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Notational Convention



Lecture 1. PreliminariesAdvanced Optimization (Fall 2025) 5

Function
• Function mapping

Continuous Optimization Discrete Optimization



Lecture 1. PreliminariesAdvanced Optimization (Fall 2025) 6

Part 1. Calculus
• Gradient and Derivatives

• Hessian

• Chain Rule
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Gradient and Derivatives (First Order)

we focus on the “gradient” language (i.e., column vector)
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Example
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Hessian (Second Order)
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• Consider scalar functions for simplicity.

Chain Rule

Src: https://www.youtube.com/watch?v=iyn2zdALii8
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Reference: The Matrix Cookbook

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf 

The derivatives of vectors, matrices, norms, 

determinants, etc can be found therein.

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Part 2. Linear Algebra
• Positive (Semi-)Definite Matrix

• Rank

• Inner Product, Norm, Matrix Norm

• Matrix Decomposition
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Positive (Semi-)Definite Matrix

Especially useful for defining some distance metric
•  
• Sometimes the matrix should be “localized”, like  
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Rank
• Rank: the dimension of the vector space spanned by its columns, 

or the maximal number of linearly independent columns.

The rank of matrix A is 2.
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Low rank: Robust PCA
• Robust PCA formulation

input low rank sparse
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• Vector Space: 

Inner Product

Example in ML: linear regression, feature similarity calculation, ….

• Matrix Space: 

Example in ML: covariance matrix, PCA, LDA, matrix factorization….
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Vector Norm
• The following norm can be induced based on inner product 
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Vector Inner Product vs Norm
• Norm: tells you “how big” a vector is.
• Inner product: tells you “how two vectors align” (geometry).

• Every inner product gives a norm, but not every norm comes from 
an inner product.

• Hilbert space = Banach space + geometry (orthogonality, projection).
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Dual Norm
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Norm Relationship
Qualitative:

Notice: constants may depend on dimension!
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Matrix Norm
Three different versions:
• operator norm 
• entrywise norm
• Schatten norm

矩阵分析与应用. 张贤达

related pages can be found in 
readings of the course web
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Matrix Operator Norm

We define its operator norm based on the aforementioned vector norm.

the norm in the right-hand side is defined over the vector space.
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Matrix Operator Norm
• Consider a matrix 



Lecture 1. PreliminariesAdvanced Optimization (Fall 2025) 24

• Consider a matrix 

Matrix Operator Norm
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Matrix Entrywise Norm
• Consider a matrix 

The entrywise norm is defined by treating matrices as vectors.
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Matrix Entrywise Norm
• Consider a matrix 
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Matrix Schatten Norm
• Consider a matrix 

The Schatten norm is defined via the singular values.
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Eigen Value Decomposition



Lecture 1. PreliminariesAdvanced Optimization (Fall 2025) 29

Singular Value Decomposition
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Part 3. Statistics, Information Theory
• Concentration Inequalities

• Entropy

• KL divergence

• Bregman Divergence
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Concentration Inequalities

Proof.
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Concentration Inequalities

Chebyshev’s inequality can be immediately obtained from Markov’s inequality.
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Concentration Inequalities
• If we have more information: random variables are sampled from 

the same distribution independently (i.i.d.)  better concentration
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Example
• Estimating the probability of heads in a (biased) coin toss.

How many times do we need to toss the coin at a minimum?
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Concentration Inequalities
• An example: Estimating the probability of heads in a coin toss.
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High Probability Bounds

• “Fake” high-probability (loose):

• True high-probability (tight)
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Foundations of Machine Learning (2nd Edition)
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• Entropy measures the uncertainty, which is the most basic 
concept in the information theory.

Entropy

The entropy is a lower bound on lossless data compression and is therefore a 
critical quantity to consider in information theory.
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KL Divergence (Relative Entropy)
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Bregman Divergence
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Bregman Divergence

Q: Is its importance due to generality?

Not exactly, consider more general one like

Bregman divergence measures the difference 
of a function and its linear approximation
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Part 4. Asymptotic Notations
• Definition

• Illustration 

• Example
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Definition
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Illustration
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Example

two examples of theorem statement

It is both fine to use “ = ” or “\leq”
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Summary
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Learning by/as Optimization
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Empirical Risk Minimization

ERM approximates RM: All instances are 

i.i.d. sampled from the same distribution.

in optimization language: this is called 
Sample Average Approximation (SAA) 
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Structural ERM

In practice, we often explicitly control 
the complexity of the learner by adding 
a regularization term in the optimization 
objective, i.e.,

This is called Structural ERM.
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Example
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(Constrained) Optimization Problem
• We adopt a minimization language



Lecture 1. PreliminariesAdvanced Optimization (Fall 2025) 55

Unconstrained Optimization 
•  

• It is one of the most basic forms of mathematical optimization and 
serves as the foundations. 

--- “any optimization problem can be regarded as an unconstrained one”

 

barrier/indicator function
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Convex Optimization
• This lecture focuses on the following simplified setting: 

• Language: minimization problem
• Objective function: continuous and convex 
• Feasible domain: a convex subset of Euclidean space

q What is a convex set?

q What is a convex function?

q How to minimize?

Before diving into details, one Q…

Why should I learn about “convex 
optimization”?
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Convex Set

convex sets?
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Convex Set

Examples



Lecture 1. PreliminariesAdvanced Optimization (Fall 2025) 59

Convex Set
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Convex Set

Examples:
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Projection onto Convex Sets

Note: the projected point       is unique as long as the norm is strictly convex. 
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Convex Function

a convex function
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Convex/Concave Function

• Both definitions have already assumed a convex feasible domain.

• We focus on the “convex language”, clearly the negative of concave functions are convex. 
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Convex Function
How to check whether a function is convex or not?
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Convex Function
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Convex Function
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Convex Function
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Jensen’s Inequality

Intuition:
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Convex Optimization Problem
• We adopt a minimization language
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Convex Optimization Problem

Ref: Lee, DD & Seung, HS (1999). Learning the parts of objects by 
         non-negative matrix factorization. Nature 401,788-791.
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Convex Optimization
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• Local to Global Phenomenon
   For convex (unconstrained) optimization, local minima are global minima.

Why Convexity is Nice?

A simple proof:

(local minima)
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Why Convex Optimization?
• Let’s invent it from “the first principle”

FACT: most OPT problems are HARD.

Without further structure:
 May have multiple local minima, complex landscape.
 Often NP-hard even to approximate.

Can we identify a class of broad problems that is "EASY" (or "TRACABLE")?

See [Section 1.1 of Nesterov’s book] for evidence 
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Why Convex Optimization?
• Let’s invent it from “the first principle”
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Why Convex Optimization?

Proof: (consider 1-dim scalar function for simplicity)
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Why Convex Optimization?
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Why Convex Optimization?
• Math/OPT: Convex OPT offers a unified and elegant framework for a 

broad class of problems, with numerous profound theories and 
insights developed.

• ML: Provides key algorithmic tools for large-scale ML problems, 
such as logistic regression, sparse coding, and PCA.

• Non-convex OPT with NN: Many advances in non-convex OPT are 
fundamentally rooted in convex OPT, like SGD, AdaGrad, Adam, etc.
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Summary
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