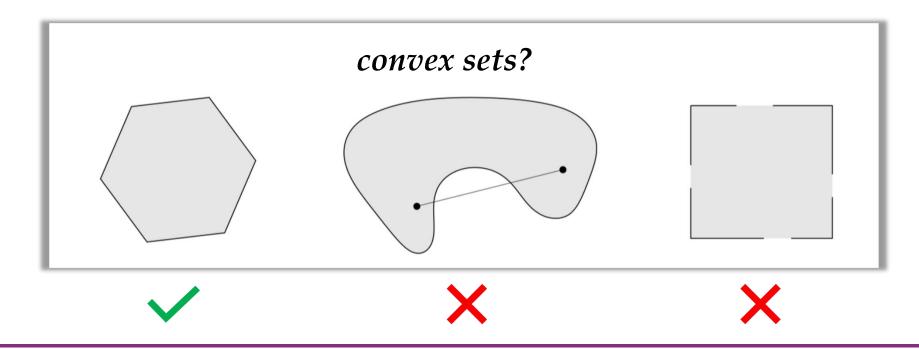
- ☐ What is a convex set?
- ☐ What is a convex function?
- ☐ How to minimize?

Before diving into details, one Q...

Why should I learn about "convex optimization"?

Definition 1 (Convex Set). A set \mathcal{X} is convex if for any $x, y \in \mathcal{X}$, all the points on the line segment connecting x and y also belong to \mathcal{X} , i.e.,

$$\forall \alpha \in [0, 1], \ \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$



Definition 1 (Convex Set). A set \mathcal{X} is convex if for any $x, y \in \mathcal{X}$, all the points on the line segment connecting x and y also belong to \mathcal{X} , i.e.,

$$\forall \alpha \in [0,1], \ \alpha \mathbf{x} + (1-\alpha)\mathbf{y} \in \mathcal{X}.$$

Examples

- A line segment is convex.
- A ray, which has the form $\{\mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0\}$, where $\mathbf{v} \ne \mathbf{0}$, is convex.
- Any subspace is convex.

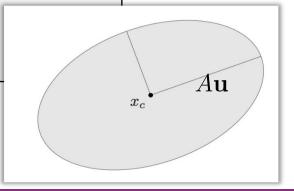
Definition 2 (Ball). A (Euclidean) ball (or just ball) in \mathbb{R}^d has the form

$$\mathbb{B}\left(\mathbf{x}_{c},r\right)=\left\{\mathbf{x}_{c}+\mathbf{r}\mathbf{u}\mid\|\mathbf{u}\|_{2}\leq1\right\}.$$

Definition 3 (Ellipsoids). A ellipsoid in \mathbb{R}^d has the form

$$\mathcal{E}(\mathbf{x}_c, A) = \left\{ \mathbf{x}_c + \mathbf{A}\mathbf{u} \mid ||\mathbf{u}||_2 \le 1 \right\},\,$$

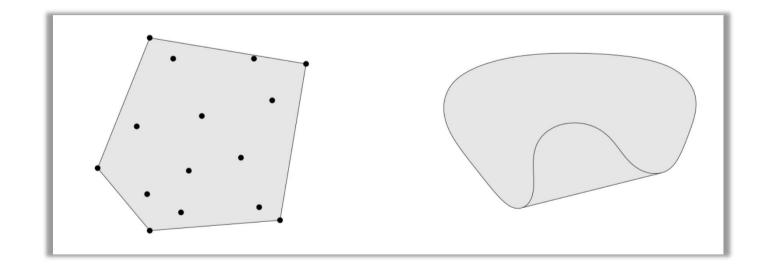
where A is assumed to be symmetric and positive definite.



Definition 4 (Convex Hull). The convex hull of a set \mathcal{X} , denoted conv \mathcal{X} , is the set of all convex combinations of points in \mathcal{X} :

conv
$$\mathcal{X} = \{\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k \mid \mathbf{x}_i \in \mathcal{X}, \theta_i \geq 0, i \in [k], \theta_1 + \dots + \theta_k = 1\}.$$

Examples:



Projection onto Convex Sets

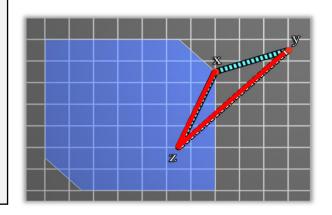
Definition 5 (Projection). The projection a given point y onto a convex set \mathcal{X} is defined as the closest point inside the convex set. Formally,

$$\mathbf{x}^* = \Pi_{\mathcal{X}}[\mathbf{y}] \triangleq \arg\min_{\mathbf{x} \in \mathcal{X}} ||\mathbf{x} - \mathbf{y}||.$$

Note: the projected point x^* is unique as long as the norm is strictly convex.

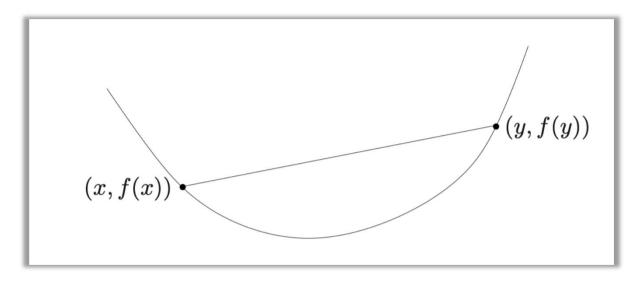
Theorem 1 (Pythagoras Theorem). Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a convex set, $\mathbf{y} \in \mathbb{R}^d$. Then for any $\mathbf{z} \in \mathcal{X}$ we have

$$\|\mathbf{y} - \mathbf{z}\| \ge \|\Pi_{\mathcal{X}}[\mathbf{y}] - \mathbf{z}\|.$$



Definition 6 (Convex Function). A function $f : \mathcal{X} \mapsto \mathbb{R}$ is called *convex* if for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$\forall \alpha \in [0, 1], \quad f((1 - \alpha)\mathbf{x} + \alpha\mathbf{y}) \le (1 - \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}).$$



a convex function

Convex/Concave Function

Definition 6 (Convex Function). A function $f : \mathcal{X} \mapsto \mathbb{R}$ is called *convex* if for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$\forall \alpha \in [0, 1], \quad f((1 - \alpha)\mathbf{x} + \alpha\mathbf{y}) \le (1 - \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}).$$

Definition 7 (Concave Function). A function $f : \mathcal{X} \to \mathbb{R}$ is called *concave* if for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$\forall \alpha \in [0, 1], \quad f((1 - \alpha)\mathbf{x} + \alpha\mathbf{y}) \ge (1 - \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}).$$

- Both definitions have already assumed a *convex* feasible domain.
- We focus on the "convex language", clearly the negative of concave functions are convex.

How to check whether a function is convex or not?

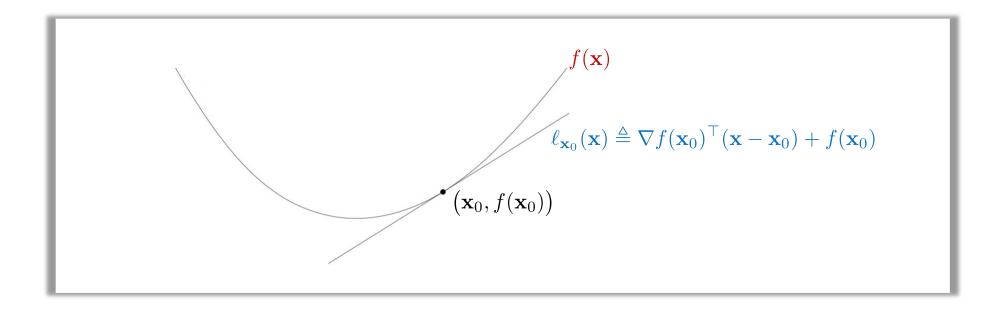
Theorem 2. A function f is convex **if and only if** dom f **is convex** and one of the following properties hold, for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$ and $\alpha \in [0, 1]$,

- (i) Zeroth order condition: $f((1 \alpha)\mathbf{x} + \alpha\mathbf{y}) \le (1 \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y})$.
- (ii) First order condition (provided f is differentiable): $f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle \leq f(\mathbf{y})$.
- (iii) Second order condition (provided f is twice differentiable): $\nabla^2 f(\mathbf{x}) \succeq 0$.

If f is convex and differentiable, then $f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \leq f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$.

the first-order Taylor approximation of f near \mathbf{x}

A commonly used equivalent form: $f(\mathbf{x}) - f(\mathbf{y}) \leq \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle$.



Examples on \mathbb{R} :

- Exponential: e^{ax} , where $a \in \mathbb{R}$.
- Powers: x^a , where $a \ge 1$ or $a \le 0$.
- Powers of absolute value: $|x|^p$, where $p \ge 1$.
- Negative logarithm: $-\log x$.
- Negative entropy: $x \log x$.

Examples on \mathbb{R}^d :

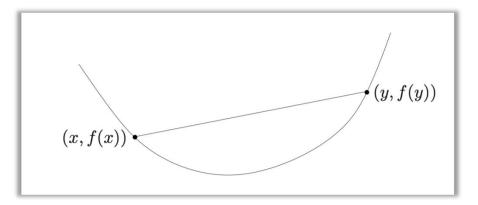
- norm: f(x) = ||x||.
- maximum: $f(\mathbf{x}) = \max\{x_1, ..., x_n\}.$
- Log-sum-exp: $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n})$.

Jensen's Inequality

Theorem 3 (Jensen's Inequality). *If* X *is a random variable such that* $X \in \text{dom } f$ *with probability one, and* f *is convex, then we have*

$$f(\mathbb{E}[X]) \le \mathbb{E}[f(X)].$$

Intuition:



Convexity:
$$f(\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k) \leq \theta_1 f(\mathbf{x}_1) + \dots + \theta_k f(\mathbf{x}_k)$$

$$\mathbb{E}[X]$$

$$\mathbb{E}[f(X)]$$

Convex Optimization Problem

• We adopt a *minimization* language

min
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m$
 $\mathbf{a}_i^{\top} \mathbf{x} = b_i, \quad i = 1, \dots, n$

- optimization variable $\mathbf{x} \in \mathbb{R}^d$
- *convex* objective function: $f: \mathbb{R}^d \mapsto \mathbb{R}$
- convex inequality constraints: g_1, \ldots, g_m

Convex Optimization Problem

Example 1 (SVM).

$$\min_{\mathbf{w},b} \quad \|\mathbf{w}\|^2$$
s.t. $y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b\right) \ge 1, \quad i = 1, \dots, n$

Example 2 (NMF decomposition).

$$\min_{U,V} \quad \left\| X - UV^{\top} \right\|_{\mathrm{F}}^{2}$$
s.t. $U_{i,j}, V_{i,j} \ge 0$

Ref: Lee, DD & Seung, HS (1999). Learning the parts of objects by non-negative matrix factorization. *Nature* 401,788-791.

Convex Optimization

- This lecture focuses on the following simplified setting:
 - Language: *minimization* problem
 - Objective function: *continuous* and *convex*
 - Feasible domain: a *convex* subset of *Euclidean space*

- ☐ What is a convex set?
- ☐ What is a convex function?
- ☐ How to minimize?

Before diving into details, one Q...

Why should I learn about "convex optimization"?

Why Convexity is Nice?

Global Optimum /

Local to Global Phenomenon

For convex (unconstrained) optimization, *local minima are global minima*.

Theorem 8. Let f be convex. If \mathbf{x} is a local minimum of f then \mathbf{x} is a global minimum of f.

A simple proof:

Assume that x is local minimum of f. Then for γ small enough, for any y,

$$f(\mathbf{x}) \le f((1-\gamma)\mathbf{x} + \gamma\mathbf{y}) \le (1-\gamma)f(\mathbf{x}) + \gamma f(\mathbf{y}),$$

which implies $f(\mathbf{x}) \leq f(\mathbf{y})$ and thus \mathbf{x} is a global minimum of f.

• Let's invent it from "the first principle"

FACT: most OPT problems are HARD.

See [Section 1.1 of Nesterov's book] for evidence

Without further structure:

- May have multiple local minima, complex landscape.
- ▶ Often NP-hard even to approximate.

Can we identify a class of broad problems that is "EASY" (or "TRACABLE")?

• Let's invent it from "the first principle"

Assumption 1. For any $f \in \mathcal{F}$, the first-order optimality condition suffices to the global optimality, namely, if $\nabla f(x^*) = 0$ then x^* is a global optimal solution.

Assumption 2. If $f_1, f_2 \in \mathcal{F}$, then $\alpha f_1 + \beta f_2 \in \mathcal{F}$ should hold for any $\alpha, \beta \geq 0$.

Assumption 3. The linear function should be in the class, i.e., f(x) = ax + b should satisfy $f \in \mathcal{F}$ for any $a, b \in \mathbb{R}$.

Claim: Under Assumptions 1-3, every $f \in \mathcal{F}$ must be convex.

Claim: Under Assumptions 1-3, every $f \in \mathcal{F}$ must be convex.

Proof: (consider 1-dim scalar function for simplicity)

Take any $f \in \mathcal{F}$ and any fixed point $x_0 \in \mathbb{R}$. We construct the function

$$\phi_f^{x_0}(x) \triangleq f(x) - f'(x_0)x.$$

We simply abbreviate it as $\phi(x)$. By Assumption 2, $-f'(x_0)x \in \mathcal{F}$ and hence $\phi(x) \in \mathcal{F}$. Computing its derivative, we have

$$\phi'(x) = f'(x) - f'(x_0). \implies \phi'(x_0) = 0.$$

By Assumption 1, x_0 is the global optimizer of $\phi(x)$.

Claim: Under Assumptions 1-3, every $f \in \mathcal{F}$ must be convex.

Proof: (consider 1-dim scalar function for simplicity)

By Assumption 1, x_0 is the global optimizer of $\phi(x)$. So for all x,

$$\phi(x) \ge \phi(x_0). \implies f(x) - f'(x_0)x \ge f(x_0) - f'(x_0)x_0.$$

Rearranging yields

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0).$$

This is exactly the definition of the convex function. \Box

- Math/OPT: Convex OPT offers a unified and elegant framework for a broad class of problems, with numerous profound theories and insights developed.
- ML: Provides key algorithmic tools for large-scale ML problems, such as logistic regression, sparse coding, and PCA.
- Non-convex OPT with NN: Many advances in non-convex OPT are fundamentally rooted in convex OPT, like SGD, AdaGrad, Adam, etc.

Summary

Risk Minimization ML AS OPTIMIZATION Empirical Risk Minimization (ERM) Structural ERM Convex Set **CONVEX OPTIMIZATION Convex Function** Local to Global Property From First Principle WHY CONVEX OPTIMIZATION Three Assumptions