

Lecture 2. Convex Problems

Advanced Optimization (Fall 2025)

Peng Zhao

zhaop@lamda.nju.edu.cn Nanjing University

Outline

• Performance Measure

Subgradient

Optimality Condition

• Function Properties

Gradient Descent Template

Convex Optimization Problem

• We adopt a minimization language

$$\min \quad f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathcal{X}$

- optimization variable $\mathbf{x} \in \mathbb{R}^d$
- objective function $f: \mathbb{R}^d \mapsto \mathbb{R}$: convex and continuously differentiable
- feasible domain $\mathcal{X} \subseteq \mathbb{R}^d$: convex

Part 1. Performance Measure

• Iterated Optimization

$$\mathbf{x}_1 \to \mathbf{x}_2 \to \cdots \mathbf{x}_t \to \mathbf{x}_{t+1} \to \cdots \mathbf{x}_T$$

To output a sequence $\{\bar{\mathbf{x}}_t\}_{t=1}^T$ such that $\bar{\mathbf{x}}_t$ approximates \mathbf{x}^* when t goes larger. where $\{\bar{\mathbf{x}}_t\}_{t=1}^T$ can be *statistics* of the original sequence $\{\mathbf{x}_t\}_{t=1}^T$, and \mathbf{x}^* arg $\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ denotes the optimal solution.

- Measure
 - Function-value level: $f(\bar{\mathbf{x}}_T) f(\mathbf{x}^*) \leq \varepsilon(T)$
 - Optimizer-value level: $\|\bar{\mathbf{x}}_T \mathbf{x}^*\| \le \varepsilon(T)$

and $\varepsilon(T)$ is the *approximation error* and is a function of iterations T.

Performance Measure

• In general, there are two performance measures (essentially same).

Convergence: $f(\bar{\mathbf{x}}_T) - f(\mathbf{x}^*) \leq \varepsilon(T)$,

- Qualitatively: $\varepsilon(T) \to 0$ when $T \to \infty$
- Quantitatively: $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ / $\mathcal{O}\left(\frac{1}{T}\right)$ / $\mathcal{O}\left(\frac{1}{T^2}\right)$ / $\mathcal{O}\left(\frac{1}{e^T}\right)$ / ...

Complexity:

- **Definition:** number of iterations required to achieve $f(\bar{\mathbf{x}}_T) f(\mathbf{x}^*) \leq \varepsilon$.
- Quantitatively: $\mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$ / $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ / $\mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right)$ / $\mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$ / ...

corresponds to
$$\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$
 / $\mathcal{O}\left(\frac{1}{T}\right)$ / $\mathcal{O}\left(\frac{1}{T^2}\right)$ / $\mathcal{O}\left(\frac{1}{e^T}\right)$ / ...

More Concretely

Iterated Complexity vs Computational Complexity

• Computational complexity requires further consideration of the per-round runtime (i.e., the number of elementary operations that the algorithm needs to do); like FLOPS.

Examples

- first-order method ($\nabla f(\mathbf{x}_t)$) vs second-order method ($\nabla^2 f(\mathbf{x}_t)$);
- operations: Euclidean ($\Pi_{\mathcal{X}}[\mathbf{y}]$) vs Mahalanobis ($\Pi_{\mathcal{X}}^{M}[\mathbf{y}]$) projection

Key Factors

• Consider the function-value level:

$$f(\bar{\mathbf{x}}_T) - f(\mathbf{x}^*) \le \varepsilon(T)$$

where $\{\bar{\mathbf{x}}_t\}_{t=1}^T$ can be *statistics* of the original sequence $\{\mathbf{x}_t\}_{t=1}^T$,

- There are key quantities to consider
 - update: x_t to $x_{t+1} \rightarrow (sub)$ gradient
 - comparator: x^* \rightarrow optimality condition
 - **function**: f \rightarrow function property

Part 2. Subgradient

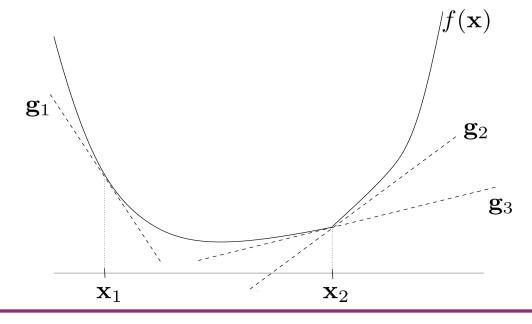
- Subgradient
- Subdifferential
- Existence and Calculation

Subgradient

Definition 1 (Subgradient). Let $f : \mathcal{X} \to \mathbb{R}$ be a proper function and let $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$. A vector $\mathbf{g} \in \mathbb{R}^d$ is called a *subgradient* of f at \mathbf{x} if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$
, for all $\mathbf{y} \in \mathbb{R}^d$.

Intuition: subgradient $g \in \partial f(x)$ can be any variable that makes the line $f(x) + \langle g, y - x \rangle$ below the curve f.



Subdifferential

Definition 1 (Subgradient). Let $f : \mathcal{X} \to \mathbb{R}$ be a proper function and let $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$. A vector $\mathbf{g} \in \mathbb{R}^d$ is called a *subgradient* of f at \mathbf{x} if

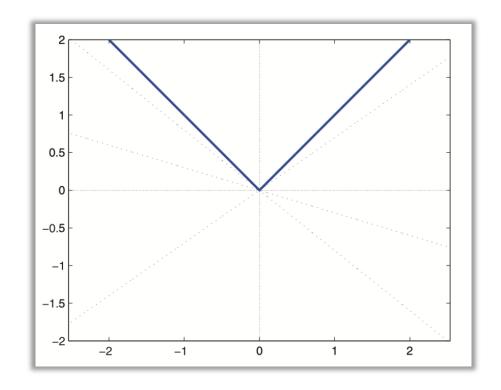
$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$
, for all $\mathbf{y} \in \mathbb{R}^d$.

Definition 2 (Subdifferential). The set of all subgradients of f at \mathbf{x} is called the *subdifferential* of f at \mathbf{x} and is denoted by $\partial f(\mathbf{x})$,

$$\partial f(\mathbf{x}) \triangleq \{ \mathbf{g} \in \mathbb{R}^d \mid f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle, \text{ for all } \mathbf{y} \in \mathbb{R}^d \}.$$

Subgradient and Subdifferential

Example 1. The subdifferential of $f(\mathbf{x}) = ||\mathbf{x}||$ at $\mathbf{x} = \mathbf{0}$ is the dual norm unit ball, i.e., $\partial f(\mathbf{0}) = \{\mathbf{g} \mid ||\mathbf{g}||_* \leq 1\}$.



an illustration for 1-dim case

$$f(x) = |x|$$

Subgradient and Subdifferential

Example 1. The subdifferential of $f(\mathbf{x}) = ||\mathbf{x}||$ at $\mathbf{x} = \mathbf{0}$ is the dual norm unit ball, i.e., $\partial f(\mathbf{0}) = \{\mathbf{g} \mid ||\mathbf{g}||_* \leq 1\}$.

Proof:

By definition, it suffices to prove that $\mathbf{g} \in \partial f(\mathbf{0})$ if and only if

$$\|\mathbf{y}\| \ge \langle \mathbf{g}, \mathbf{y} \rangle$$
 holds for all $\mathbf{y} \in \mathbb{R}^d$.

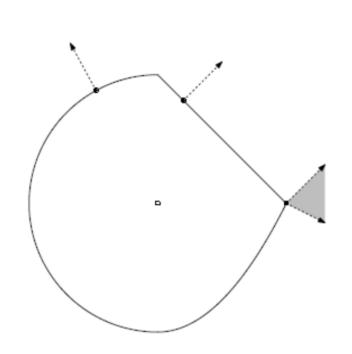
- ① if $\|\mathbf{g}\|_* \le 1$, then by the Cauchy-Schwarz inequality, $\langle \mathbf{g}, \mathbf{y} \rangle \le \|\mathbf{y}\| \|\mathbf{g}\|_* \le \|\mathbf{y}\|.$
- ② if $\|\mathbf{y}\| \ge \langle \mathbf{g}, \mathbf{y} \rangle$ is true, then by the definition of dual norm,

$$\|\mathbf{g}\|_* \triangleq \sup\{\langle \mathbf{g}, \mathbf{y} \rangle \mid \|\mathbf{y}\| \le 1\} \le \sup\{\|\mathbf{y}\| \mid \|\mathbf{y}\| \le 1\} \le 1.$$

Subgradient and Subdifferential

Example 2. For indicator function $f(\mathbf{x}) = \delta_{\mathcal{X}}(\mathbf{x})$, its subdifferential at any point

$$\mathbf{x} \in \mathcal{X} \text{ is } N_{\mathcal{X}}(\mathbf{x}) = \partial f(\mathbf{x}) = \{ \mathbf{g} \mid \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \leq 0, \forall \mathbf{y} \in \mathcal{X} \}.$$
 called normal cone



Proof:
$$\delta_{\mathcal{X}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{X} \\ +\infty, & \mathbf{x} \notin \mathcal{X} \end{cases}$$

By definition, $\mathbf{g} \in \partial \delta_{\mathcal{X}}(\mathbf{x})$ if and only if $\delta_{\mathcal{X}}(\mathbf{y}) \geq \delta_{\mathcal{X}}(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$ for any \mathbf{y} .

If $\mathbf{x} \in \mathcal{X}$, then $\delta_{\mathcal{X}}(\mathbf{x}) = 0$.

- For $y \notin \mathcal{X}$ the inequality is trivial $(+\infty \ge \cdots)$.
- For $\mathbf{y} \in \mathcal{X}$ it becomes $0 \ge \langle \mathbf{g}, \mathbf{y} \mathbf{x} \rangle$, i.e. $\langle \mathbf{g}, \mathbf{y} \mathbf{x} \rangle \le 0$ for all $\mathbf{y} \in \mathcal{X}$. That's exactly the normal cone's definition.

Existence of Subgradient

• Existence of subgradients implies convexity.

Theorem 1. Let $f: \mathcal{X} \mapsto \mathbb{R}$ be a proper function and assume \mathcal{X} is convex. If **for any** $\mathbf{x} \in \mathcal{X}$, its subgradients exist, then f is convex.

- A *sufficient condition* for deciding a convex function.
- The reverse direction is *not* always correct (example on the next page).

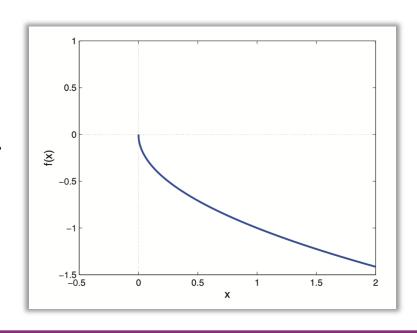
Existence of Subgradient

Convexity doesn't always imply existence of subgradients.

Example 3. Consider function $f : \mathbb{R} \to (-\infty, \infty]$ defined by

$$f(x) = \begin{cases} -\sqrt{x}, & x \ge 0 \\ \infty, & \text{else} \end{cases},$$

it is convex but does not have a subgradient at x = 0.



Existence of Subgradient

Convexity doesn't always imply existence of subgradients.

• Nevertheless, if we only care about the *interior* of feasible domain, convexity does imply the *existence* of subgradients.

Theorem 2. Let $f: \mathcal{X} \mapsto \mathbb{R}$ be a convex function and assume the feasible domain \mathcal{X} is convex. Consider any interior point $\mathbf{x} \in \operatorname{int}(\mathcal{X})$. Then $\partial f(\mathbf{x})$ is nonempty.

How to Compute Subgradient

- General principle: unfortunately, hard to give :(
- Ad-hoc calculations: see earlier examples.
- Good news: easy for convex and differential functions.

Theorem 3. Let $f: \mathcal{X} \mapsto \mathbb{R}$ be a proper and convex function and assume \mathcal{X} is convex.

- 1. If f is differentiable at \mathbf{x} , then $\partial f(\mathbf{x}) = {\nabla f(\mathbf{x})}$.
- 2. Conversely, if f has a unique subgradient, then it is differentiable at \mathbf{x} and $\partial f(\mathbf{x}) = {\nabla f(\mathbf{x})}.$

How to Compute Subgradient

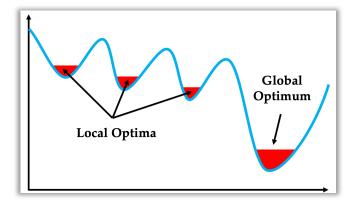
Example 4. The subdifferential of ℓ_2 -norm $f(\mathbf{x}) = ||\mathbf{x}||_2$ is

$$\partial f(\mathbf{x}) = \begin{cases} \left\{ \frac{\mathbf{x}}{\|\mathbf{x}\|_2} \right\}, & \mathbf{x} \neq \mathbf{0} \text{ (gradient of norm)} \\ \left\{ \mathbf{g} \mid \|\mathbf{g}\|_2 \leq 1 \right\}, & \mathbf{x} = \mathbf{0} \text{ (discussed earlier)} \end{cases}$$

Proof can be found in Example 3.34 of Amir Beck's book.

Why Convexity?

Local to Global Phenomenon



For convex (unconstrained) optimization, *local minima are global minima*.

Theorem 4. Let f be convex. If \mathbf{x} is a local minimum of f then \mathbf{x} is a global minimum of f.

A simple proof:

Assume that x is local minimum of f. Then for γ small enough, for any y,

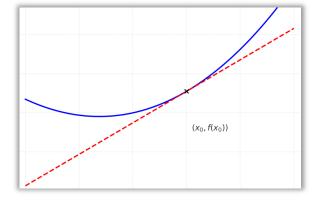
(local minima)

$$f(\mathbf{x}) \le f((1-\gamma)\mathbf{x} + \gamma\mathbf{y}) \le (1-\gamma)f(\mathbf{x}) + \gamma f(\mathbf{y}),$$

which implies $f(\mathbf{x}) \leq f(\mathbf{y})$ and thus \mathbf{x} is a global minimum of f.

Why Convexity?

Local to Global Phenomenon - II



For convex (and differentiable) functions, gradient is highly informative.

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}\$$

- **Local**: the gradient $\nabla f(\mathbf{x})$ is computed using only infinitesimal/**local** information of $f(\cdot)$ at \mathbf{x} ;
- **Global**: the subdifferential $\partial f(\mathbf{x})$ gives **global** information in the form of a linear lower bound on the entire function.

Part 3. Optimality Condition

- Fermat's Optimality Condition
- First-order Optimality Condition
- KKT Conditions
- Some Corollaries

Why Optimality Condition?

- Given a point, can you verify if it is optimal?
- → Optimality condition; we start from the simplest *unconstrained* case.

Theorem 5 (Fermat's Optimality Condition). *Let* $f : \mathbb{R}^d \to (-\infty, \infty]$ *be a proper convex function. Then*

$$\mathbf{x}^* \in \operatorname{argmin}\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^d\}$$

if and only if

$$\mathbf{0} \in \partial f(\mathbf{x}^{\star}).$$

Proof: Simply combining $f(\mathbf{x}) \geq f(\mathbf{x}^*)$

$$f(\mathbf{x}) \ge f(\mathbf{x}^*) + \langle \mathbf{g}, \mathbf{x} - \mathbf{x}^* \rangle, \mathbf{g} \in \partial f(\mathbf{x}^*)$$

Example 5 (Median). Suppose that we are given n different and ordered numbers $a_1 < a_2 < \cdots < a_n$. Denote $A = \{a_1, a_2, \dots, a_n\} \subseteq \mathbb{R}$. The median of A is a number satisfying

$$\operatorname{median}(A) = \begin{cases} a_{\frac{n+1}{2}}, & n \text{ odd} \\ \left[a_{\frac{n}{2}}, a_{\frac{n}{2}+1}\right], & n \text{ even} \end{cases}.$$

Solving the optimization problem:

From an optimization perspective, solving "median" meadian(A) equals to solving the following optimization problem.

$$\underset{x}{\operatorname{arg\,min}} \left\{ f(x) \triangleq \sum_{i=1}^{n} |x - a_i| \right\}$$

• Proof of median

From an optimization perspective, solving medians equals to solving the following optimization problem.

$$\operatorname{median}(A) = \underset{x}{\operatorname{arg\,min}} \left\{ f(x) \triangleq \sum_{i=1}^{n} |x - a_i| \right\}$$

Denote $f_i(x) = |x - a_i|$, then it hold that $f(x) = f_1(x) + f_2(x) + \cdots + f_n(x)$ and

$$\partial f_i(x) = \begin{cases} 1, & x > a_i \\ -1, & x < a_i \\ [-1, 1], & x = a_i \end{cases}$$

• Proof of median

Denote $f_i(x) = |x - a_i|$, then it hold that $f(x) = f_1(x) + f_2(x) + \cdots + f_n(x)$ and

$$\partial f_i(x) = \begin{cases} 1, & x > a_i \\ -1, & x < a_i \\ [-1, 1], & x = a_i \end{cases}$$

$$\partial f(x) = \partial f_1(x) + \partial f_2(x) + \dots + \partial f_n(x)$$

$$= \begin{cases} \# \{i : a_i < x\} - \# \{i : a_i > x\}, & x \notin A, \\ \# \{i : a_i < x\} - \# \{i : a_i > x\} + [-1, 1], & x \in A. \end{cases}$$

• Proof of median

$$\partial f(x) = \partial f_1(x) + \partial f_2(x) + \dots + \partial f_n(x)$$

$$= \begin{cases} \# \{i : a_i < x\} - \# \{i : a_i > x\}, & x \notin A, \\ \# \{i : a_i < x\} - \# \{i : a_i > x\} + [-1, 1], & x \in A. \end{cases}$$

$$\partial f(x) = \begin{cases} i - (n-i) = 2i - n, & x \in (a_i, a_{i+1}) \\ (i-1) - (n-i) + [-1, 1] = 2i - 1 - n + [-1, 1], & x = a_i \\ -n, & x < a_1 \\ n, & x > a_n \end{cases}$$

• Proof of median

$$\partial f(x) = \begin{cases} i - (n-i) = 2i - n, & x \in (a_i, a_{i+1}) \\ (i-1) - (n-i) + [-1, 1] = 2i - 1 - n + [-1, 1], & x = a_i \\ -n, & x < a_1 \\ n, & x > a_n \end{cases}$$

① Suppose $x = a_i$. Then,

$$0 \in \partial f(x) = 2i - 1 - n + [-1, 1] \Leftrightarrow |2i - 1 - n| \le 1 \Leftrightarrow \frac{n}{2} \le i \le \frac{n}{2} + 1 \Leftrightarrow x = \left[a_{\frac{n}{2}}, a_{\frac{n}{2} + 1}\right]$$

② Suppose $x \in (a_i, a_{i+1})$. Then, $0 \in \partial f(x) = 2i - n \Leftrightarrow i = \frac{n}{2} \Leftrightarrow x \in (a_{\frac{n}{2}}, a_{\frac{n}{2}+1})$

Combining the two cases finishes the proof (by further checking n is odd or even).

First-order Optimality Condition

Constrained Case

Theorem 6 (First-order Optimality Condition). Let f be convex and \mathcal{X} a closed convex set on which f is differentiable. Then $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ if and only if there exists $\mathbf{g} \in \partial f(\mathbf{x}^*)$ such that

$$\langle \mathbf{g}, \mathbf{x} - \mathbf{x}^* \rangle \ge 0, \forall \mathbf{x} \in \mathcal{X}.$$

A simple proof: derived from the Fermat's optimality condition.

deploying the Fermat's optimility condition on the unconstrained "surrogate" objective

$$h(\mathbf{x}) \triangleq f(\mathbf{x}) + \delta_{\mathcal{X}}(\mathbf{x})$$

Proof can be found in Theorem 3.67 of Amir Beck's book.

First-order Optimality Condition

Constrained Case

Theorem 6 (First-order Optimality Condition). Let f be convex and \mathcal{X} a closed convex set on which f is differentiable. Then $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ if and only if there exists $\mathbf{g} \in \partial f(\mathbf{x}^*)$ such that

$$\langle \mathbf{g}, \mathbf{x} - \mathbf{x}^* \rangle \ge 0, \forall \mathbf{x} \in \mathcal{X}.$$

Example 2. For indicator function $f(\mathbf{x}) = \delta_{\mathcal{X}}(\mathbf{x})$, its subdifferential at any point

$$\mathbf{x} \in \mathcal{X} \text{ is } N_{\mathcal{X}}(\mathbf{x}) = \partial f(\mathbf{x}) = \{ \mathbf{g} \mid \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \leq 0, \forall \mathbf{y} \in \mathcal{X} \}.$$

First-order Optimality Condition

Constrained Case

Theorem 6 (First-order Optimality Condition). Let f be convex and \mathcal{X} a closed convex set on which f is differentiable. Then $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ if and only if there exists $\mathbf{g} \in \partial f(\mathbf{x}^*)$ such that

$$\langle \mathbf{g}, \mathbf{x} - \mathbf{x}^* \rangle \ge 0, \forall \mathbf{x} \in \mathcal{X}.$$

Fermat's optimality condition says that \mathbf{x}^* is optimal if and only if $\mathbf{0} \in \partial f(\mathbf{x}^*)$.

$$\mathbf{0} \in \partial h(\mathbf{x}^{*}) = \partial f(\mathbf{x}^{*}) + N_{\mathcal{X}}(\mathbf{x}^{*})$$

$$-\partial f(\mathbf{x}^{*}) \cap N_{\mathcal{X}}(\mathbf{x}^{*}) \neq \emptyset$$

$$\Rightarrow \exists \mathbf{g} \in -\partial f(\mathbf{x}^{*}) \quad \text{s.t. } \langle \mathbf{g}, \mathbf{x} - \mathbf{x}^{*} \rangle \leq 0, \forall \mathbf{x} \in \mathcal{X}$$

Karush-Kuhn-Tucker (KKT) Conditions

Theorem 7. Consider the minimization problem

$$\min_{s.t.} f(\mathbf{x})
s.t. g_i(\mathbf{x}) \le 0, i \in [m],$$
(1)

where f, g_1, g_2, \ldots, g_m are real-valued convex functions.

1. Necessary condition: Let \mathbf{x}^* be an optimal solution of (1), and assume that Slater's condition is satisfied. Then there exist $\lambda_1, \ldots, \lambda_m \geq 0$ for which

$$\mathbf{0} \in \partial f(\mathbf{x}^{\star}) + \sum_{i=1}^{m} \lambda_{i} \partial g_{i}(\mathbf{x}^{\star})$$
 (2)

$$\lambda_i g_i\left(\mathbf{x}^{\star}\right) = 0, \quad i \in [m]. \tag{3}$$

2. Sufficient condition: If a point \mathbf{x}^* satisfies conditions (2) and (3) for some $\lambda_1, \lambda_2, \dots, \lambda_m \geq 0$, then it is an optimal solution of problem (1).

William Karush
1917-1997
Developed the necessary
conditions in 1939 in his
(unpublished) MS thesis.

Harold Kuhn Albert Tucker 1925-2014 1905-1995

Published conditions in 1951.

Proof Sketch

(1) Inequalities $\mathcal{X} = \{\mathbf{x} \mid g_i(\mathbf{x}) \leq 0\}$: At \mathbf{x} , let $\mathcal{I}(\mathbf{x}) = \{i \mid g_i(\mathbf{x}) = 0\}$ be the active set. Then

$$N_{\mathcal{X}}(\mathbf{x}) = \left\{ \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i \nabla g_i(\mathbf{x}) \mid \lambda_i \ge 0 \right\}.$$
 (Inactive constraints don't contribute

(2) Equalities $\mathcal{X} = \{\mathbf{x} \mid h_j(\mathbf{x}) = 0\}$ (affine manifold):

$$N_{\mathcal{X}}(\mathbf{x}) = \left\{ \sum_{j} \mu_{j} \nabla h_{j}(\mathbf{x}) \mid \mu_{j} \in \mathbb{R} \right\}.$$

(3) Mixed case $g_i(\mathbf{x}) \leq 0, h_j(\mathbf{x}) = 0$: combining the two gives

$$N_{\mathcal{X}}(\mathbf{x}) = \left\{ \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i \nabla g_i(\mathbf{x}) + \sum_j \mu_j \nabla h_j(\mathbf{x}) \mid \lambda_i \ge 0 \right\}.$$

Proof Sketch

$$N_{\mathcal{X}}(\mathbf{x}) = \left\{ \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i \nabla g_i(\mathbf{x}) + \sum_j \mu_j \nabla h_j(\mathbf{x}) \mid \lambda_i \ge 0 \right\}.$$

Plugging $N_{\mathcal{X}}(\mathbf{x})$ into the condition

$$\mathbf{0} \in \partial f(\mathbf{x}) + N_{\mathcal{X}}(\mathbf{x})$$

yields the KKT stationarity together with primal feasibility, dual feasibility ($\lambda_i \geq 0$) and complementary slackness ($\lambda_i g_i(\mathbf{x}) = 0$).

Understanding KKT Conditions

- On the one hand, KKT conditions depict properties of the optimization solution (consider the dual form and interpretation in SVM).
 - 1. Let \mathbf{x}^* be an optimal solution of (1), and assume that Slater's condition is satisfied. Then there exist $\lambda_1, \ldots, \lambda_m \geq 0$ for which

$$\mathbf{0} \in \partial f\left(\mathbf{x}^{\star}\right) + \sum_{i=1}^{m} \lambda_{i} \partial g_{i}\left(\mathbf{x}^{\star}\right)$$

$$\lambda_i g_i(\mathbf{x}^*) = 0, \quad i \in [m].$$

- On the other hand, many optimization methods can be thought of as iterative approximations to solve the KKT conditions.
 - 2. If \mathbf{x}^* satisfies conditions (2) and (3) for some $\lambda_1, \lambda_2, \dots, \lambda_m \geq 0$, then it is an optimal solution of problem (1).

Part 4. Function Properties

Smoothness

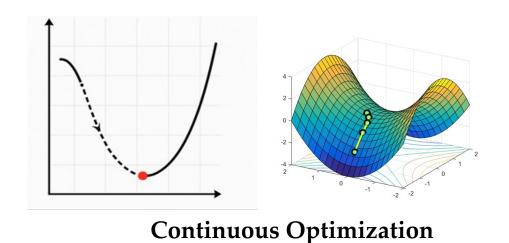
Strong Convexity

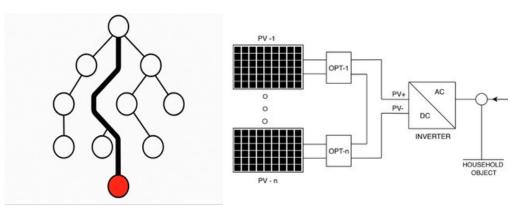
Function

• Function mapping $f : \text{dom } f \subseteq \mathcal{X} \subseteq \mathbb{R}^n \to \mathcal{Y} \subseteq \mathbb{R}^m$

Definition 3 (Continuous Function). A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $\mathbf{x} \in \text{dom } f$ if for all $\epsilon > 0$ there exists a $\delta > 0$ with $\mathbf{y} \in \text{dom } f$, such that

$$\|\mathbf{y} - \mathbf{x}\|_2 \le \delta \Rightarrow \|f(\mathbf{y}) - f(\mathbf{x})\|_2 \le \epsilon.$$





Discrete Optimization

Lipschitz Continuity

Definition 3 (Continuity). A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $\mathbf{x} \in \text{dom } f$ if for all $\epsilon > 0$ there exists a $\delta > 0$ with $\mathbf{y} \in \text{dom } f$, such that

$$\|\mathbf{y} - \mathbf{x}\|_2 \le \delta \Rightarrow \|f(\mathbf{y}) - f(\mathbf{x})\|_2 \le \epsilon.$$

Definition 4 (Lipschitz Continuity). A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is G-Lipschitz-continuous if for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$,

$$||f(\mathbf{x}) - f(\mathbf{y})|| \le G ||\mathbf{x} - \mathbf{y}||.$$

Lipschitzness and Subgradient

• Relationship between *Lipschitzness* and *bounded subgradient*

Theorem 8. Let $f: \mathcal{X} \to \mathbb{R}$ be a convex function. Consider the following two claims:

- (i) Lipschitzness: $|f(\mathbf{x}) f(\mathbf{y})| \le G||\mathbf{x} \mathbf{y}||$ for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.
- (ii) Bounded subgradient: $\|\mathbf{g}\|_* \leq G$ for any $\mathbf{g} \in \partial f(\mathbf{x}), \mathbf{x} \in \mathcal{X}$.

Then

- (a) $(ii) \Rightarrow (i)$.
- (b) if \mathcal{X} is open, then (i) \Leftrightarrow (ii).

Optimization Complexity: Easy vs Hard

A gentle start: Quadratic Functions: $f(x) = ax^2 + bx + c$

• Very easy to optimize, in fact, we have a close-form solution.

• Any benign property (compared to general convex problem)?

Definition 5 (Smoothness). A function f is L-smooth with respect to the $\|\cdot\|$ norm if, for any $\mathbf{x}, \mathbf{y} \in \text{dom } f$,

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_* \le L\|\mathbf{x} - \mathbf{y}\|.$$

Smoothness is also called *gradient Lipschitz* in many literature.

Smoothness is defined over the primal-dual norms, which become ℓ_2 -norm when specialized to Euclidean space (and then, $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L \|\mathbf{x} - \mathbf{y}\|_2$).

The next lemma is an *equivalent* condition of smoothness.

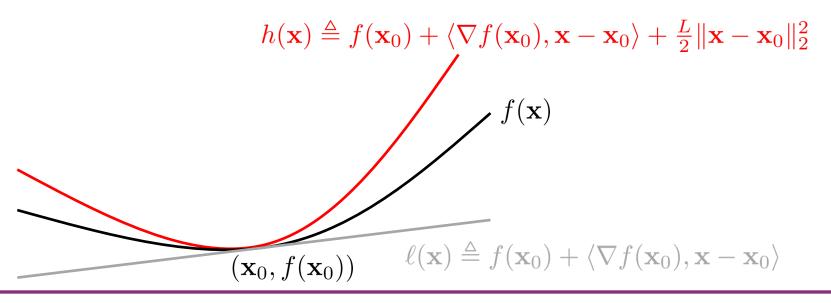
Lemma 1 (Descent Lemma). Let f be an L-smooth function over a given convex set \mathcal{X} . Then for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||^2.$$

The next lemma is an *equivalent* condition of smoothness.

Lemma 1 (Descent Lemma). Let f be an L-smooth function over a given convex set \mathcal{X} . Then for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||^2.$$



In Optimization theory: smooth vs nonsmooth "平滑" vs "非平滑"

Example 1. Linear function $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + c$ is 0-smooth.

Example 2. Quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} + \mathbf{w}^{\top}\mathbf{x} + c$ is $||A||_{\text{op},p}$ -smooth w.r.t. $||\cdot||_p$ norm.

Proof. The proof is direct by the definition of smoothness and the operator norm:

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_p = \|A\mathbf{x} - A\mathbf{y}\|_p \le \|A\|_{\text{op},p} \|\mathbf{x} - \mathbf{y}\|_p.$$

Definition 6 (Matrix Operator Norm). The operator norm (or called induced norm) of a matrix $A \in \mathbb{R}^{m \times n}$ is defined by

$$\|A\|_{\text{op},p} \triangleq \max \left\{ \frac{\|A\mathbf{x}\|_p}{\|\mathbf{x}\|_p} \,\middle|\, \mathbf{x} \in \mathbb{R}^d, \mathbf{x} \neq \mathbf{0} \right\}.$$

Example 3. Log-sum-exp function $f(\mathbf{x}) = \log (e^{x_1} + e^{x_2} + \cdots + e^{x_n})$ is 1-smooth w.r.t. ℓ_2 -norm and ℓ_{∞} -norm.

Example 4. Function $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_p^2$ is (p-1)-smooth w.r.t. ℓ_p -norm.

Example 5. Function $f(\mathbf{x}) = \sqrt{1 + ||\mathbf{x}||_2^2}$ is 1-smooth w.r.t. ℓ_2 -norm.

Example 6. Function $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \Pi_{\mathcal{X}}[\mathbf{x}]\|^2$ is 1-smooth w.r.t. ℓ_2 -norm, where $\Pi_{\mathcal{X}}[\mathbf{x}]$ denotes the Euclidean projection of \mathbf{x} onto a *convex* domain \mathcal{X} .

Theorem 9 (*First-order* Characterizations of *L*-smoothness). Let $f : \mathcal{X} \to \mathbb{R}$ be a convex function, differentiable over \mathcal{X} . Then the following claims are equivalent:

- (i) f is L-smooth.
- (ii) $f(\mathbf{y}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{x} \mathbf{y}||^2$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.
- (iii) $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2L} \|\nabla f(\mathbf{x}) \nabla f(\mathbf{y})\|_*^2 \text{ for all } \mathbf{x}, \mathbf{y} \in \mathcal{X}.$
- (iv) $\langle \nabla f(\mathbf{x}) \nabla f(\mathbf{y}), \mathbf{x} \mathbf{y} \rangle \ge \frac{1}{L} \|\nabla f(\mathbf{x}) \nabla f(\mathbf{y})\|_*^2$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.
- (v) $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) \ge \lambda f(\mathbf{x}) + (1 \lambda)f(\mathbf{y}) \frac{L}{2}\lambda(1 \lambda)\|\mathbf{x} \mathbf{y}\|^2$ for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $\lambda \in [0, 1]$. (essentially zero-th order characterization)

Proofs can be found below Theorem 5.8 of Amir Beck's book.

Theorem 10 (Second-order Characterization of L-smoothness). Let f be a twice continuously differentiable function over \mathbb{R}^d . Then for a given $L \geq 0$, L-smoothness w.r.t. the ℓ_p -norm $(p \in [1, \infty])$ is equivalent to

$$\|\nabla^2 f(\mathbf{x})\|_{op,p} \le L,$$

for any $\mathbf{x} \in \mathbb{R}^d$.

Example 5. Function $f(\mathbf{x}) = \sqrt{1 + \|\mathbf{x}\|_2^2}$ is 1-smooth w.r.t. ℓ_2 -norm.

Proof:

$$\nabla f(\mathbf{x}) = \frac{\mathbf{x}}{\sqrt{\|\mathbf{x}\|_{2}^{2} + 1}} \quad \square > \quad \nabla^{2} f(\mathbf{x}) = \frac{1}{\sqrt{\|\mathbf{x}\|_{2}^{2} + 1}} \left(I - \frac{\mathbf{x}\mathbf{x}^{\top}}{\|\mathbf{x}\|_{2}^{2} + 1} \right) \preceq \frac{1}{\sqrt{\|\mathbf{x}\|_{2}^{2} + 1}} I \preceq I$$

Smoothness (in Optimization theory)

Definition 6. Let $\mathcal{X} \subseteq \mathbb{R}^d$. We denote by $\mathscr{F}_L^{a,b}(\mathcal{X}, \|\cdot\|)$ the class of functions with the following properties:

- (i) any $f \in \mathscr{F}_L^{a,b}(\mathcal{X}, \|\cdot\|)$ is a times continuously differentiable on \mathcal{X} .
- (ii) f's b-th derivative is Lipschitz continuous on \mathcal{X} with constant L:

$$\|\nabla^b f(\mathbf{x}) - \nabla^b f(\mathbf{y})\|_* \le L\|\mathbf{x} - \mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}.$$

- Lipschitz continuous functions belong to $\mathscr{F}_L^{0,0}(\mathcal{X})$.
- L-smooth functions can be denoted by $\mathscr{F}_L^{1,1}(\mathcal{X}, \|\cdot\|)$.

Ref: Lectures on Convex Optimization, Yurii Nesterov. Page 23-24.

Definition 7 (Strong Convexity). A function f is σ -strongly convex with respect to norm $\|\cdot\|$ if, for any $\mathbf{x}, \mathbf{y} \in \text{dom } f$ and $\lambda \in [0, 1]$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) - \frac{\sigma}{2}\lambda(1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^2.$$

• Clearly, for generally convex functions, $\sigma = 0$.

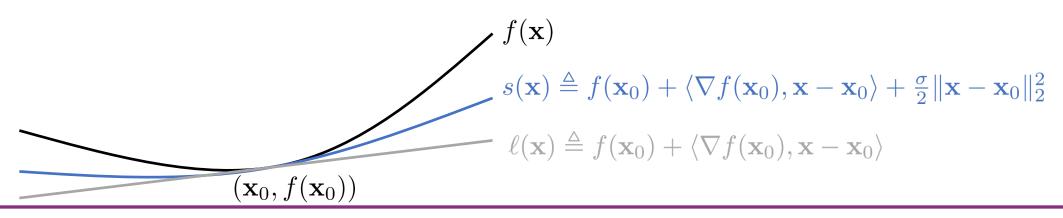
Examples:

- $f(\mathbf{x}) = \|\mathbf{x}\|_p^2$ is 2-strongly-convex with respect to norm $\|\cdot\|_p$.
- Negative entropy $f(\mathbf{x}) = \sum_{i=1}^{d} x_i \ln x_i$ over probability distribution (i.e., $x_i \in [0, 1]$ and $\sum_{i=1}^{d} x_i = 1$) is 1-strongly-convex with respect to norm $\|\cdot\|_1$.

The most commonly used property for strongly convex functions.

Theorem 11. Let f be a proper closed and σ -strongly convex function. Then for any $\mathbf{x} \in \text{dom}(\partial f), \mathbf{y} \in \text{dom}(f)$ and $\mathbf{g} \in \partial f(\mathbf{x})$,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + \frac{\sigma}{2} ||\mathbf{y} - \mathbf{x}||^2.$$



Theorem 11 (*First-order* Characterizations of Strong Convexity). Let f be a proper closed and convex function. Then for a given $\sigma > 0$, the followings equal:

- (i) f is σ -strongly convex.
- (ii) For any $\mathbf{x} \in \text{dom}(\partial f)$, $\mathbf{y} \in \text{dom}(f)$ and $\mathbf{g} \in \partial f(\mathbf{x})$,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + \frac{\sigma}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$
commonly used

(iii) For any $\mathbf{x}, \mathbf{y} \in \text{dom}(\partial f)$, and $\mathbf{g}_{\mathbf{x}} \in \partial f(\mathbf{x}), \mathbf{g}_{\mathbf{y}} \in \partial f(\mathbf{y})$,

$$\langle \mathbf{g}_{\mathbf{x}} - \mathbf{g}_{\mathbf{y}}, \mathbf{x} - \mathbf{y} \rangle \ge \sigma \|\mathbf{x} - \mathbf{y}\|^2.$$

(iv) Function $f(\cdot) - \frac{\sigma}{2} \| \cdot \|^2$ is convex.

Proof: $(i) \rightarrow (ii)$

$$f(\lambda \mathbf{y} + (1 - \lambda)\mathbf{x}) \leq \lambda f(\mathbf{y}) + (1 - \lambda)f(\mathbf{x}) - \frac{\sigma}{2}\lambda(1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^{2}$$

$$\Rightarrow \frac{f(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\lambda} \leq f(\mathbf{y}) - f(\mathbf{x}) - \frac{\sigma}{2}(1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^{2} \quad \text{(rearrange)}$$

$$\Rightarrow f'(\mathbf{x}; \mathbf{y} - \mathbf{x}) \triangleq \lim_{\lambda \to 0} \frac{f(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\lambda} \leq f(\mathbf{y}) - f(\mathbf{x}) - \frac{\sigma}{2}\|\mathbf{x} - \mathbf{y}\|^{2}$$

 $f'(\mathbf{x}; \mathbf{y} - \mathbf{x})$: the *directional derivative* of f at point \mathbf{x} along direction $\mathbf{y} - \mathbf{x}$

$$\forall \mathbf{g} \in \partial f(\mathbf{x}), \quad \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \le f'(\mathbf{x}; \mathbf{y} - \mathbf{x})$$

Plugging $\mathbf{g} = \nabla f(\mathbf{x})$ finishes the proof.

Theorem 12. Let \mathcal{X} be a Euclidean space. Then f is σ -strongly convex with respect to norm $\|\cdot\|$ if and only if the function $f(\cdot) - \frac{\sigma}{2}\|\cdot\|^2$ is convex.

f is "as least as convex" as a quadratic function.

Example 8. $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} + \mathbf{w}^{\top}\mathbf{x} + c$ is σ -strongly convex w.r.t. the ℓ_2 -norm if and only if $A \succeq \sigma I$.

Proof: f is σ -strongly convex if and only if $h(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top} (A - \sigma I)\mathbf{x} + \mathbf{w}^{\top}\mathbf{x} + c$ is convex

Theorem 13 (*Second-order* Characterization of Strong Convexity). Let \mathcal{X} be a Euclidean space. Then f is σ -strongly convex with respect to $\|\cdot\|$ if and only if for any $\mathbf{x}, \mathbf{w} \in \mathcal{X}$,

$$\mathbf{w}^{\top} \nabla^2 f(\mathbf{x}) \mathbf{w} \ge \sigma \|\mathbf{w}\|^2.$$

a more familiar form: $\|\mathbf{w}\|_{\nabla^2 f(\mathbf{x})}^2$

Furthermore, when using ℓ_2 -norm, it is equivalent to $\nabla^2 f(\mathbf{x}) \succeq \sigma I$.

- Negative entropy $f(\mathbf{x}) = \sum_{i=1}^{d} x_i \ln x_i$ over probability distribution (i.e., $x_i \in [0,1]$ and $\sum_{i=1}^{d} x_i = 1$) is 1-strongly-convex.

Theorem 14. Let f be a proper closed and σ -strongly convex function. Then

- f has a unique minimizer, denoted by \mathbf{x}^* .
- $f(\mathbf{x}) f(\mathbf{x}^*) \ge \frac{\sigma}{2} ||\mathbf{x} \mathbf{x}^*||^2$ for all $\mathbf{x} \in \text{dom}(f)$.

Be careful about the usage of $\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ (you need to ensure the uniqueness).

The *function-value convergence* is more essential for strongly convex optimization.

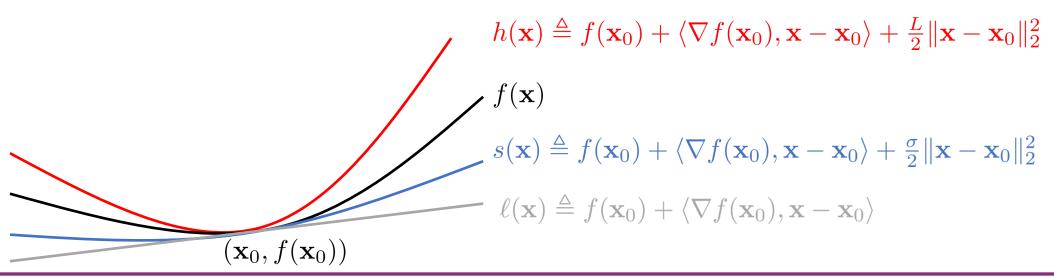
Strongly Convex and Smooth

If function f is both σ -strongly convex and L-smooth w.r.t. ℓ_2 -norm, then

-
$$\sigma I \preccurlyeq \nabla^2 f(\mathbf{x}) \preccurlyeq LI$$

- f is γ -well-conditioned with $\gamma = \kappa^{-1}$, where $\kappa \triangleq L/\sigma \geq 1$ is called the *condition number*.

The smaller the condition number κ is, the easier the function is.



Relationship

Theorem 15 (Conjugate Correspondence). *Consider the conjugate function:*

$$f^*(\mathbf{y}) \triangleq \max_{\mathbf{x} \in \mathcal{X}} \{ \langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x}) \}.$$

- (a) If the function f is convex and $\frac{1}{\sigma}$ -smooth w.r.t. the norm $\|\cdot\|$, then its conjugate f^* is σ -strongly convex w.r.t. the dual norm $\|\cdot\|_*$.
- (b) If f is proper closed σ -strongly convex w.r.t. the norm $\|\cdot\|$, then f^* is $\frac{1}{\sigma}$ -smooth w.r.t. the dual norm $\|\cdot\|_*$.

Reference: Kakade et al., On the duality of strong convexity and strong smoothness: Learning applications and matrix regularization. 2009.

Part 5. Gradient Descent

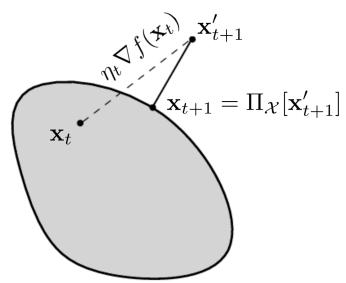
Gradient Descent

Surrogate Optimization

Gradient Descent

• GD Template:

$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \left[\mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t) \right]$$



- x_1 can be an arbitrary point inside the domain.
- $\eta_t > 0$ is the potentially time-varying *step size* (or called *learning rate*).
- Projection $\Pi_{\mathcal{X}}[\mathbf{y}] = \arg\min_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} \mathbf{y}\|$ ensures the feasibility.

Why Gradient Descent?

• For simplicity, we consider the *unconstrained* setting.

• A General Idea: Surrogate Optimization

We aim to find a sequence of *local upper bounds* U_1, \dots, U_T , where the surrogate function $U_t : \mathbb{R}^d \to \mathbb{R}$ may depend on \mathbf{x}_t such that

- (i) $f(\mathbf{x}_t) = U_t(\mathbf{x}_t)$;
- (ii) $f(\mathbf{x}) \leq U_t(\mathbf{x})$ holds for all $\mathbf{x} \in \mathbb{R}^d$;
- (iii) $U_t(\mathbf{x})$ should be simple enough to minimize.

 \square Then, our proposed algorithm would be $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}} U_t(\mathbf{x})$

Why Gradient Descent?

• Following the *surrogate optimization* principle, let's invent GD for convex and *smooth* functions.

Proposition 1. Suppose that f is convex and differentiable. Moreover, suppose that f is L-smooth with respect to ℓ_2 -norm. Define the surrogate $U_t : \mathbb{R}^d \to \mathbb{R}$ as

$$U_t(\mathbf{x}) \triangleq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}_t\|_2^2.$$

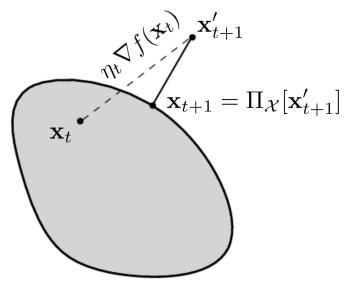
Then, we have

- (i) $f(\mathbf{x}_t) = U_t(\mathbf{x}_t)$;
- (ii) $f(\mathbf{x}) \leq U_t(\mathbf{x})$ holds for all $\mathbf{x} \in \mathbb{R}^d$;
- (iii) $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}} U_t(\mathbf{x})$ is equivalent to $\mathbf{x}_{t+1} = \mathbf{x}_t \frac{1}{L} \nabla f(\mathbf{x}_t)$.

Gradient Descent

• GD Template:

$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \left[\mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t) \right]$$



- x_1 can be an arbitrary point inside the domain.
- $\eta_t > 0$ is the potentially time-varying *step size* (or called *learning rate*).
- Projection $\Pi_{\mathcal{X}}[\mathbf{y}] = \arg\min_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} \mathbf{y}\|$ ensures the feasibility.

The lit only forms a general template, and there are still much complexity yet to specify.

GD Template

GD template:
$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} [\mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t)]$$

- step size η_t
- output sequence $\bar{\mathbf{x}}_t$ based on $\{\mathbf{x}_s\}_{s=1}^t$
- stochastic case: gradient estimates
- GD is only a template, and many variants exist
- ...

Key requirements: provable guarantees, particularly with finite-sample (non-asymptotic) rates

Summary

Complexity Measure **Continuous Functions** Convergence Rate Smoothness/Strong Convexity PERFORMANCE MEASURE **FUNCTION PROPERTIES Iteration Complexity Condition Number** Computational Complexity Conjugate Correspondence Subgradient **Gradient Descent GRADIENT DESCENT TEMPLATE SUBGRADIENT Surrogate Optimization** Subdifferential Fermat's Optimality Condition

First-order Optimality Condition

KKT Condition

Q & A

Thanks!

OPTIMALITY CONDITION