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Convex Optimization Problem

* We adopt a minimization language

min  f(x)

st. xe X
- optimization variable x € R¢
- objective function f : R% — R: convex and continuously differentiable

- feasible domain X C R%: convex
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Part 1. Performance Measure

* [terated Optimization
X1 7 X9 —7 Xt 7> Xgy1 —7 - XT

To output a sequence {x; }/_, such that X; approximates x* when ¢ goes larger.

where {X;};_; can be statistics of the original sequence {x;}}_,

and x* arg min, .y f(x) denotes the optimal solution.

* Measure
— Function-value level: f(xr) — f(x*) < e(T)

— Optimizer-value level: ||xp — x*|| < e(T)

and ¢(7T') is the approximation error and is a function of iterations 7.
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Performance Measure

* In general, there are two performance measures (essentially same).

Convergence: f(xr)— f(x*) < &(T),

- Qualitatively: ¢(7) — 0 whenT' — ¢

- Quantitatively: O(—=) / O(7) / O(7z) / O(r) / -

Complexity:

- Definition: number of iterations required to achieve f(x7) — f(x*) < e.

- Quantitatively: O(=) / O(2) / 0( —) / O(log2) /..
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More Concretely

Iterated Complexity vs Computational Complexity

« Computational complexity requires further consideration of the

per-round runtime (i.e., the number of elementary operations
that the algorithm needs to do); like FLOPS.

* Examples
- first-order method (V f(x;)) vs second-order method (V= f(x;));

- operations: Euclidean (ITy [y]) vs Mahalanobis (IT% [y]) projection
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Key Factors

* Consider the function-value level:

f(xr) — f(x*) <e(T)

where {x;}]_, can be statistics of the original sequence {x;}]_,,

* There are key quantities to consider
- update: x; to X;+1 =» (sub)gradient
- comparator: X* =) optimality condition

- function: f => function property
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Part 2. Subgradient

* Subgradient
* Subdifferential

e Existence and Calculation
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Subgradient

Definition 1 (Subgradient). Let f : X — R be a proper function and let x €
X C RY. A vector g € R? is called a subgradient of f at x if

fly) > f(x)+ (g,y — x), forally € R

Intuition: subgradient g € 0f(x) can g1
be any variable that makes the line
f(x) 4+ (g,y — x) below the curve f.

] P i
X1 - X9
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Subdifferential

Definition 1 (Subgradient). Let f : X — R be a proper function and let x €
X C RY. A vector g € R? is called a subgradient of f at x if

fly) > f(x)+ (g,y — x), forally € R

Definition 2 (Subdifferential). The set of all subgradients of f at x is called the
subdifferential of f at x and is denoted by 0f(x),

0f(x) £ {g € R*| f(y) > f(x) + (g8, y — x), forally € R"}.
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Subgradient and Subditferential

Example 1. The subdifferential of f(x) = ||x|| at x = 0 is the dual norm unit
ball, ie., 0f(0) = {g]||[gll+ < 1}.

2

1.5}
1+
0.5}

an illustration for 1-dim case

| f(z) = |z|

-15}

-2
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Subgradient and Subdifferential

Example 1. The subdifferential of f(x) = ||x|| at x = 0 is the dual norm unit
ball, ie., 0f(0) = {g]||[gll+ < 1}.
Proof:

By definition, it suffices to prove that g € 9f(0) if and only if
ly|l > (g,y) holds for all y € R¢.

@ if ||g||, <1, then by the Cauchy-Schwarz inequality,
& y) < lylllel. < llyll

@ if ||y|| > (g,y) is true, then by the definition of dual norm,

lgll. £ sup{(g,y) | llyll <1} <sup{llyll | llyll <1} <1. ]
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Subgradient and Subditferential

Example 2. For indicator function f(x) = dx(x), its subdifferential at any point

x € XisNy(x)=0f(x)={g| (g, y —x) <0,Vy € X}.

called normal cone

0 xecX
Proof: ¢ =4
s.‘.. - . f X<X) {+OO, x §é X
/ By definition, g € 0 x(x) if and only if 6 x (y) > dx(x)+ (g, ¥y — %)
. foranyy.
"' _ " If x € X, then dx(x) = 0.
- Fory ¢ X the inequality is trivial (+00 > ---).
\ - Fory € X itbecomes 0 > (g,y — x),i.e. (g,y — x) < 0 for
o all y € X. That’s exactly the normal cone’s definition. []
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Existence of Subgradient

* Existence of subgradients implies convexity.

Theorem 1. Let f : X — R be a proper function and assume X is convex.
If for any x € X, its subgradients exist, then f is convex.

- A sufficient condition for deciding a convex function.

- The reverse direction is not always correct (example on the next page).
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Existence of Subgradient

* Convexity doesn’t always imply existence of subgradients.

Example 3. Consider function f : R — (—o0, 00| defined by

f(w){ﬁ’ =t

00, else

it is convex but does not have a subgradient at x = 0.

=
=
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Existence of Subgradient

* Convexity doesn’t always imply existence of subgradients.

* Nevertheless, if we only care about the interior of feasible domain,
convexity does imply the existence of subgradients.

Theorem 2. Let f : X — R be a convex function and assume the feasible domain X
is convex. Consider any interior point x € int(X'). Then 0 f (x) is nonempty.
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How to Compute Subgradient

* General principle: unfortunately, hard to give :(
* Ad-hoc calculations: see earlier examples.

* Good news: easy for convex and differential functions.

Theorem 3. Let f : X — R be a proper and convex function and assume X is convex.
1. If f is differentiable at x, then 0f(x) = {V f(x)}.

2. Conversely, if f has a unique subgradient, then it is differentiable at x and
0f (x) = 1Vf(x)}
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How to Compute Subgradient

Example 4. The subdifferential of /5-norm f(x) = ||x||, is

({ﬁ}, x # 0

{glllgllz <1}, x=0

9f(x) = ¢

Proof can be found in Example 3.34 of Amir Beck’s book.
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Why Convexity?

* Local to Global Phenomenon

For convex (unconstrained) optimization, local minima are global minima.

Theorem 4. Let f be convex. If x is a local minimum of f then x is a
global minimum of f.

A simple proof:

Assume that x is local minimum of f. Then for v small enough, for any y,

fx) < f(A=y)x+vy) <A =7)f(x)+vf(y)

which implies f(x) < f(y) and thus x is a global minimum of f.
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Why Convexity?

* Local to Global Phenomenon - 11

For convex (and differentiable) functions, gradient is highly informative.

0f(x) ={Vf(x)}

- Local: the gradient Vf(x) is computed using only infinitesimal/local
information of f(-) at x;

- Global: the subdifferential 0f(x) gives global information in the form of
a linear lower bound on the entire function.
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Part 3. Optimality Condition

* Fermat’s Optimality Condition

* First-order Optimality Condition
* KKT Conditions

 Some Corollaries
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Why Optimality Condition?

* Given a point, can you verity if it is optimal?

=» Optimality condition; we start from the simplest unconstrained case.

Theorem 5 (Fermat’s Optimality Condition). Let f : R? — (—o0, 00| be a
proper convex function. Then

x* € argmin{ f(x) | x € R?}

if and only if
0 € Of(x").

Proof: Simply combining f(x)

'V

f(xx)
f(x) = f(x*) +(g,x—x%), g€ 0f(x¥) O
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Example

Example 5 (Median). Suppose that we are given n different and ordered num-
bersa; < as < --- < a,. Denote A = {ay,as9,...,a,} C R. The median of A is
a number satistying

An+1, n odd
2

median(A) = {

[a%,a%_u}, n even .

Solving the optimization problem:

From an optimization perspective, solving “median” meadian(4) equals
to solving the following optimization problem.

arg min {f(x) 2 Z |z — ai\}

T i=1

Advanced Optimization (Fall 2025) Lecture 2. Convex Problems 23



Example

* Proof of median

From an optimization perspective, solving medians equals to solving the
following optimization problem.

median(A4) = arg min {f(g;) =S Z |z — Cbi’}
i=1

e

Denote f;(z) = |z — a;|, then it hold that f(z) = fi1(x) + fo(x)+-- -+ fn(x) and

(

1, T > a;
af’b(w) = 4 _17 r < a;
-1,1], z=aq;
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Example

* Proof of median

Denote f;(x) = |x — a;|, then it hold that f(z) = fi(x) + fa(z) +

y

1, T > a;
Ofi(z) = ¢ —1, r < a;
—1,1], x=a;,

\

Of(x) = 0f1(x) + 0fz(x) + -+ Ofn(x)

B #{i:ai<az}—#{i:ai>x}, x%A)
C\#lirai<a}—#{ita>a}+[-11], z€A

-+ fn(x) and
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Example

* Proof of median

Of (x) = 0f1(z) + Of2(x) + -+ + Ofn(x)

B #{i:ai<x}—#{i:ai>x}, £U¢A7
B #H{i:a;<zx}—#{i:a; >z} +[-1,1], x€ A

(i —(n—1) =2i—n,
(i—1)—(n—d)+[-1,1]=2 —1—n+[-1,1],

of (x) = <

\n7

T & (ai,aiﬂ)
r = a;
r < aj

x> ap
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Example

* Proof of median

(i —(n—1i)=2i—n, r € (i, ait1)

1—1)—(n—2)+|—-1L1|=21—1—n+|—1,1|, = =a;
oy iD= (=) 11 L1

—n, r < aq

N, T > ap

@ Suppose x = a;. Then,
0€df(x)=2i—1-n+[-1,1]]e2i-1-n|<1e2<i<2+1lec=|az,anq]
@ Suppose = € (ai;a;41). Then,0 € 0f(x) =2i—nei=% <z € (az,az4q)

Combining the two cases finishes the proof (by further checkingn is odd or even).
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First-order Optimality Condition

e Constrained Case

Theorem 6 (First-order Optimality Condition). Let f be convex and X a closed
convex set on which f is differentiable. Then x* € argmin,, f(x) if and only if
there exists g € O f(x*) such that

(g, x —x*) > 0,Vx e X.

A simple proof: derived from the Fermat’s optimality condition.

—> deploying the Fermat’s optimility condition on the unconstrained “surrogate”
objective
h(x) = f(x) + 0x(x)

Proof can be found in Theorem 3.67 of Amir Beck’s book.
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First-order Optimality Condition

e Constrained Case

Theorem 6 (First-order Optimality Condition). Let f be convex and X a closed
convex set on which f is differentiable. Then x* € argmin,, f(x) if and only if
there exists g € O f(x*) such that

(g, x —x*) > 0,Vx e X.

Example 2. For indicator function f(x) = dx(x), its subdifferential at any point

x € Xis Ny(x) =0f(x) ={g| (g, y —x) <0,Vy € X}.

I:> Oh(x) = 0f(x) + Nx(x) Set Addition: elementwise sum
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First-order Optimality Condition

e Constrained Case

Theorem 6 (First-order Optimality Condition). Let f be convex and X a closed
convex set on which f is differentiable. Then x* € argmin,, f(x) if and only if
there exists g € O f(x*) such that

(g, x —x*) > 0,Vx e X.

Fermat’s optimality condition says that x* is optimal if and only if 0 € O f (x*).
0 € Oh(x*) = O (x*) + N (x")
— _Of(x*) N N (x*) # 0
—> Jge-0f(x*) st gx—x*)<0,VxelX ]
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Karush—-Kuhn-Tucker (KKT) Conditions

Theorem 7. Consider the minimization problem
min  f(x)
. 1)
sit. ¢i(x) <0, i€ |m],
William Karush
where f, g1, 92, - - ., gm are real-valued convex functions. 1917-1997
Developed the necessary
1. Necessary condition: Let x* be an optimal solution of (1), and assume that conditions in 1939 in his
Slater’s condition is satisfied. Then there exist A, ..., Ay, > 0 for which (unpublished) MS thesis.
m
0€df (x*)+ ) \idyg; (x¥) (2)
i=1
Nigi (x*) =0, i€ [m]. (3)
2. Sufficient condition: If a point x* satisfies conditions (2) and (3) for some Harold Kuhn Albert Tucker
A1y A2, ...y Ay > 0, then it is an optimal solution of problem (1). 1925-2014 1905-1995
Published conditions in 1951.
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Proof Sketch

(1) Inequalities X = {x | g;(x) < 0}: Atx, let Z(x) = {i | gi(x) = 0} be the active set. Then

(2) Equalities X = {x | h,;(x) = 0} (affine manifold):
{Z i Vh;(x) | py € R}

(3) Mixed case g;(x) < 0, hj(x) = 0: combining the two gives

{ D AiVgilx +Z“3Vh ) | A >0}.

i€Z(x)
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Proof Sketch

{ > AiVgilx +Z“3Vh ) | A >o}

1€Z(x)

Plugging Ny (x) into the condition
0cOf(x)+ Nx(x)

yields the KKT stationarity together with primal feasibility, dual feasibility ( A\; > 0)
and complementary slackness ( \;g;(x) = 0).
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Understanding KKT Conditions

* On the one hand, KKT conditions depict properties of the optimization
solution (consider the dual form and interpretation in SVM).

1. Let x* be an optimal solution of (1), and assume that Slater’s condition is satisfied. Then
there exist A\, ..., \,, > 0 for which

0€df(x*)+ ) \idgi (x*)
1=1

Nigi (x*) =0, 7€ [m].

* On the other hand, many optimization methods can be thought of as
iterative approximations to solve the KKT conditions.

2. If x* satisfies conditions (2) and (3) for some A, Ao, ..., A\, > 0, thenitis an optimal solution
of problem (1).
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Part 4. Function Properties

e Smoothness

* Strong Convexity
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Function

* Function mapping f:dom f C X CR" —» Y CR™

Definition 3 (Continuous Function). A function f : R® — R™ is continuous at
x € dom f if for all € > 0 there exists a 6 > 0 with y € dom f, such that

ly =xl2 <0 =[[f(y) - fx)ll2 <€

1
ENEEEEEEN
PV+ AC
PV-

OOOOO

Continuous Optimization Discrete Optimization
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Lipschitz Continuity

Definition 3 (Continuity). A function f : R® — R™ is continuous at x € dom
f if for all € > 0 there exists a 6 > 0 with y € dom f, such that

ly —xll2 <0 = |If(y) = f(x)ll2 <€

Definition 4 (Lipschitz Continuity). A function f : R — R is G-Lipschitz-
continuous if for all x,y € dom f,

If(x) = fI < Glx =yl
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Lipschitzness and Subgradient

* Relationship between Lipschitzness and bounded subgradient

Theorem 8. Let f : X — R be a convex function. Consider the following two
claims:

(i) Lipschitzness: |f(x) — f(y)| < G||x —y| forany x,y € X.

(i1)) Bounded subgradient: ||g||. < G forany g € 0f(x),x € X.
Then

(a) (i) = (i).

(b) if X is open, then (i) < (ii).
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Optimization Complexity: Easy vs Hard

A gentle start: Quadratic Functions: f(x) = ax? + bz + ¢
* Very easy to optimize, in fact, we have a close-form solution.

* Any benign property (compared to general convex problem)?
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Smoothness

Definition 5 (Smoothness). A function f is L-smooth with respect to the || - ||
norm if, for any x,y € dom f,

IVF(x) = V)l < Lix =yl

Smoothness is also called gradient Lipschitz in many literature.

Smoothness is defined over the primal-dual norms, which become ¢5-norm
when specialized to Euclidean space (and then, ||V f(x) — Vf(y)|, < L ||x —y|],)-
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Smoothness

The next lemma is an equivalent condition of smoothness.

Lemma 1 (Descent Lemma). Let f be an L-smooth function over a given convex set
X. Then for any x,y € X

F(y) < 760+ VI Ty = %) + 5y —x]”

Proof: f(y) — f(x) = [, (Vf(x+ty —x)),y — x)dt
= Fly) = F(x) = (VF(x),y — %) = / (VF(x 4ty — %)) — V(x),y — x)dt

< / IVF(x+ ty — %)) — V)| Iy — x| dt

1
L
<Ly -x|* [ wat <5y x|’ C
0
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Smoothness

The next lemma is an equivalent condition of smoothness.

Lemma 1 (Descent Lemma). Let f be an L-smooth function over a given convex set
X. Then for any x,y € X

fly) < fx)+Vix)'(y—x)+ =y — x|

h(x) = f(x0) + (Vf(x0),x — x0) + 5 [x — %013

f(x) In Optimization theory:

smooth vs nonsmooth

«&\[/ ,E,» ((5“5\/ %,»

(%0, f(X0))
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Smoothness

Example 1. Linear function f(x) = w ' x + ¢ is 0-smooth.

Example 2. Quadratic function f(x) = 3x'Ax +w'x + cis [|A]|,, ,-smooth

w.r.t. || - ||, norm.

Proof. The prootf is direct by the definition of smoothness and the operator norm:

IVI(x) = VIW)lp = [[Ax = Ayl < [[Allop.plx = ¥llp-

Definition 6 (Matrix Operator Norm). The operator norm (or called induced
norm) of a matrix A € R™*" is defined by

1Ax]],

11,

||A||0p’pémax{ XERd,X#O}.
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Smoothness

Example 3. Log-sum-exp function f(x) = log (e”* + e*2 + --- + €”") is 1-smooth

w.r.t. /o-norm and ¢..-norm.

Example 4. Function f(x) = 2 Hxﬂi is (p — 1)-smooth w.r.t. £,-norm.

Example 5. Function f(x) = /1 + ||x]||2 is 1-smooth w.r.t. £5-norm.

Example 6. Function f(x) = 2 ||x — [Ix[x] |” is 1-smooth w.r.t. £5-norm, where

IIx|x] denotes the Euclidean projection of x onto a convex domain X'
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Smoothness

Theorem 9 (First-order Characterizations of L-smoothness). Let f : X — R be
a convex function, differentiable over X. Then the following claims are equivalent:

(i) f is L-smooth.

(i) f(y) < f(x) +(VF(x),y —x)+ 5lx =y forall x,y € X.
(iii) f(y) 2 f(x) + (VI(x),y = %) + 5 [IVf(x) = VA(y)|IZ for all x,y € X.
(iv) (Vf(x) = VI(y),x—y) > lIIVf(x) = V)| forallx,y € X.

(0) FOx + (1= N)y) = Af(x) + (1 = Nf(y) = ZA1 = Nx — y||? for any
X,y € Xand \ € [0, 1]. (essentially zero-th order characterization)

Proofs can be found below Theorem 5.8 of Amir Beck’s book.
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Smoothness

Theorem 10 (Second-order Characterization of L-smoothness). Let f be a twice
continuously differentiable function over R%. Then for a given L > 0, L-smoothness
w.r.t. the {,-norm (p € |1, o0]) is equivalent to

IVf(x)|| <L,

op,p —

for any x € RY,

Example 5. Function f(x) = /1 + ||x]||2 is 1-smooth w.r.t. £5-norm.

Proof:
X 1 xx | 1
Vf(x)= —> Vif(x)= (1— )j I =1
Vi3 +1 Vx5 +1 IxI3+1/) = /x[3 +1
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Smoothness (in Optimization theory)

Definition 6. Let X C R?. We denote by .7 z”b(é\.’ |l - ||) the class of functions
with the following properties:

(i) any f € Z#; P(x, ]| - 1) is a times continuously differentiable on X'.

(ii) f’s b-th derivative is Lipschitz continuous on X with constant L:

VP f(x) = V°F()], < Lix -y, vx,y € X.

- Lipschitz continuous functions belong to .%,"° (X).

- L-smooth functions can be denoted by .7 i’l (X, - ]).

Ref: Lectures on Convex Optimization, Yurii Nesterov. Page 23-24.
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Strong Convexity

Definition 7 (Strong Convexity). A function f is o-strongly convex with re-
spect to norm || - || if, for any x,y € dom f and A € [0, 1],

FOX+ (1= N)y) S A() + (1= N f(y) = ZAL = Nx -y

e Clearly, for generally convex functions, o = 0.

Examples:

- f(x) = HxHi is 2-strongly-convex with respect to norm || - ||,,.

- Negative entropy f(x) Zle z; In x; over probability distribution (i.e.,

x; € |0,1] and Zle x; = 1) is 1-strongly-convex with respect to norm || - ||;.
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Strong Convexity

The most commonly used property for strongly convex functions.

Theorem 11. Let f be a proper closed and o-strongly convex function. Then for any
x € dom(9f),y € dom(f)and g € 0f(x),

F(y) = £x) + (&Y —x) + 2 Iy — xII”

\r/

(%0, f(%0))
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Strong Convexity

Theorem 11 (First-order Characterizations of Strong Convexity). Let f be a
proper closed and convex function. Then for a given o > 0, the followings equal:

(1) f is o-strongly convex.

(ii) Forany x € dom(0f),y € dom(f)and g € 0f(x),

O
fy) = () + (g y — %) + S lly — x|
commonly used

(iii) For any x,y € dom(0f), and gx € 0f(x),gy € 0f(y),
(gx — 8y, x —y) > ollx — y|*.

(iv) Function f(-) — 4| - ||? is convex.
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Strong Convexity
Proof: (i)—(ii)

FOY + (L= %) S Af(y) + (1= N f(x) = SML = N)]x =y

— f(X-FA(Y—X))—f(X) Sf(}’)_f(x)_

. (1= Nlx -yl

g
2
- Py ) & fim T A =) = £

< Fy) = f0) = Slx =yl

f'(x;y — x): the directional derivative of f at point x along directiony — x

Vg € 0f(x), (g8, y—x) < fl(xy—x)

Plugging g = V f(x) finishes the proof. L]
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Strong Convexity

Theorem 12. Let X' be a Euclidean space. Then f is o-strongly convex with respect
to norm || - || if and only if the function f(-) — 5| - || is convex.

f is “as least as convex” as a quadratic function.

Example 8. f(x) = ix' Ax + w'x + c is o-strongly convex w.r.t. the fo-norm

if and only if A > o1.
Proof: fis o-strongly convexif and onlyif h(x) = ix" (A — oI) x+Ww ' x+cis convex

—> V?h(x)=A—-0l>=0 ]
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Strong Convexity

Theorem 13 (Second-order Characterization of Strong Convexity). Let X be a
Euclidean space. Then f is o-strongly convex with respect to || - || if and only if for any
X, W e X,

w! V2 f(x)w > o |lw|”.

a more familiar form: HWHQVQf(X)

Furthermore, when using fo-norm, it is equivalent to V2 f(x) = ol.

- Negative entropy f(x) = Zle z; In x; over probability distribution (i.e.,
x; € |0,1] and Zle r; = 1) is 1-strongly-convex.
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Strong Convexity

Theorem 14. Let f be a proper closed and o-strongly convex function. Then

- f has a unique minimizer, denoted by x*.

- f(x) — f(x*) > Z|lx — x*||? for all x € dom(f).

Be careful about the usage of x*= arg min, .  f(x) (you need to ensure the uniqueness).

The function-value convergence is more essential for strongly convex optimization.
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Strongly Convex and Smooth

If function f is both o-strongly convex and L-smooth w.r.t. /5-norm, then
- ol X V?f(x) < LI

- f is y-well-conditioned with v = k=%, where kK & L/o > 1 is called the
condition number.

The smaller the condition number « is, the easier the function is.

h(x) £ f(x0) + (Vf(x0), x = Xo) + 5 [1x — %3

f(x)
s(x) = f(x0) + (Vf(x0),x — X0) + §Ix — %ol[3

S —

(%0, f(x0))
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Relationship

Theorem 15 (Conjugate Correspondence). Consider the conjugate function:

f*(y) = max {(y,x) — f(x)}.

xecX

(a) If the function f is convex and ~-smooth w.r.t. the norm ||-||, then its conjugate
f* is o-strongly convex w.r.t. the dual norm || - ||..

(b) If f is proper closed o-strongly convex w.r.t. the norm ||-||, then f* is X-smooth
w.r.t. the dual norm || - | ..

Reference: Kakade et al., On the duality of strong convexity and strong
smoothness: Learning applications and matrix regularization. 2009.
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Part 5. Gradient Descent

 Gradient Descent

* Surrogate Optimization

Advanced Optimization (Fall 2025) Lecture 2. Convex Problems

57



Gradient Descent

* GD Template:
Xep1 = Ly [x¢ — 0V f(x4)]

- X1 can be an arbitrary point inside the domain.
- ¢ > 01is the potentially time-varying step size (or called learning rate).

- Projection Il x[y| = arg min, . » ||x — y|| ensures the feasibility.
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Why Gradient Descent?

* For simplicity, we consider the unconstrained setting.

* A General Idea: Surrogate Optimization

We aim to find a sequence of local upper bounds Uy, --- ,Ur, where the
surrogate function U; : R? — R may depend on x; such that

(1) f(xt) = U(x¢);
(i) f(x) < U(x) holds for all x € RY;

(iii) U:(x) should be simple enough to minimize.

:> Then, our proposed algorithm would be x; 1 = arg min, U;(x)
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Why Gradient Descent?

* Following the surrogate optimization principle, let’s invent GD
for convex and smooth functions.

Proposition 1. Suppose that f is convex and differentiable. Moreover, suppose that
f is L-smooth with respect to o-norm. Define the surrogate U; : R — R as

A L
Up(x) = fxe) + (VF(xe), % — %) + 5 [[x = x| -

Then, we have
(1) f(xt) = Us(x¢);
(i) f(x) < U:(x) holds for all x € R%;

(iii) x¢41 = argmin, U;(x) isequivalentto %, = Xt—%Vf(Xt).
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Gradient Descent

* GD Template:

Xep1 = Ly [x¢ — 0V f(x4)]

- x; can be an arbitrary point inside the domain.
- ¢ > 01is the potentially time-varying step size (or called learning rate).

- Projection Il x[y| = arg min, . » ||x — y|| ensures the feasibility.

|:> It only forms a general template, and there are still much complexity yet to specity.
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GD Template
GD template: xir1 =y [Xt — Utvf(Xt)]

* step size 7

t
s=1

e output sequence x; based on {x,
e stochastic case: gradient estimates

 GDis only a template, and many variants exist

Key requirements: provable guarantees, particularly with finite-sample
(non-asymptotic) rates
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Summary

~ Complexity Measure ~ Continuous Functions

Convergence Rate Smoothness/Strong Convexity

[ PERFORMANCE MEASURE ] < [ FUNCTION PROPERTIES ] <

Iteration Complexity Condition Number

“~  Computational Complexity “ Conjugate Correspondence
Subgradient Gradient Descent
SUBGRADIENT [ GRADIENT DESCENT TEMPLATE {
Subdifferential Surrogate Optimization

Fermat's Optimality Condition

[ OPTIMALITY CONDITION ] First-order Optimality Condition

KKT Condition

Q& A
Thanks!
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