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Outline
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Convex Optimization Problem
• We adopt a minimization language
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Part 1. Performance Measure
• Iterated Optimization

• Measure
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• In general, there are two performance measures (essentially same).

Performance Measure
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More Concretely
Iterated Complexity vs Computational Complexity 

• Computational complexity requires further consideration of the
per-round runtime (i.e., the number of elementary operations
that the algorithm needs to do); like FLOPS.

• Examples
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Key Factors
• Consider the function-value level:

• There are key quantities to consider

è (sub)gradient

è optimality condition

è function property
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Part 2. Subgradient
• Subgradient

• Subdifferential

• Existence and Calculation
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Subgradient
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Subdifferential
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Subgradient and Subdifferential

an illustration for 1-dim case
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Subgradient and Subdifferential

Proof:
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Subgradient and Subdifferential

called normal cone

Proof:
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Existence of Subgradient
• Existence of subgradients implies convexity.
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Existence of Subgradient
• Convexity doesn’t always imply existence of subgradients.
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Existence of Subgradient
• Convexity doesn’t always imply existence of subgradients.

• Nevertheless, if we only care about the interior of feasible domain, 
convexity does imply the existence of subgradients.
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How to Compute Subgradient
• General principle: unfortunately, hard to give :( 
• Ad-hoc calculations: see earlier examples.
• Good news: easy for convex and differential functions. 
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How to Compute Subgradient

Proof can be found in Example 3.34 of Amir Beck’s book.

(gradient of norm)

(discussed earlier)
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• Local to Global Phenomenon
   For convex (unconstrained) optimization, local minima are global minima.

Why Convexity?

A simple proof:

(local minima)
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Why Convexity?
• Local to Global Phenomenon - II
   For convex (and differentiable) functions, gradient is highly informative.



Lecture 2. Convex Problems Advanced Optimization (Fall 2025) 21

Part 3. Optimality Condition
• Fermat’s Optimality Condition

• First-order Optimality Condition

•KKT Conditions

• Some Corollaries
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Why Optimality Condition?
• Given a point, can you verify if it is optimal?
è Optimality condition; we start from the simplest unconstrained case.

Proof: Simply combining
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Example

Solving the optimization problem:
From an optimization perspective, solving “median” meadian(𝐴) equals 
to solving the following optimization problem.
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• Proof of median

Example

Denote fi(x) = |x− ai|, then it hold that f(x) = f1(x)+ f2(x)+ · · ·+ fn(x) and

∂fi(x) =

⎧

⎪

⎨

⎪

⎩

1, x > ai

−1, x < ai

[−1, 1], x = ai

From an optimization perspective, solving medians equals to solving the 
following optimization problem.
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• Proof of median

Example

∂f(x) = ∂f1(x) + ∂f2(x) + · · ·+ ∂fn(x)

=

{

# {i : ai < x}−# {i : ai > x} , x /∈ A,

# {i : ai < x}−# {i : ai > x}+ [−1, 1], x ∈ A.

Denote fi(x) = |x− ai|, then it hold that f(x) = f1(x)+ f2(x)+ · · ·+ fn(x) and

∂fi(x) =

⎧

⎪

⎨

⎪

⎩

1, x > ai

−1, x < ai

[−1, 1], x = ai
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• Proof of median

Example

∂f(x) = ∂f1(x) + ∂f2(x) + · · ·+ ∂fn(x)

=

{

# {i : ai < x}−# {i : ai > x} , x /∈ A,

# {i : ai < x}−# {i : ai > x}+ [−1, 1], x ∈ A.
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• Proof of median

Example

Combining the two cases finishes the proof (by further checking    is odd or even).
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First-order Optimality Condition
• Constrained Case

A simple proof: derived from the Fermat’s optimality condition.

Proof can be found in Theorem 3.67 of Amir Beck’s book.
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First-order Optimality Condition
• Constrained Case

Set Addition: elementwise sum
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First-order Optimality Condition
• Constrained Case
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Karush–Kuhn–Tucker (KKT) Conditions

Albert Tucker
1905-1995

Harold Kuhn
1925-2014

Published conditions in 1951.

William Karush
1917-1997

Developed the necessary
conditions in 1939 in his
(unpublished) MS thesis.
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Proof Sketch

(Inactive constraints don't contribute)
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Proof Sketch
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Understanding KKT Conditions
• On the one hand, KKT conditions depict properties of the optimization

solution (consider the dual form and interpretation in SVM).

• On the other hand, many optimization methods can be thought of as 
iterative approximations to solve the KKT conditions.
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Part 4. Function Properties

• Smoothness

• Strong Convexity
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Function
• Function mapping

Continuous Optimization Discrete Optimization
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Lipschitz Continuity
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Lipschitzness and Subgradient
• Relationship between Lipschitzness and bounded subgradient
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Optimization Complexity: Easy vs Hard
A gentle start:

• Very easy to optimize, in fact, we have a close-form solution.

• Any benign property (compared to general convex problem)?
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Smoothness

Smoothness is also called gradient Lipschitz in many literature. 
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Smoothness
The next lemma is an equivalent condition of smoothness.

Proof: (calculus)

(Cauchy-Schwarz)

(smoothness)
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Smoothness
The next lemma is an equivalent condition of smoothness.

In Optimization theory: 

smooth vs nonsmooth

“平滑” vs “非平滑”
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Smoothness

Proof.



Lecture 2. Convex Problems Advanced Optimization (Fall 2025) 44

Smoothness
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Smoothness

Proofs can be found below Theorem 5.8 of Amir Beck’s book.

(essentially zero-th order characterization)
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Smoothness

Proof:
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Smoothness (in Optimization theory)

Ref: Lectures on Convex Optimization, Yurii Nesterov. Page 23-24.
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Strong Convexity

Examples:
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Strong Convexity
The most commonly used property for strongly convex functions.
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Strong Convexity

commonly used
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Strong Convexity

(rearrange)

Proof: (i)→(ii)
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Strong Convexity

f is “as least as convex” as a quadratic function.

Proof:
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Strong Convexity
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Strong Convexity

The function-value convergence is more essential for strongly convex optimization.
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Strongly Convex and Smooth
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Relationship

Reference: Kakade et al., On the duality of strong convexity and strong 
smoothness: Learning applications and matrix regularization. 2009.

https://home.ttic.edu/~shai/papers/KakadeShalevTewari09.pdf
https://home.ttic.edu/~shai/papers/KakadeShalevTewari09.pdf
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Part 5. Gradient Descent

• Gradient Descent

• Surrogate Optimization
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• GD Template:

Gradient Descent
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Why Gradient Descent?
• For simplicity, we consider the unconstrained setting.

• A General Idea: Surrogate Optimization
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Why Gradient Descent?
• Following the surrogate optimization principle, let’s invent GD 

for convex and smooth functions.
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• GD Template:

Gradient Descent

It only forms a general template, and there are still much complexity yet to specify.
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GD Template
GD template: 

Key requirements: provable guarantees, particularly with finite-sample 
(non-asymptotic) rates



Lecture 2. Convex Problems Advanced Optimization (Fall 2025) 63

Summary

Q & A
Thanks!
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