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Outline
• GD for Smooth Optimization
• Smooth and Convex Functions

• Smooth and Strongly Convex Functions 

• Momentum and Acceleration
• Polyak’s Momentum

• Nesterov’s Accelerated GD

• Extension to Composite Optimization

• Proximal Gradient and Accelerated One
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Part 1. GD for Smooth Optimization
• Smooth and Convex

• Smooth and Strongly Convex

• Extension to Constrained Case
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Overview

last lecture

this lecture
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• GD Template:

Gradient Descent
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Convex and Smooth

Note: we are working on unconstrained setting and using a fixed step size tuning.
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The First Gradient Descent Lemma

Proof:

(Pythagoras Theorem)

(GD)
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Refined Result for Smooth Optimization
Proof:

(Pythagoras Theorem)

(GD)

only exploited convexity, but haven’t used smoothness
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Refined Result for Smooth Optimization
• Recall the first-order characterization of smooth functions

co-coercivity
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Co-coercive Operator

The co-coercive condition is relatively standard in operator splitting literature and variational inequalities.
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Refined Result for Smooth Optimization
Proof:

(Pythagoras Theorem)

(GD)

only exploited convexity, but haven’t used smoothness
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Refined Result for Smooth Optimization
Proof:

(Pythagoras Theorem)

(GD)

exploiting coercivity of smoothness and unconstrained first-order optimality
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Smooth and Convex
Proof: Now, we consider the function-value level,

one-step improvement

(smoothness)

(utilize unconstrained update)

Cautious: This derivation even doesn’t require convexity!!
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Smooth and Convex
Proof:

⇒ ‖∇f(xt)‖
2 ≥

(f(xt)− f(x!))2

‖xt − x
!‖2
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Smooth and Convex
Proof:
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Key Lemma for Smooth GD
• During the proof, we have obtained an important lemma for smooth

optimization, that is, one-step improvement

• Compare a similar result that holds for convex and Lipschitz functions.
last-iterated convergence

average-iterated convergence
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One-Step Improvement for Smooth GD

Function progress is proportional to the square of gradient magnitude (consider due reasons).
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Smooth and Strongly Convex
• Recall the definition of strongly convex functions ( first-order version).



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2025) 19

Smooth and Strongly Convex
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Smooth and Strongly Convex

Note: we are working on unconstrained setting and using a fixed step size tuning.
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Smooth and Strongly Convex
Proof:

(Pythagoras Theorem)

(GD)

how to exploit the strong convexity and smoothness simultaneously
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Coercivity of Smooth and Strongly Convex Function

Then, rearranging the terms finishes the proof.

Proof :

by co-coercivity of 
smooth and convex functions
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Smooth and Strongly Convex
Proof:

(Pythagoras Theorem)

(GD)

exploiting co-coercivity of smooth and strongly convex function

serving as the “one-step improvement” in the analysis



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2025) 24

Smooth and Strongly Convex
Proof:

The step size configuration:
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Smooth and Strongly Convex
Proof:

(in unconstrained case, ∇f(x!) = 0)
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Constrained Optimization
• For unconstrained optimization, the key technical lemma is 

• For constrained optimization, a generalized one-step improvement:
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Constrained Optimization
Same convergence rates as unconstrained case can be obtained in 
the constrained setting for smooth convex optimization.

Detailed proofs for the constrained optimization will
not be presented. The proof follows the same vein
yet requires some additional twists, we refer anyone
interested to the following parts in Bubeck’s book:

• Constrained + smooth + convex: Section 3.2

• Constrained + smooth + strongly convex: Section 3.4.2
Convex Optimization: 

Algorithms and Complexity
Sebastien Bubeck

Foundations and Trends in ML, 2015
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Lower Bound
Lower bounds reflect the difficulty of the problem, regardless of algorithms. 

GD is suboptimal in smooth convex optimization!

notice: this lower bound only holds for first-order methods
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Lower Bound

convex/strongly convex
& Lipschitz functions

Bubeck’s book, Sec 3.5
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convex & smooth

Bubeck’s book, Sec 3.5

strongly convex & smooth

Bubeck’s book, Sec 3.5
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Part 2. Momentum and Acceleration
• Polyak’s Momentum 

•Nesterov’s Accelerated GD

• Smooth and Convex

• Smooth and Strongly Convex
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Polyak’s Momentum
• GD method (with a fixed step size):

• The problem: pathological curvature

Motivation
ü Ensure smaller steps in

regions of high curvature
to dampen oscillations.

ü Ensure larger steps and
accelerate in regions of
low curvature.

Source: https://boostedml.com/2020/07/gradient-descent-and-momentum-the-heavy-ball-method.html
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Polyak’s Momentum
• GD with momentum:

q If the current gradient step is in the same direction as the previous step (e.g., in 
the region of low curvature), then move a little further in that direction;

q If it’s in the opposite direction (e.g., in the region of high curvature), move less far.

• Also known as the “heavy ball method” (think of the physical intuition).
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Polyak’s Momentum: Illustration
• https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/
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Polyak’s Momentum: Physical Interpretation
• Consider a momentum theorem with damping force, 

and the equation of motion at this infinitesimal moment:

• Discretizing the equation, we obtain 
the Polyak’s Momentum form:

force due to potential energy gradientdamping force

https://distill.pub/2017/momentum/
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Polyak’s Momentum
• Provable benefit: can achieve accelerated rate for quadratic functions

Source: Hung-yi Lee ML 2021 Spring course 
Lecture on batch and momentum

• Other benefit: help jump out of the local region (can be useful for 
non-convex opt)

• But it fails for more general cases like smooth and convex/strongly 
convex functions). Details are omitted [more details].

https://mitliagkas.github.io/ift6085-2019/ift-6085-lecture-6-notes.pdf
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Nesterov’s Accelerated GD
• a momentum term is added to 

boost the convergence
• the descent property is relaxed 

and not ensured now

GD Accelarated GD

https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf

https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf
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Nesterov’s AGD: Physical Interpretation
• Consider a momentum theorem with damping force, 

and the equation of motion at this infinitesimal moment:

• Polyak’s Momentum: • Nesterov’s Accelerated GD:

force due to potential energy gradientdamping force
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Nesterov’s Accelerated GD
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Convergence of Nesterov’s Accelerated GD

Note: for simplicity, we are working on the unconstrained setting.

It is optimal for first-order methods working on smooth convex optimization.
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Proof of AGD Convergence
Proof: First, we prove the following generalized one-step improvement lemma.

GD for smooth and convex functions
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Generalized One-Step Improvement

Proof:

(smoothness and convexity)
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Proof of AGD Convergence
Proof: (continued proving Theorem 3)
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Proof of AGD Convergence
Proof: (continued proving Theorem 3)

Goal: design a telescoping series
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Proof of AGD Convergence

That is

Proof: (continued proving Theorem 3)
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Proof of AGD Convergence
Proof: (continued proving Theorem 3)

Cautious: many terms of interest have already appeared in the following inequality. 

optimality gap
telescoping structure

linear combination
related to momentum

gradient norm

gradient inner product optimal point
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Proof of AGD Convergence
Proof: (continued proving Theorem 3)
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Proof of AGD Convergence

Goal: design a telescoping series

Proof: (continued proving Theorem 3)



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2025) 49

Proof of AGD Convergence

telescope

Proof: (continued proving Theorem 3)
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Proof of AGD Convergence
Proof: (continued proving Theorem 3)
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Proof
Proof: (continued proving Theorem 3)
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Polyak’s Momentum v.s. Nesterov’s AGD
• Polyak’s Momentum:

• Nesterov’s AGD:

Main difference: separate the gradient calculation state and the momentum state. 
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Comparison in Another view
• Nesterov’s AGD:

can be also written as
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Smooth and Strongly Convex

core technique: estimate sequence (developed by Yurii Nesterov)
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Smooth and Strongly Convex
• Proof sketch

Core technique: construct an estimate sequence (developed by Yurii Nesterov)

It can be proved that the above construction satisfies the two properties.
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Smooth and Strongly Convex
• Proof sketch

(by property (ii))

(by property (i))

(smoothness)

Core technique: construct an estimate sequence (developed by Yurii Nesterov)



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2025) 57

Estimate Sequence
• Admittedly, how to construct estimate sequence is highly tricky

M. Baes, Estimate sequence methods: 
extensions and approximations. 
Technical report, ETH, Zürich (2009)

Chapter 2.1

References:

Chapter 3.7
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More Explanations for Nesterov’s AGD
• Ordinary Differentiable Equations
• Su, W., Boyd, S., & Candes, E. A differential equation for modeling

Nesterov’s accelerated gradient method: theory and insights. NIPS 2014.
• Variational Analysis/Mirror Prox
• Wibisono, A., Wilson, A. C., & Jordan, M. I. A variational perspective on

accelerated methods in optimization. PNAS 2016, 113(47), E7351-E7358.
• Guanghui Lan. (2020). First-order and Stochastic Optimization Methods for

Machine Learning. Springer. Section 3.3.
• Linear Coupling of GD and MD
• Allen-Zhu, Z., & Orecchia, L. Linear coupling: An ultimate unification of

gradient and mirror descent. ITCS 2017.
• Cutkosky A. Chapter 14 Momentum & Chapter 15 Acceleration. Lecture

Notes for EC525: Optimization for Machine Learning, 2022.
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More Explanations for Acceleration
• Online Learning/Game with Suitable Optimism

• Wang, Jun-Kun, and Jacob D. Abernethy. Acceleration through optimistic
no-regret dynamics. NeurIPS 2018.

• Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration.
ICML 2019.

• Kavis, A., Levy, K. Y., Bach, F., & Cevher, V. UnixGrad: A universal,
adaptive algorithm with optimal guarantees for constrained
optimization. NeurIPS 2019.

• Yuheng Zhao, Yu-Hu Yan, Kfir Yehuda Levy, Peng Zhao. Gradient-Variation
Online Adaptivity for Accelerated Optimization with Hölder Smoothness.
NeurIPS 2025.

• Yu-Hu Yan, Peng Zhao, and Zhi-Hua Zhou. Optimistic Online-to-Batch
Conversions for Accelerated Convergence and Universality. NeurIPS 2025.
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History Bits
Nesterov’s four ideas (three acceleration methods): 

Yurii Nesterov
1956 –

UCLouvain, Belgium

• Y. Nesterov (1983), A method for solving a convex 
programming problem with convergence rate 
• Y. Nesterov (1988), On an approach to the construction 

of optimal methods of minimization of smooth convex 
functions 
• Y. Nesterov (2005), Smooth minimization of non-smooth 

functions 
• Y. Nesterov (2007), Gradient methods for minimizing 

composite objective function
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History Bits
• Polyak’s Momentum, credit goes to Polyak, date back to 1960s

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR 
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Boris T. Polyak
1935-2023
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Part 3. Extension to Composite Optimization
•Composite Optimization

• Proximal Gradient Method (PG)

•Accelerated Proximal Gradient Method (APG)

•Application to LASSO
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• Problem setup

Composite Optimization

How to effectively leverage the (partial) smoothness to improve convergence?

• The composite optimization problem is common in practice.
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Recall Non-composite Optimization 
Recall how we invent GD for unconstrained non-composite optimization.

• Idea: surrogate optimization
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Recall Non-composite Optimization 

surrogate objective
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Recall Non-composite Optimization 

(remove irrelative terms)

(rearrange)

Proof:
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• Problem setup

Composite Optimization

A natural idea for surrogate objective:
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Composite Optimization

surrogate objective
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Composite Optimization

this will be abstracted as an operator, a subproblem to optimize

surrogate objective
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Composite Optimization
• Iteratively solve the surrogate optimization problem.
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Proximal Gradient

Proximal Gradient Method

An equivalent notation:



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2025) 75

Proximal Gradient
Proximal Gradient Method

- Algorithmically, PG induces famous algorithms for solving LASSO problem,  
which are called ISTA (GD-type) and FISTA (Nesterov’s AGD-type).
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Smooth Composite Optimization

Convergence of Proximal Gradient

Smooth Optimization

GD: 

Convergence:

assumption: 

problem: 

Convergence:

assumption: 

problem: 

PG: 
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Convergence of Proximal Gradient
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Convergence of Proximal Gradient
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Proof of PG Convergence
Proof:
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Proof of PG Convergence
Proof:
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Proof of PG Convergence

F (xT )− F (x!) ≤
L‖x0 − x

!‖2

2(T − 1)

Proof:



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2025) 82

Proof of One-Step Improvement Lemma

analyzing this quantity
Proof:

(convexity)
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Proof of One-Step Improvement Lemma

analyzing this quantity

Proof:

by Fermat’s 
optimality condition

from Lecture 2



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2025) 84

Proof of One-Step Improvement Lemma
Proof:

analyzing this quantity
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One-Step Improvement Lemma
• A fundamental result for GD/AGD of smoothed optimization.

specialized

general

unconstrained, GD

unconstrained, AGD

constrained, GD

composite, GD/AGD
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Accelerated Proximal Gradient Method
• A natural idea: Can we achieve AGD in composite optimization? 

Accelerated Proximal Gradient

Nesterov’s Accelerated GD

The covergence rates can be similarly obtained. Proofs are omitted.

This induces the Accelerated Proximal Gradient (APG) method.
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Accelerated Proximal Gradient Method

The convergence rates can be obtained same as those in non-composite optimization.



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2025) 88

Application to LASSO
• LASSO: 

commonly encountered in 
signal/image processing.
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Application to LASSO
• LASSO: 

• ISTA (Iterative Shrinkage-Thresholding Algorithm): PG for LASSO

• FISTA (Fast ISTA): APG for LASSO

composite optimization: first part is smooth, the other one is non-smooth

commonly encountered in 
signal/image processing.

[Ph
L(wt)]i = sign

([

wt −
1

L
∇f(wt)

]

i

)(
∣

∣

∣

∣

[

wt −
1

L
∇f(wt)

]

i

∣

∣

∣

∣

−
λ

L

)

+

Closed-form solution:
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Closed-form Solution for LASSO

The optimization can be performed for each coordinate separately:
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Closed-form Solution for LASSO
Consider the three cases.

Combining the three cases yields the closed form solution:

(x+ ! max{x, 0})
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Application to LASSO
• Comparison of ISTA and FISTA

Comparison of ISTA and FISTA.
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Summary
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Summary
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