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* Smooth and Strongly Convex Functions

e Momentum and Acceleration

* Polyak’s Momentum

* Nesterov’s Accelerated GD
* Extension to Composite Optimization

* Proximal Gradient and Accelerated One
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Part 1. GD for Smooth Optimization

* Smooth and Convex
* Smooth and Strongly Convex

e Extension to Constrained Case
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Overview

Table 1: A summary of convergence rates of GD for different function families,
where we use k 2 L /o to denote the condition number.

Function Family Step Size Output Sequence = Convergence Rate
D 2 1 N T
— = = O1/VT
G-Lipschitz COnYEX ! G\f X1 =7 2 1Xt V) last lecture
o-strongly convex 1y = ;77gy  Xp = Zt . T(T+1) O(1/T)
1
convex n =+ XT = XT O(1/T
L-smooth g B 1/ )T this lecture
o-strongly convex 1= —— X7 = X7 O (exp (—1))

For simplicity, we mostly focus on unconstrained domain, i.e., ¥ = R

The smoothness is defined to be with respect to /5-norm.
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Gradient Descent

* GD Template:

Xep1 = Ly [x¢ — 0V f(x4)]

- X1 can be an arbitrary point inside the domain.
- ¢ > 01is the potentially time-varying step size (or called learning rate).

- Projection Il x[y| = arg min, . » ||x — y|| ensures the feasibility.
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Convex and Smooth

Theorem 1. Suppose the function f : R? — R is convex and differentiable, and also
L-smooth. GD updates by x;11 = x; —n:V f (x¢) with step size n, = %, and then GD
enjoys the following convergence guarantee:

o2l -x (1
for) - fx) < =R o (1),

Note: we are working on unconstrained setting and using a fixed step size tuning.
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The First Gradient Descent Lemma

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x;}]_, be the sequence generated by the gradi-
ent descent method, X* be the optimal set of the optimization problem and f* be the
optimal value. Then for any x* € X* andt > 0,

o1 — x*)° < e — x*|° = 2m(f(xe) = %) + 0 IV F (%) |1

Ty [ — 7V f(x)] — x¥||°

%, — 0.V f(x) — x*||?

;=7 = 2 (VF(xe), %0 —X%) + 07 [V F(x0)|
o — X |7 = 2m(f(xe) = f5) + 07 |V f (o))

Proof: |xi41 — x|

IA

VAN

[]
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Refined Result for Smooth Optimization

Proof: |x¢41 — X*HQ = |[Ilx[x: — n:V f(x4)] — X*HQ
< lxe — neV f (i) — x|
=[x — x| = 2m(V f (x4), %0 = X* )i S f (x0) |
< b — <7 = 2me(f (xe) = f*) + 0 IV f(x0) |
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Refined Result for Smooth Optimization

* Recall the first-order characterization of smooth functions

Smoothness

Theorem 9 (First-order Characterizations of L-smoothness). Let f : X — R be
a convex function, differentiable over X'. Then the following claims are equivalent:

(i) f is L-smooth.
(i) f(y) < f(x) +(Vf(x),y = %)+ 5|x—y|?forall x,y € X.
(ii)) [(y) 2 J(x) + (V(x),y = %) + & ]VF(x) = VI forall x,y € X.
(iv) (Vf(x) = Vi), x—y) > V() = V(y)|E forall x,y € X. co-coercivity

@ FO%+ (1= Ny) > M) + (1= NF(y) — EA1 = N)x = y|? for any
X,y € X and X\ € [0, 1]. (essentially zero-th order characterization)

Proofs can be found below Theorem 5.8 of Amir Beck’s book.
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Co-coercive Operator

Lemma 2 (co-coercivity). Let f be convex and L-smooth over R Then for all
x,y € RY, one has

(Vi) — Vi), x—¥) = V) - Vi)

Definition 1 (co-coercive operator). An operator C is called S-co-coercive (or
B-inverse-strongly monotone, for 5 > 0, if for any z,y € H,

(Cz — Cy,z —y) > B|Cz — Cy|*.

The co-coercive condition is relatively standard in operator splitting literature and variational inequalities.
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Refined Result for Smooth Optimization

Proof: |[xi11—x"|" =

<

<

T [x; — 7V f(x0)] — x*|°
x; — 1V f(x) — x*||°

Xt — X*HQ — 21

i — 3|7 =2 (F(xe) — £5) + 02 |V f(x0)]

<Vf(Xt), Xt — X*>
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Refined Result for Smooth Optimization

Proof: |xip1 — x*[|” =

<

I

T [x; — 0V f(x0)] — x*|°
x; — 0V f(x) — x*||°

Xt — X~

X; — X~

— oV ) — ) + 2 [V £
(= ) 19l

* 2 * 2 t 2

=> [ — x| <l = x 7+ (0 = ) IV F ()|
2 2
< e =% = 22 IV f(x0)

<xe = x*F < S = x|
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Smooth and Convex

Proof: Now, we consider the function-value level,

fxpp1) = [(x7) = f(xe1) — f(xe) + [(x) — [(x7)

f(xea1) — f(x¢) one-step improvement

= f(xe = mVf(xe)) — f(xe)
< (V) V1) + 5 |V Fx)]?

= (=t o) 197

— 97, va(Xt)H

Cautious: This derivation even doesn’t require convexity!!

= fxi1) = 1) € =57 VA + 1 x0) = ()
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Smooth and Convex

Proof: !
= Oxenn) = J) S —5E IVAEI + f () = ()

Next step: relating ||V f(x;)|| to function-value gap to form a telescoping structure.

Flxe) — F) < (V) %0 — x%) < VSl — x| = [V Fe)|? > L) ZIOO))

% — x|

:> f(Xt—|—1) - f(X*) < — (f(Xt) - f(X*)Q)Q

+ f(x¢) — f(x7)

< — (f(Xt) B f(X*>2)2 + f(Xt) o f(X*)
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Smooth and Convex

Proof:  f(xi1) — f(x') € ~ g () = F')) 4 f(30) = (o)

Define §, £ f(x;) — f(x*) and § £ 1

2L||x1 —x*||2"

— i1 < & — 5}

1
— << —
= 0t — Ott1 b
T—1
— B - <
7= 5r 6 by
A ] 1 2L jx1 — x*|°
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Key Lemma for Smooth GD

* During the proof, we have obtained an important lemma for smooth
optimization, that is, one-step improvement

o) = 00 < (= + 502 ) IVFGIP = fxr) = f6) <0 ()

last-iterated convergence

* Compare a similar result that holds for convex and Lipschitz functions.

Lemma 2. Under the same assumptions as Theorem 1. Let {x;}{_, be the sequence
generated by GD. Then we have

T 1 1 T
S mlfex) = %) < Sl — P+ 5 S mIV G
t=1 t=1

This lemma usually implies convergence like f(X7) — f* < ... withxp 2 32 % (or other average).

average-iterated convergence
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One-Step Improvement for Smooth GD

Lemma 3 (one-step improvement). Suppose the function f : RY — R is convex
and differentiable, and also L-smooth. Consider the following unconstrained GD up-
date: X' = x — nV f(x). Then,

1) = 1) < (=0 + 37 ) IV GO

In particular, when choosing n = +, we have

F(x= 9060) = 7)< — 5 197G

Function progress is proportional to the square of gradient magnitude (consider due reasons).
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Smooth and Strongly Convex

* Recall the definition of strongly convex functions ( first-order version).

Definition 5 (Strong Convexity). A function f is o-strongly convex if, for any
x € dom(df),y € dom(f) and g € df(x),

F(y) 2 Fx) + (g.y = %) + S lly — x|
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Smooth and Strongly Convex

f is o-strongly convex f is L-smooth

F)+{V £y —x) 4+ 2 [x—y13 = Fy) < T+ {VF(0).y ) + 2 x—y3

(%0, f(%0))
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Smooth and Strongly Convex

Theorem 2. Suppose the function f : R — R is o-strongly-convex and differen-

tiable, and also L-smooth. Then, setting n, = + ——, GD satisfies
L A(T — 1) o T
_ < = _ _ — _
foxr) — 1) < 5 exp (20 ) = xP =0 (exp (1) ),

where k = L /o denotes the condition number of f.

Note: we are working on unconstrained setting and using a fixed step size tuning.
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Smooth and Strongly Convex

Proof: %41 — X*HQ

VAN

Xt — X*HQ — 21

M [x; — 0V F(xe)] — x*||°
x; — 1V f(x) — x*||°

(Vf(x¢),xs —x7)

+ 07 IV f (x|

ol
o+ L

(Vi(x)=Vfy),x-y)=

Lemma 4 (co-coercivity of smooth and strongly convex function). Let f be L-
smooth and o-strongly convex on R%. Then for all x,y € R?, one has

1
x=yIP 4 V) = V)2
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Coercivity of Smooth and Strongly Convex Function

Lemma 4 (co-coercivity of smooth and strongly convex function). Let f be L-
smooth and o-strongly convex on R%. Then for all x,y € R?, one has

ol

(Vfx)-Vfly)x—-y)> p——

1
Ix —y|I* + H—LHVf(X) — Vi)

Proof : Define h(x) = f(x) — Z|x|*>. Then, h enjoys the following properties:
- his convex: by o-strong convexity (see previous lecture).

- his (L — o)-smooth. V*h(x) = V?f(x) —ocl < (L —0)I.

1 by co-coercivity o
:> <Vh(X) o Vh(Y)7 X = y> = L —o HVh(X) o Vh(Y) H2 s;fqooth and cgvv]e:xfunctions
Then, rearranging the terms finishes the proof. []
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Smooth and Strongly Convex

Proof: |[xip1 — x|

VAN

Xt — X*HQ — 21

2 L 2
e S - e e U

M x; — 0V F(xs)] — x*||°
x; — 0V f(x) — x*||°

(Vf(x¢),xs — x7)

210 L 5 5
1 — — x* -

+ 02 |V (x|

21 2
2 ) 195 )

20 ) |V (x0)]

serving as the “one-step improvement” in the analysis
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Smooth and Strongly Convex

Proof P < (1= 228 Iy — P+ (2 — 225 ) IV £(x0)

The step size configuration:

277tO'L

(1) first, we need 1 — =

< 1 to ensure the contraction property;

2M)¢

(ii) second, we hope (17 — 1%

) <0, or it becomes 0 is enough.

2
L+o

—> a feasible (and simple) setting: n, =n =

2 2 _o\? 2 _1)\? 2
= Ixiin = x1° < (1= 225 ) Ixo — x*P= (552) I —x*|” = (552) 1 — x|

2(T—1) -
= xr—x P < (52) 7 I - < exp (— 2R ey — x|
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Smooth and Strongly Convex

] 2(T—1) B
Proof: o — xt||2 < (=L 1 — x* |2 < exp LT )2
k+1 k+1

Next step: relating ||xr — x*||” to f(x7) — f(x*).

Flx) < FO¢) + (VA 30 =)+ 2 e = 2 = Fx) 4 5 e — 7

= floer) - fx') < L oexp (—‘“Z - 1”) i —x*[? = O (exp (—f)).
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Constrained Optimization

 For unconstrained optimization, the key technical lemma is

1

F(x= 9060) = 7)<~ 197G,

where V f(x) is used to measure the function progress.

* For constrained optimization, a generalized one-step improvement:

Lemma 5. Suppose f is L-smooth. Let x44+1 = lly[x¢ — £V f(x¢)|, and define
9(x) = L(x — x4+1) forany x € X. Then the following holds true for any u € X’:

i) — F(m) < (%) % — ) — o= lg(x)]”

- g(x¢) is used to qualify the progress; and in the unconstrained case, g(x;) = V f(x¢).

- comparator u is introduced because (projected) GD is not necessary “descent”.
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Constrained Optimization

Same convergence rates as unconstrained case can be obtained in
the constrained setting for smooth convex optimization.

Detailed proofs for the constrained optimization will
not be presented. The proof follows the same vein

yet requires some additional twists, we refer anyone
interested to the following parts in Bubeck’s book:

noew

— T

 Constrained + smooth + convex: Section 3.2
Convex Optimization:

 Constrained + smooth + strongly convex: Section 3.4.2 Algorithms and Complexity
Sebastien Bubeck
Foundations and Trends in ML, 2015
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Lower Bound

Lower bounds reflect the difficulty of the problem, regardless of algorithm:s.

notice: this lower bound only holds for first-order methods

Table 1: A summary of convergence rates of GD for different functiof families.

Function Family Convergence Rate | Lower Bound | Optimal?
O /vT Q(1/vT
G-Lipschitz COmYEx (/VT) (V)
o-strongly convex O/T) Q(1/T)
convex O(1/T) Q(1/T?)

L-smooth

X %

o-strongly convex O (exp (_ %)) ) (exp <_ %))

—> GD is suboptimal in smooth convex optimization!
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Lower Bound

First-order Opt oracle. We consider the class of first-order (black-box) proce-

dures satisfying x; = 0, and for any ¢t > 1, x;41 € Span(gy,...

, &), Where

gs = V f(xs) is the gradient (or subgradient) queried from the oracle at x.

Theorem 3.13. Let t < n, L, R > 0. There exists a convex and L-
Lipschitz function f such that for any black-box procedure satistying
(3.15),

. . RL
2in, f(@s) = i f(@) 2 50/

There also exists an a-strongly convex and L-lipschitz function f such
that for any black-box procedure satisfying (3.15),

convex/strongly convex

L? & Lipschitz functions
min f(xs) — min f(x) > —. P
1<s<t z€By (L) Sat
“ Bubeck’s book, Sec 3.5
Advanced Optimization (Fall 2025) Lecture 4. Gradient Descent Method II 29



Theorem 3.14. Let t < (n — 1)/2, 8 > 0. There exists a S-smooth
convex function f such that for any black-box procedure satisfying
(3.15),

i, flws) = @) 2 55 = 1y

Theorem 3.15. Let x > 1. There exists a S-smooth and a-strongly
convex function f : o — R with k = 8/« such that for any ¢t > 1 and
any black-box procedure satisfying (3.15) one has

o Vi1 2(t—1)
2 \Ve+1

Note that for large values of the condition number x one has

(ft) =)

flxe) — f(z*) >

convex & smooth

Bubeck’s book, Sec 3.5

strongly convex & smooth

Bubeck’s book, Sec 3.5
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Part 2. Momentum and Acceleration

* Polyak’s Momentum
* Nesterov’s Accelerated GD
* Smooth and Convex

* Smooth and Strongly Convex
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Polyak’s Momentum

* GD method (with a fixed step size): x;,; =x; — 7V f(x(), e.g.,n = %

* The problem: pathological curvature

Considera deploying GD on a quartic function f(z) = z*.

Gradient Descent: x* Gradient Descent: x*

Motivation

0.06 - ) 0.06 - —_—

Gradient Descen t

v Ensure smaller steps in
regions of high curvature
to dampen oscillations.

0.05 4

0.04 1

0.03 1 Gradient Descen t

0.02 1

v Ensure larger steps and
accelerate in regions of
low curvature.

0.01

0.00 4 —" 0.00 -

04 02 0.0 02 04 04 02 0.0 02 04

(a) large step size (b) small step size

Source: https://boostedml.com/2020/07/gradient-descent-and-momentum-the-heavy-ball-method.html
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Polyak’s Momentum

e GD with momentum:

X1 = X — NV f(xe) + B(xe — X¢—1)
N , & o ’,

GD momentum

where [ is a hyperparameter (usually 5 € |0, 1] though not limited to it), which
scales down the previous step adaptively.

A If the current gradient step is in the same direction as the previous step (e.g., in
the region of low curvature), then move a little further in that direction;

4 If it’s in the opposite direction (e.g., in the region of high curvature), move less far.

* Also known as the “heavy ball method” (think of the physical intuition).
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Polyak’s Momentum: Illustration

* https://distill.pub/2017/momentum/

Starting Point
Optimum
Solution
Step-size a = 0.0023 Momentum B = 0.28 We often think of Momentum as a means of dampening
Py Py oscillations and speeding up the iterations, leading to faster

convergence. But it has other interesting behavior. It allows a larger
range of step-sizes to be used, and creates its own oscillations.

What is going on?
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Polyak’s Momentum: Physical Interpretation

* Consider a momentum theorem with damping force,
and the equation of motion at this infinitesimal moment:

@) s B = 0:
%( V) — .V — V(ﬁf(X)), ////% Zero mass, no m(:ﬁmrilentum
damping force \ y
dx = vdt.
. . . . . o 0< g8 <
* Discretizing the equation, we obtain /57" momentum with damping
/’/f

the Polyak’s Momentum form:

Viy1 = Bvy — ﬁvf(Xt), (Vt — Xt — Xt—l)
X411 = Xt + Vg1, (B8 €1[0,1])

Xt+1 — Xt — Z?Vf(Xt)J‘F\B(Xt — Xt—l)/
Eg mom;gtum

https //dlstlll pub/2017/momentum/
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Polyak’s Momentum

* Provable benefit: can achieve accelerated rate tor quadratic functions

* Other benetfit: help jump out of the local region (can be usetul for
non-convex opt)

loss Movement =
4 Negative of dL/dw + Last Movement

=P Negative of dL / ow
====p Last Movement

=—=p Real Movement

. P praaap e p =y Qo
*— O €

— - \ Source: Hung-yi Lee ML 2021 Spring course
aL/aw =0 Lecture on batch and momentum

» But it fails for more general cases like smooth and convex/strongly
convex functions). Details are omitted [more details].

Advanced Optimization (Fall 2025)
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Nesterov’s Accelerated GD

* a momentum term is added to
boost the convergence

Example

p
minimize log X exp(alx + b;)
i=1

° the descent property iS relaxed e two randomly generated problems with p = 2000, n = 1000
and nOt ensured nOW e same fixed step size used for gradient method and FISTA

o figures show (f(x(K)) — f*)/ f*

100
107! \
10—2 L | L ]
1073
1074} ; ]
10°5 | | 7 7
107 50 100 150 200 1070, 50 100 150 200
k k
A C Cel ar ate d GD Accelerated proximal gradient methods 7.9

https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf
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Nesterov’s AGD: Physical Interpretation

* Consider a momentum theorem with damping force,
and the equation of motion at this infinitesimal moment:

d
S(v) = = v = V().
damping force | >
N ‘.f.mw»«m”’//’::: >
dx = vdt.
* Polyak’s Momentum: * Nesterov’s Accelerated GD:
Viy1 = By — an(Xt), Viy1 = By — va(Xt + 5Vt)a
Xi41 = X¢ T Vit X1 = X¢ + Vit
Xt+1 = Xt — Z?Vf(XtZ-F?(Xt — Xt—lz Xt+1 = Xt — yvf(Xt + B(x; — Xt—1)z+§(xt — Xt—l)J
Eg mom;;tum GD (t;irsted) mom;;tum
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Nesterov’s Accelerated GD

(Yit1 )%Vf(}’ti@@

1
Xt+1 = Yt — ZVf(yt) /-
_1f) @
Yi+1 = X¢+1 T 5t(Xt+1 — Xt)
/
/

&

- B¢ > 01is a time-varying mixing rate of x; and x;41; 8; = 0 recovers vanilla GD.

- Define x1 = y;.

- AGD can be also thought a version of GD with momentum.
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Convergence of Nesterov’s Accelerated GD

Theorem 3. Let f be convex and L-smooth. Nesterov’s accelerated GD is configured
as

1
Xt+1 — Yt — va<Yt)7 Yi+1 = X¢t1 T Bt(Xt—l—l — Xt)7

1+\/1+4/\§_1

. cand B; = X=X Then, we have

At41

rr) - ey < XL o (1),

where \g = 0, \; =

g T

It is optimal for first-order methods working on smooth convex optimization.

Note: for simplicity, we are working on the unconstrained setting.
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Proof of AGD Convergence

Proof: First, we prove the following generalized one-step improvement lemma.

Lemma 6. Foranyu € X, if x;11 = x¢ — 1V f(xy), then the following holds true:

f(xep1) = f(u) < (Vf(x), % —u) — %I\Vf(xt)\\z-

a comparator variable u is introduced here,

because now AGD is not necessary “descent” due to the momentum

:> Setting u = x; recovers the one-step improvement used in earlier analysis.

1
f(xer1) — f(xp) < — 57 IV f(x)||? GD for smooth and convex functions
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Generalized One-Step Improvement

Lemma 6. Foranyu € X, if x;11 = x¢ — 7V f(xy), then the following holds true:

Floxen) = Flu) < (VF(x0), %0 — ) — o [V ()|

Setting u = x; recovers the one-step improvement used in earlier analysis.
Proof:

f(xe41) — f(u) = f(xe41) — f(xe) + f(xe) — f(u)

< (V) %01 = 30) + 5 e = xell? + (V) e — )

= (V)3 —w) — o [V
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1
Proof of AGD Convergence %1 =ye = Vi)

Vit1 = Xer1 + Be(Xer1 — Xy)

Proof: (continued proving Theorem 3)

Lemma 6. Foranyu € X, if x' = x — £V f(x), then the following holds true:

FO) — f(m) < (V)% —w) — [V

(i) Plugging in u = x;:
FOxiin) = Fxe) < (VH(ya)ye = x0) — 5= V)

(i) Plugging in u = x*:
Floxian) = F) < (V). ye %) = o[ VF ()1
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1
Proof of AGD Convergence %1 =ye = Vi)

Vit1 = Xe41 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)
(i) Plugging in u = x;: f(x¢41) = f(x¢) < (VF(ye),ye —%i) — 5[V (yo) >
(i) Plugginginu = x*: f(x411) = f(x*) < (Vf(ye),ye —x*) — 5 IV (yo)lI*.
LHS of (A, — 1)() + (i) equals:
(A = 1) (f (ke1) = f(x0)) + f(xe41) — f(x7)
= M (f(xe41) — F(x)) — (A = D (f(xe) — f(x7))

Define 6; = f(x;) — f(x*), then we have

LHS — )\t5t+1 - (>\t — 1)515
Goal: design a telescoping series
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1
Proof of AGD Convergence %1 =ye = Vi)

Vit1 = Xer1 + Be(Xer1 — Xy)

Proof: (continued proving Theorem 3)
(i) Plugging in u = x;: f(x¢11) — f(x¢) <AV f(ye),ye — Xe) — %va(yt)lP
(i) Plugging in u = x*: f(x¢+1) — f(x*) < (VS (yt), ¥yt —x*) — 5= |V (ye)|*.

RHS of (A — 1)(i) + (ii) equals:
= 1) (915030~ %) = 5 IVFGOI ) + (V1 0.v1 = x°) = 5L 19550

A\
= (Vf(yt), Mye — (A — 1)x¢ — x7) — iHVf(Yt)\P
That is
Y
MeOpp1 — (A = 1)0 <AV f(ye), Meye — (e — 1)xyg — X7) — ﬁHVf(yt)HQ
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1
Proof of AGD Convergence %1 =ye = Vi)

Vit1 = Xe1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)

Cautious: many terms of interest have already appeared in the following inequality.

optimal point

MOrp1 — (A —1)0 <AV f(ye), Adeye — (A — D)xyp — X7) — ;—i\lvf(yt)lf

optimality gap linear combination gradient norm
telescoping structure related to momentum
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1
Proof of AGD Convergence %1 =ye = Vi)

Vit1 = X1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)

At
Adir1 — (N — 1)0 <V f(ye), Aeye — (A — )xg —xX7) — EHVJC(}%)H2

= A 01— Ae(A — 1) < 21L 2NV f(ye), LOvys — (Ae — D)xe —x)) — AV f(yo) 1)
Requirement (1): )\t()\t 1) =
= A 0p1—A] 10 < ( (A Vf(Yt) L(Ay: — (e = Dx = x7)) = IV f(y0)II?)

Denote by a = \;Vf(y:),b = L(Ay: — (A — 1)x; — x*).

1 1
= Afbir1 = A1 < o= (2(a, b) — [la]]*) = o= ([1b]* = b — a]*)
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1
Proof of AGD Convergence %1 =ye = Vi)

Vit1 = X1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)

Denote by a = \;V£(y:),b = LAy — (A — 1)x; — x*).

AN26i1 — AP0,
1
< —(L*Mye — (A — Dxg — x5 [)7 = [[LOwy: — (N — D)xe — x*) = MV F(yo)|1?)

— 2L
., vV ’
>\th — ()\t — 1)Xt — X — N f(Yt) )

L

2 L
L
2

(H)‘th — ()\t — 1)Xt — X*H2 - |

(INeye — e = Dxe — x*)7 = [ Aexegr — (N — Dxe — x5]|7)

Goal: design a telescoping series
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1
Proof of AGD Convergence %1 =ye = Vi)

Vit1 = X1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)

L

AfOir1 — Aj_10; < E(H)\th — (M = U)xg = x*|7 = [ — (A — Dxp — xF|)%)

Requirement (2) )\txt—i—l — (>\t — 1>Xt — At—l—lYt—l—l — <)\t—|—1 — 1)Xt_|_1

L
AL0ip1—Af_10; < 5(H)‘tyt_()‘t_l)xt_X*HQ_")‘t+1Yt+1 — (M1 — D)xy1—x*%)
telescope

Define z; = \;y; — (A — 1)x; — x*, then we have

L
AfOip1 — A\f_16; < §(||Zt\|2 — ||Ze+1]1%)

L
= \p_167 — Ago1 < §(||Z1||2 — ||z |?)
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1
Proof of AGD Convergence %1 =ye = Vi)

Vit1 = X1 + Be(Xer1 — X¢)

Proof: (continued proving Theorem 3)
2 42 £ 2 2
AT—107 — Ago1 = (|2 = llz7|]%)

Requirement (3): \o = 0

L LHle2 LiIIAy: — (M1 — 1)x1 — X*H2
Ap_167 < —||z1||* = 0r < =
Requirement (4): y1 = X3

L LHle2 L||x; — X*||2
A2 0 < = 2 5 60 < —
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Theorem 3. Let f be convex and L-smooth. Nesterov’s accelerated GD is configured
as

PrOOf Xi+1 = Ye — %vf(Yt)a Vit1 = X1 + Be(Xep1 — Xe),

144 /14402 _
where \g = 0, \y = ————, and 3; = ’/\\tt—ﬂl Then, we have

Proof: (continued proving Theorem 3) o) — o < 2 =T _ (L)

ik e

Requirement (1): \j(N\; — 1) = \2_
Ly — 14+4/1H4N2_,

2
Requirement (2): \iX¢y1 — (A — )Xy = M1 Yer1 — (A1 — 1)Xeqq

Yi+1 = Xe41 T i‘ft: (Xt41 — X¢) = Pt = i\\i;l
Requirement (3): \op = 0
Requirement (4): y1 = x1
2 * |2
1+ /1F4X2_, t+1 Ljx1 — x*|| 2L[|xy — x*|| 1
- => N> —— = 07 < < =0 — L]
)\t 5 t — 9 T = 2)\%_1 — T2 T2
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Polyak’s Momentum v.s. Nesterov’s AGD

* Polyak’s Momentum:

Xt+1 = Xt — NV [(x¢) + B(xt — X¢-1)
—_—— N ~ o

GD momentum

 Nesterov’'s AGD: Xi+1 =Yt — NV f(ye)
Vit1 = X1 + Be(Xea1 — X¢)

Xt41 = Xt — Z?Vf(Xt + B(x: — Xt—l)Z‘F?(Xt — Xt—lz

N NN

GD (twisted) momentum

Main difference: separate the gradient calculation state and the momentum state.
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Comparison in Another view

 Nesterov’s AGD:

Xt4+1 = X¢ — va(Xt + Bi—1(x¢ — Xt—l)) +§t—1(Xt — Xt—l)/

N~ TV

GD Update momentum

can be also written as

Xt4+1 = X¢ T+ 5t—1(Xt - Xt—1) — va(Xt + Bt—l(Xt - Xt—l))

xT 2 x — nVf(x), (gradient step)

d; 27 (x; —%x,_1). (momentum term)
[Cauchy, 1847] x;11 = x;, (gradient descent),
[Polyak, 1964] x¢41 = xf + dy, (momentum + gradient),
[Nesterov, 1983] x;11 = (x; +d;)", (momentum + lookahead gradient).

Advanced Optimization (Fall 2025)

Lecture 4. Gradient Descent Method 11

53



Smooth and Strongly Convex

Theorem 4. Let f be o-strongly convex and L-smooth, then Nesterov’s accelerated
gradient descent:

1 Vi —1
p— — —v p— —
Xt+1 = Yt 7 f(Yt)v Vi+t1l = X¢41 T+ \/E 1 (Xt+1 Xt)

satisfies

foxr) = 1(x") < T It = yalPexp (-2 ),

where k = L /o denotes the condition number.

core technique: estimate sequence
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Smooth and Strongly Convex

* Proof sketch

Core technique: construct an estimate sequence
A 0-
C1(x) = flx1) + 5

Bir1(x) 2 (1= 0)i(x) + 0 (£lx0) + (T (x).x = x0) + 7 x = x4l

Ix = x|

The estimate sequence {®,};_, is required to satisify some nice properties:
(i) iq(x)— f(x) < (1—0)"(P(x)— f(x)) = approximate f well.
(i1) f(x;) < mingcpa P,(x) = useful when giving the convergence rate.

It can be proved that the above construction satisfies the two properties.
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Smooth and Strongly Convex

* Proof sketch

Core technique: construct an estimate sequence

D1(x) £ f(x1) + 5 [x =

2

Byoq(x) 2 (1= 0)Dy(x) + 6 (f(xt) V()% — %) 4 2 |lx — x4

)

= (1=0)" (fx) + 5 Ix =1 = £(x*))
< (04 L) [x* = x| exp(~01)

Advanced Optimization (Fall 2025) Lecture 4. Gradient Descent Method II
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Estimate Sequence

* Admittedly, how to construct estimate sequence is highly tricky

Foundations and Trends® in
Machine Learning
8:3-4

Zhouc en L|n Estimate sequence methods:

. extensions and approximations
Huan Li

Cong Fan Michel Baes®

August 11, 2009
s 4 4 estimate sequences, with which we can recover some accelerating scheme proposed by Nesterov,
notably the acceleration procedure for constrained cubie regularization in convex optimization,
and obtain easily iz to regy ion schemes of any order. We analyze carcfully
the scasitivity of these algorithms to various types of spprocimations: partil reselution of

Abstract

The approach of estimate seq n interesting g of a mimber of

mes proposed by Nesterov [Nes03], [Nes03), and [Nes06). It seems to us that thi fmmw\ork
is the most appropriate descriptive framework to develop an anal
schemes to approximations.

e develop in this work a simple, self-contained,

d unified framework for the study of

References:

. use of . or both, and draw some guidelines on the design
of further estimate sequence schemes.

(]
1 Introduction
The concept of estimate sequences was introduced by Nesterov in 1983 [Nes3] to define the provably

fastest gradient-type schemes for convex optimization. This concept, in spite of its conceptual
simplicity, has not attracted a lot of attention during the 20 first yes

of its existence. Some interest
for this concept resurrected in 2003, when Nesterov wrote his seminal paper on smoothing techniques

L]
[Nes05]. Tndeed, the optimization method Nesterov uses on a smoothed approximation of the
convex non-smooth objective function can be seen as an estimate sequence method. T} ima
sequence methods play a crucial role in further papers of Nesterov [Nes06, Nes07] Aulendor

and Teboulle [AT0G] managed to extend the estimate sequence method, stated in Section 2.2 of
[Nes03] for squared Euclidean norms as prox-functions, to general Bregman distances at the cost of
a suppls

nentary technical assumption on the domain of these Bregman distances.

First-Order Algorithms

Several other papers propose generalizations of Nesterov's smoothing algorithm, and can be
interpreted in the light of the estimate sequence concept or sight geeralizations of it. For instance,

*M. Baes is with the Institute for Operations Rescarch, ETH, Riimistrasse 101, CH-8092 Ziirich. Switzerland. Part
of his work has been done while the author was at the Department of Electrical Enginceri
SCD-SISTA and the Optimization in Engincering Center OPTEC, Katholicke Univer
Arenberg 10, B-3001 Heverlee, Belgium. B-mail: Michel. BaesGifor.math.ethz.ch.

(ESAT), Research Group
teit Leuven, Kasteclpark

@ Springer

Chapter 3.7 Chapter 2.1 M. Baes, Estimate sequence methods:
extensions and approximations.
Technical report, ETH, Ziirich (2009)
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More Explanations for Nesterov’'s AGD

* Ordinary Differentiable Equations
* Su, W, Boyd, S, & Candes, E. A differential equation for modeling
Nesterov’s accelerated gradient method: theory and insights. NIPS 2014.
* Variational Analysis/Mirror Prox

* Wibisono, A., Wilson, A. C,, & Jordan, M. 1. A variational perspective on
accelerated methods in optimization. PNAS 2016, 113(47), E7351-E7358.

* Guanghui Lan. (2020). First-order and Stochastic Optimization Methods for
Machine Learning. Springer. Section 3.3.

* Linear Coupling of GD and MD

* Allen-Zhu, Z., & Orecchia, L. Linear coupling: An ultimate unification of
gradient and mirror descent. ITCS 2017.

* Cutkosky A. Chapter 14 Momentum & Chapter 15 Acceleration. Lecture
Notes for EC525: Optimization for Machine Learning, 2022.
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More Explanations for Acceleration

* Online Learning/Game with Suitable Optimism

* Wang, Jun-Kun, and Jacob D. Abernethy. Acceleration through optimistic
no-regret dynamics. NeurIPS 2018.

* Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration.
ICML 2019.

- Kavis, A., Levy, K. Y, Bach, F, & Cevher, V. UnixGrad: A universal,
adaptive algorithm with optimal guarantees for constrained
optimization. NeurIPS 2019.

* Yuheng Zhao, Yu-Hu Yan, Kfir Yehuda Levy, Peng Zhao. Gradient-Variation

Online Adaptivity for Accelerated Optimization with Holder Smoothness.
NeurIPS 2025.

* Yu-Hu Yan, Peng Zhao, and Zhi-Hua Zhou. Optimistic Online-to-Batch
Conversions for Accelerated Convergence and Universality. NeurIPS 2025.
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History Bits

Nesterov’s four ideas (three acceleration methods):

* Y. Nesterov (1983), A method for solving a convex
programming problem with convergence rate O(1/k?)

* Y. Nesterov (1988), On an approach to the construction
of optimal methods of minimization of smooth convex
functions

* Y. Nesterov (2005), Smooth minimization of non-smooth

functions Yurii Nesterov
1956 —
* Y. Nesterov (2007), Gradient methods for minimizing UCLouvain, Belgium

composite objective function
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Nesterov, Y. (1983), A method of solving a convex programming problem with
convergence rate O(1/k?), Soviet Mathematics Doklady 27(2), 372-376.

Hoxa. Axan, Hayx CCCP
Tom 269 (1983). N3

A METHOD OF SOLVINC
A CONVEX PROGRAMMING PR{

WITH CONVERGENCE RATE O
uDnc si

YU. E. NESTEROV

1. In this note we propose a method of solving a conve)
Hilbert space E. Unlike the majority of convex programmi
this method constructs a minimizing sequence of points {
This property allows us to reduce the amount of computatio
At the same time, it is possible to obtain an estimate of col
improved for the class of problems under consideration (see

2. Consider first the problem of unconstrained minimizati
We will assume that f(x) belongs to the class C"'(E), i.e
L > 0such thatforallx, y € E

(1) [£Cx) = £l < Lllx = yll-
From (1) it follows that forall x, y € E
(2) () <f(x)+ (f(x), y — x)+0.5L]

To solve the problem min{ f(x)|x € E} with a nonempty.
the following method.
0) Select a point y, € E. Put

) k=0, ag=1, x, =y a,=|y—zI/}

where z is an arbitrary point in E, z # y; and f'(2) # f'( ).
1) kth iteration. a) Calculate the smallest index / = 0 for

(4) f(."A)‘f()'k = 2‘["‘;‘7‘//(,“))327' a
b) Put

X = o S ()

(5) a = 1+ 4ai +1) 2,

Pran = Xt (ay — Dy — x4

g
@ =2""a;_,,

The way in which the one-dimensional search (4) is halted
[2]. The difference is only that in (4) the subdivision in the
with a, _, (and not with 1 as in [2]). In view of this (see the pl
sequence {x, }7 is constructed by method (3)-(5), no more:
sions will be made. The recalculation of the points y, in (5)

1980 Mathematics Subject Classification. Primary 90C25.
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Let us also remark that method (3)(5) does not guarg
the sequences {x, )3 and {y, ).

THEOREM 1. Ler f(x) be a convex function in C

sequence {x, | is constructed by method (3)—(5), then
1) Forany k = 0;

(6) fx) —fr=c/(k

where C = 4L||y, — x*|* and f* = f(x*), x* € X*.
2) In order to achieve accuracy € with respect to the ﬂ
a) to compute the gradient of the objective function n
b) 1o evaluate the objective function no more than NI
Here and in what follows, |(-)[ is the integer part of
PROOF. Let y,(a) = y, — af’(y,). From (2) we obti

f() = f((a)) = 0.5a(2 —

Consequently, as soon as 2 'a; | becomes less than

and o, will not be further decreased. Thus a; = 0.5L 7

Let p, = (a;— 1)(x,—; — x;). Then p,,; — A
Consequently,

3 2
Xiwy T2 =l — x4 + 2a

+2”L»I"A\!</'(,“Ar|)~x

Using inequality (4) and the convexity of f(.x), we @

[Pier —

</’(.‘/k+\’~ ) S -“)3/’(XL+1) =/
0.5 1 s I < 1) = f(x, 4
7“;“(/"."1\-1

We substitute these two inequalities into the preceding

IPasr = %par + x*" =llpe — x4 + x*|" < 2(a
—2ap @y ( SOy —f*) + (“iu T a4
< 2ap 0441 (f(x0s) = ) + 2(afy,
=213 (f(x,) = f*) — 204y}, ( (X
< 2‘-‘&”3(/’(*1\) =f*) —2a, |”A1H(/(-"A«

Thus

20131 (f(x 1) — %) < 204 I“Eq(/(-ﬂu
<2aa,(f(x,) = 1) +lpy — x + 2

< 2apaj( f(x0) — f*) +llpo

It remains to observe thata, , | = a, + 0.5 > 1 + 0.5(

It follows from the estimate of the convergence ra

method (3)-(5) needs to achieve accuracy & will be ni
each iteration, one gradient and at least two values o

= xp +x*|" <[l 3

373

be calculated. Let us remark, however, that to each addil
function corresponds a halving of a,. Therefore the total
not exceed Jlog,(2La_)[ + 1. This completes the proof ol

If the Lipschitz constant L is known for the gradient of
can take a; = L7 in the method (3)~(5) for any &k = 0. In
to hold, and therefore Theorem 1 remains valid
Il — x*Iy2L7e] —1 and NF = 0.

To conclude this section we will show how one may mx
the problem of minimizing a strictly convex function.

Assume that f(x) — f* = 0.5m||x — x*||* for all x € E
constant m is known.

We introduce the following halting rule in the method

¢) We stop when

(7 k =22/ (ma,) — 2.

Suppose that the halting has occurred in the N'th step-
(3)—(5), one has N < J4,/L/m|[ — 1. At the same time,

, ¥)12
< Ao~ =l

~ < 0.25m||y, — x*
ey (N +32)°

flxy) = f*

After the point x, has been obtained, it is necessary
begin calculating, by the method (3)~(5), (7). from the poi
As a result we obtain that after each |4,/L/m[ — 1 it
to the function decreases by a factor of 2. Thus the &
cannot be improved (up to a dimensionless constant) am¢
class of strictly convex functions in C"'(E) (see [1]).

3. Consider the following extremal problem:
®) min{ F(/(x)) | x € 0}

where Q is a convex closed set in £, F(u), with u € R™,
positive homogeneous of degree one, and faey = (filx
continuously differentiable functions on E. The set X
assumed to be nonempty. In addition to this, we will al
functions { F(-), f(+)} has the following property:
() If there exists a vector A € 3F(0) such that X*) < 0,
The notation dF(0) means the subdifferential of the fu
As is well known, the identity F(u) = max{(A, u)|A
tions that are positive homogeneous of degree one. Ther
the convexity of the function F( f(,\')) on all of E.
Problem (8) can be written in minimax form:

(9) min{max[(h‘f(.\‘))()\E'dF(O)

One can show that the fact that the set X* is nonemg
the existence of a saddle point (A*, x*) for problem (9).
of problem (9) can be written as 2% = A* X X*, where

A* = Argmax{¥(A)| A € 9F(0)}, Y(A) =

374

The problem
max{W¥(A)| A € 3F(0) N domW¥
will be called the problem dual to (8).
Suppose the functions f,(x), kK = 1,...,m, in problem (8
with constants L*) = 0. Let L = (L,..., L),
Consider the function

D(y, A, z) = F(f(y,z)) + 054

where

f(p:2) = (FNys 2)s--nf " y: X)),
Iy 2) =) +{S(»)z—y), B

and 4 is a positive constant. Let

®*(y, A) = min{®(y, 4,z)|z € 0}, T(y, A) = af
Observe that the mapping y — 7(y, @) is a natural generaliz
“gradient” mapping introduced in [1] in connection with th
minimizing functions of the form max, ..., fi(x). For the
as for the “gradient” mapping of [1]) we have
(10) ®*(y,A)+A(y—T(y,4),x—y)+054|y — T
forallx € Q,y € Eand 4 = 0, and if 4 = F(L), then
®*(y, A) = F(f(T(v, 4))).

To solve problem (8) we propose the following method.
0) Select a point y;, € E. Put

(1) B0 A= T By S Ay S
where Ly = (L., L{™), L = || fillyo) — filz M/ Yo —
inE,z#y,.

1) kth iteration. a) Calculate the smallest index i = 0 for
(12) O*( i 24, 1) = F(F(T( . 24,3

b) Put4, =24, |, x, = T(y,, A;) and

() apy = (14 4a + 1) 12,

Ve = %+ (= D)= 2, ,)

It is not hard to see that the method (3)—(5) is simply
method (11)—(13) for the unconstrained minimization problex
and Q = E in (8)).

THEOREM 2. If the sequence {x, )i is constructed by methot
assertions are true:
1) Forany k =0
F(f(x)) = F(f(x*) < C/ (k 4
where C, = 4F(L)|y, — x*||>, x* € X*.

2) To obtain accuracy € with respect

a) to solve an auxiliary problem min{®(y,, A, x)|x € Q} no more than

]v“(',/e:[ +Jmax{log,( F(L)/A_,).0}[

times,

b) to evaluate the collection of gradients f{( y),. .. .f,(y) no more than );C, /€| times, and
¢) to evaluate the vector-valued function f(x) at most

Z]N"(‘,'/r [+ ]mux{logl( F(L)/4 ,).U}[

times.

Theorem 2 is proved in essentially

use (10) instead of (2), while the analogue of «, f'( y,) will be the vector y, — Ty, 4,).
and the analogue of a, the values of A;'.
Just as in the method (3)-(5). Vin the method (11)-(13) one can take into account

information about the constant F( L)

F(f(x)) — m (for this, of course, we must have y, € Q).
In conclusion let us mention two important special cases of problem (8) in which the
auxiliary problem min{®( y,, 4, x)|x € Q} turns out to be rather simple.
a) Minimization of a smooth function on a simple set. By a simple set we understand a set
for which the projection operator can be written in explicit form. In this case m =

F(y) = y in problem (8), and
O*(y, A) = f(y) — 0547
in the method (11)-(13), where

T(y. ) = argmin{[ly —A7'f(y) 2] = € 0}
b) Unconstrainted minimization (in problem (8), Q = E). In this case the auxiliary
problem min{®( y, 4, x)|x € E} is equivalent to the following dual problem:

(14) mux-l -0.547"

|

3 N9
k=1

Here

T(y, A) =

7O+ 054 T(y, 4) =y + A7)

to the functional. one needs

the same way as Theorem 1. It is only necessary to

and the parameter of strict convexity of the function

1 and

+ 3 ML ()] (A, N2, om™) € OF(O)l
k=1

m

y—A" 3 X))

where the X(y), k= 1,.... m,

remark that the set 9F(0) is usu.

such cases problem (14) is the st
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Nesterov, Y. (1983), A method of solving a convex programming problem with
convergence rate O(1/k?), Soviet Mathematics Doklady 27(2), 372-376.

YOK 51

10.E. HECTEPOB
METOI PEWEHMSA 3AIIAYM BHINYKJIOTO MPOI
CO CKOPOCTbI0 CXOIOMMOCTH O |

JIB. P

1. B cramse mp aeTCA METON P 32
BaHHA B rwisbeproBoM mpoctpaHcTe E. B ommmume or Gon
700 MpoTp paHee, 3TOT M€
wmyo TIOCTIE HOBATENBHOCTS Tosex {Xk} % =0, KOTOpaA He ABN
0COBGEHHOCTh IO3BONAET CBECTH K MMHHMYMY BBIYMCITHTEN
ware. B 10 Xe Bpems 1A TaKOro MeTofa ynaercA monyd
cuarplmaeuou KJIacce 3a/iay OLIEHKY CKOPOCTH CXOIHMOCTH [d

P; 3amavy Ge3y:
(). Mu Oynmem npennonaran qr0 $yHKUMA f(X) mpuHAR
4T0 CymecTByer KoHcraTa L > 0, mis KoTopoi mpu BE
HEpaBEHCTBO

O M-I Lix -yl
W3 HepaseHctBa (1) cienyer, 9To npu Beex X, y €E
Q) f(W<FER)+H), y-x+0SLIy —xIP.

Iina pememvsa 3afaw min{f(x)| x € E'} ¢ HemycTsl
X" npepnaraeTca creAyiommii METON.
0) Boi6upaem Touky yo € E. ITonaraem

@) k=0, a=1, x,3=y5, @, =lyo—zI/If'(yo)
rhe z — mobasa Touka M3 E,z#Y, f'(z) # f'(o).

1) k-1 Utepauus.

2) BuuncisieM HauMeHs LM Homep i >0, 1A KOTOPoro
@ )~k =2 (N> 27 a1 (7

6) Monaraem

@ =270y, X =y — e (Vi)

(5)  ax+1=(1+ \/41& +1)/2,

Yi+1 =Xk + (@ — 1) (g — Xk 1) ag+1-

Cnocof mpephIBaHMA OIHOMEpDHOro Moucka (4) aR
xeHHOMy B [2]. Pasuuua muus 8 ToM, 10 B (4) IpoGnenue
H3BOJMTCA, HAWMHAA C & _; (2 He C efMHMuBL, Kak B [2])
TENBCTBO Teopembl 1) mpu nocrpoenun Merogom (3)—(5) 0

6ymer cnenano e Gonee O (log, L) Taxux npoGmenuii. Iepecy
BIIAETCA C MOMOLBI® “OBPaXHOro™ mara. OTMETHM Takxe, ¥

Baer M y6 ysicmm £(x) W .nocy
{Vxtk=o0-

Teopema 1. Hym 8bInyKAAR ¢ynxuux fix) €

76 { X k=0 P -0,

1) 0 awbozo k >0
6) ) —f* < Clk+2)?,
20e C=4Lly,—x*1?, f*=f(x*), x*€X";
2) 048 QOCTUNEHUA TOYKOCTU € NO HYHKYUOKAAY He0B)

a) Tb 2p T ii yHKkyuu He 6onee NG

6) eblyucauts 3HaueHue yeneeoii FYHKyUU He
+ Jloga(2Lay)[ +1 pas.

3neck u manee ] () [ — uenas vacs wicna (-).

HoxasarenbcrBo. Ilyets yi(@) = yp — of' O

nonysaem f(yx) ~f(yx (@) > 0522 —aL) If'(y) I7. C:
2%y _y craHer Membwe, wem L~!, HepaBeHCTBO (4) BHINOI
yMeHbIaThes He GymyT. Takum o6pasoM, ay = 0,5L~! mns sce
OGosnawnm py = (@x — 1) (X—; — xi). Torma pg
+ @1 pe1 [ (Piv1) . Cnenosatenmsho, Npgiy — Xgup + X
+2@xe1 — Dorr S V1), P + 204010081 (F (Vier1)5 4
X' (prs)I?.
Tons3yscs HepaBeHCTBOM (4) M BBITYKIJIOCTBIO (yHKIMI
LDk Vs =X fei) =7 +0,5a4, 17'(3
0,541 1 f'(Yiea )N < f(View1) = Fxi1) < fxe) =)
— a4y ' (Vies1), PR
TlozcTaBuM 3TH [1Ba HePaBEHCTBA B IIPEIbIAYILEE PaBEHC!
Ipks1 = Xpag +x* 02 = Ipy —xp +x*12 < 2(ap4y — 1
2541011 (fGicar =)+ @hay — s1)0G 0y 1)
< 244410541 (FXs1) =) + 284y — airr)aesr (
= 2044103 (f i) = ") — 2044104 (FGis1) =) S
= 2ak+laz+1(f(xk+l) -f*.
Taxum o6pazom,
20441854y (1) = 1) < 20541854, (F@pesr) — 17

+1Psess — Xiar +x° 12 < 2a0,(F i) —F*) + I py

< 200a3(f(xo) = f*) + Ipo—xo+x* 12 < lyg—x*1I2

OCTanoch 3aMeTHTh, UTO dy4+q >ax +05>1+05(k+1).

U3 OleHKH CKOPOCTH CXOMHMOCTH (6) cremyer, 4ro 4
Moe Merony (3)—(5) miA DOCTHXEHHUs TOUHOCTH €, He Gymert |
TIpu 3TOM Ha Kaxmoi | MTepauH GyneT BBIMMCIATECA OJMH T'Di
mBa oy 3aMeTHM, OIHAKO, YTO Kd
; #i YHKIMM COOTBETCTBYeET Y
BaBoe. [losToMy obluee WACNO TAaKMX BBIYMCIEHHH He NpeB3(

Teopema oKa3aHa.

Ecnmu s rpagMeHTa neneBod (QyHKIMH H3BECTHa KO
mertone (3)—(5) Moxwo nonoxmts ax = L~ mpu mobom k
BeHCTBO (4) Oymer 3aBeloMO BBHINOJHEHO M IO3TOMY yTBE]
HyTes Bepusiu ipn C=2L1yo — x*I2, NG =]y, — x*I3/21
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B 3akmoueHHe 3TOrO pasfena NMOKaXeM, KaKk MOXI
(3)—(5) msp 3a7auwm CHIIBHO BBITYKJI|
Tpenmonoxum, uro mwis GyHKwu f(x) mpH Beex x €
f&x) —f*>0,5mlx — x*I*,rae m >0, u mycTs KOHCTaHTa 7t
BeepeM B Metop (3) —(5) cnenyromee MpaBuIIo Mpepsl
B) OcTaHaBNMBaeMCs, €CIH

7 k= 2V2[(moy) —2.
Tycts npepsianme mpou3ounio Ha N-m mare. Tak Ki
>0,5L7", 10 N< J4v/L/m[ —1. B 10 e Bpems

2lyo—x*I2
fopy) =" < ———eir
G ay(V +2)?
Iocne Toro Kax MONMydYeHa TOYKa Xy, Heo6xomumo O
wath cueT MeToftoM (3) —(5), (7) U3 TOUKH X, KaK U3 Hauaslbk
B pesynsrate monyuaem, uto 3a Kaxmpie |4+/L/m|
yHkuum y6pisaer Basoe. Takum obpasom, meron (3)—(5)
€TCsl HeyNyuliaeMbIM (C TOUHOCTbI0 IO Ge3pa3MepHOH KOHC!
BOTO MIOPSAMKA Ha KITACCe CHITHHO BHIMYKIbIX GyHKUKi 13 C'>!
3. PaccMoTpuM crieflyionlyo 3KCTpeMalbHYI0 3a7iauy :
® min{F(f ()l x€0},
e Q — BBIMyKNOE 3aMKHYTOe MHOXecTBO H3 E, F (u), u €
R™  NONOXWTENBHO-ONHOPOAHAA CTeTIeHH eTHHHIA (QYHKIMA
.., fm(¥)) — BeKTOp BBIIYK/BIX HernpepsiBHO muddeper
MHoxectBo X* pewtenmii 3amaw (8). BCerna npeanonaraen
Mbl Beerga Gymem mpepnonarath, 4To cucTema (yHKumi §
IYIOLMM CBOMCTBOM:
(*) Ecnu cymectsyet Bextop A € 3F (0) Takoi, ¥n
HeiiHasAg QYHKIMA.
Yepes 0F (0) B (*) o6o3HaueH cyommbdeperunan GpyH
Kak M3BECTHO, I BBUIYKJIBIX MONOXHTETbHO-OH
byHKIMil cripaBeMBO ToXmecTBO F (1) = max{(\, uw)| 1
TIpeTIoNoXeHUs (*) ClefyeT BbIMyKAoCTh GyHKuMH F ( f (x)
3apauy (8) MOXHO 3amucaTh B MHHEMaKCHOH popme:
(9)  minfmax{(\, f (x))| NEIF(0)}| x € Q).
MoXHO MOKa3aTh, YTO W3 HEMYCTOTHI MHOXeCTBa X ™ M mped
wecTBoBanue y 3amawi (9) cemnosoit Touxn (', x*). Ilog
Touex 3agaun (9) mpencrasumo B Buge 2° = A* X X, rg
€ 9F(0)}, ¥(\) =min{(, f/(x)| x € Q}. 3apauy
max {W(A)| A€ dF(0) N dom W ().

Mblﬁy}leMHaBblBaTb 33)18‘{5“ JIBDHCTBCHHOH K (
IMycrs B 3apave (8) dyHkwmm fi (x), k= 1,2,.
CHY(E) ¢ xoucrantamu L (¥ > 0. OGossawnm L = (L“) L(

Paccmotpum dynkumio ®(y, 4, z) = F(f(y, z)) +(
=0, 2, /P2, N, 2), 10,2 =hid
.., M, A — NONIOXHKTENbHAS KOHCTaHTa. O603HAWMM

O (py,A)=min{d(y,4,2)| zEQ}, T(y,A)=ag

< 025mlly,—x*I12< 0

3.174

OrmetuM, uto orobpaxenue y > T(y, A) sABasercs ecrec

3a7iaun (8) “’rpaMEHTHOr0” OTOGpaXKeHWs, BBEAEHHOro B [1

METOIOB MMHMMHM3alMH OYHKIMHA BHia max fi (x). s
1<k<m

(xax u U1 ’rpagMeHTHOro” otoGpaxenus” u3 [1]) npu Bce
TIOJIHSAETCA HEPaBEHCTBO

(10) ®°(y,A)+Aly —T(y, A),x - +0,54ly — T(y, A
npuuem ecni A > F(L), 0
0'(y, A)2F(F(T(r.4))).

Ilns peuenus 3anauy ‘(8) mpeiaraeTcA CreNyIOMMA M¢
0) Bribupaem Touxy yoe E. Tlonaraem

A1) k=0, ao=1, x4=yo, A,=F(L),

rre Lo=(L§", L, .. L(”’) L8 = 1 £ yo) - FrWI
Touka u3 E,z#y,.

1) k-1 Utepauus.

a) Borumcnsiem HammeHbumit Homep i > 0, oA K
PaBEHCTBO

(12) O*(yk, 24k 1) > F(F(T(yi, 24k 1))

6) MonaraeM A =24y _y, Xz = T(yx, Ax),

Gy =(1+VAaL +1)/2,

Yieer =Xk ¥ @k — 1) (k= Xg_1)/ag41-

HerpymHo 3ameruts, uro metom (3)—(5) sBnserc
samiucu Merona (11)—(13) mna 3amaum Ge3yCTOBHOH MHHH|
m=1, F(y)=y, Q=E).

Teopema 2. Ecau nocaedosareabhocts {xkl k=0
(13),r0:

1) 0aa aw6ozo k > 0 F(f(x)) — F(F(*))
=4F(L)lyo—x*1?, x*€X*.

2) 048:00CTUNEHUR TOYHOCTU € NO PYHKYUOHANY HeOB

a) PewuTs 8CNOMO2ATEAbHYIO 3a0ayy min{®(yy, «
1V/Ci/el +] maxtlog, (F(L)/A_,),04[ pas,

6) ebluucauts Habop 2paduerTos
WC. /e[ pas,

B) abiuucauts sextop-Fyniyuio f (x) ne 6oaee 2]/Cy|
0y[ pas.

Teopema 2 moxa3biBaeTCs MPAKTHYECKH TAK XKe, KAK
TONBKO BMECTO HepaBeHCTBAa (2) HMCNONB30BaTh HepaBeHCTBC
BekTOpa 0y f'(yi) Gymer Bextop ¥y — T(Vk, Ax), a anal

TouHo Tak e, kak u B merone (3)—(5), B Merone
HHpOPMaLHIo 0 KOHCTaHTe F (L) M mapaMeTpe CHIbHOM BbINY]
—m (s 3T0TO, MpaBAa, He06XOMMMO, 4To6H Yo € 0) .

B 3aKyoueHME OTMETHM JIBa BaXKHBIX YacTHBIX CITY®
BCnomorarenbHas 3amava min{®@(y, 4, x)| x € Q } oxassnl

a) MMHHMM3AUMA I7aJKOH BBUIYKIIOH (YHKUMH Ha
IPOCTHIM MHOXECTBOM MbI [IOHMMaeM TaKO€ 'MHOXECTBO, /I
eKTHPOBAHMA 3alHCHIBAETCA B ABHOM BHAE. B 3TOM cnyuae B

13)

THEONEHE)!
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u B meroe (11)—(13)
0" (3, A)=f(y) =054 If' (PI*+0SAIT(y, A) —y + A7 f (NI,
rne T(y, A)=argmin{ly - A7'f'(y) —zI|z€Q}.
6) BesycrnosHas munumuzamms (B 3ajave (8) Q = F). B 310M Ciyyae BCIOMO-

ratenbHas 3amava min{®(y, 4, x)| x € E} jKkBMBaNeHTHa Ciedyloued NBOHCTBEH-
HOWM 3ajiaye:

m m
(14) max{~0,5,4'l I[ > )\(k)f;((y)uz+ 5 ?\(k)fk()’ﬂ ()\(1)‘)\(2)“”, )\(’"))E
k=1 k=1
€ F ).
m
Tpy atom T(y, A) =y — A =—alineiian

BNC2 12 N A T )

wenns 3agam (14) npu ¢
OOBIYHO 3a1aeTCA MPOCTBIMH
KX crmyyasx 3agava (14)

ABTOp MCKpEHHE NpH;
JIMPOBAIIM €T0 HHTEPeC K pacc]

Received 19/JULY/82

LIeHTPaTbHBIA IKOHOMHKO-MaTeMaTHYeCKHA HHCTHTYT
Axapemuu Hayk CCCP, Mocksa

Toctynuno
19 VII 1982

METOMIOB ONTHMHM3a-

JIMTEPATYPA
1. Hemuposckuii A.C., 0our A.5. Cn

3ajay v

wn. M.: Hayka, 1979. 2. Huwenuwnoiii B5.H., Jarkuaun 10.M. MeTofIbl B P X
3apavax. M.: Hayka, 1975.
YIK 515.1 MATEMATHUKA
E.H. HOYKA
K TEOPHUHU MEPOMOP®HBIX KPHUBBIX
(Ipeo B.C. 18 vV 1982)

1. Tycts 3anaHa MepoMopdHas KpuBas, T.e. MepoMopdHOe 0TobpaXxKeHHe

£ c-cp,
H IyCTb TONIOMOpGHOE 0TOGpaXKeHHe
i C>C™Y =, fae s fas1)s

ABNAETCA PENyLHP JIEHHEM KPHBOH f XapakTepuCTHYECKY!0  DYyHK-
o f ompemenm, cetys A. Kapmly [1]:

~ 1 .
T, r) = o J loglf(re™) > dy — log|f(0)|2.
0
Mycts A — runepwiockocts B CP” M @ — eIMHUUHBIA BEKTOp TaKOH, YTO paBeH-
ctBo (W, @)=0 (ckobGKu 0GO3HaYalT IPMHTOBO CKAIAPHOE NPOM3BEEHHE) eCTh ypaB-
HEHMe T OCTH A B OJHOP KC Tax; 0603HawmM f4 = (f, a).
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History Bits
* Polyak’s Momentum, credit goes to Polyak, date back to 1960s

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1-17, 1964.

Math. Program., Ser. B 91: 401-416 (2002)

Digital Object Identifier (DOI) 10.1007/s101070100258

B.T. Polyak

History of mathematical programming in the USSR:
analyzing the phenomenon*

Received: January 29, 2001 / Accepted: May 17, 2001
Published online October 2, 2001 — © Springer-Verlag 2001

Abstract. I am not a historian; these are just reminiscences of a person involved in the development of
optimization theory and methods in the former USSR. I realize that my point of view may be very personal;

Boris T. Polyak however, I am trying to present as broad and unbiased picture as I can.
1935-2023
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Part 3. Extension to Composite Optimization

* Composite Optimization
* Proximal Gradient Method (PG)
* Accelerated Proximal Gradient Method (APG)

* Application to LASSO
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Composite Optimization
* Problem setup

min F(x) £ f(x) + h(x)

xERd

where f is smooth (namely, gradient Lipschitz) while h is not smooth.

* The composite optimization problem is common in practice.

Example 1. The objective of LASSO: F(w) = 3 |[w'X — sz + A|wll;,
where X = [X1,....X,, Y = [y1, ..., yn] .

How to effectively leverage the (partial) smoothness to improve convergence?

Advanced Optimization (Fall 2025) Lecture 4. Gradient Descent Method II
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Recall Non-composite Optimization

Recall how we invent GD for unconstrained non-composite optimization.

* Idea: surrogate optimization

We aim to find a sequence of local upper bounds Uy, --- ,Ur, where the
surrogate function U; : R? — R may depend on x; such that

(1) f(xt) = U(x¢);
(i) f(x) < U(x) holds for all x € RY;

(iii) U:(x) should be simple enough to minimize.

:> Then, our proposed algorithm would be x; 1 = arg min, U;(x)

Advanced Optimization (Fall 2025) Lecture 4. Gradient Descent Method II

67




Recall Non-composite Optimization

e Consider miny f(x), and assume f is L-smooth.

L
By smoothness: f(x) < f(x;) + (V [f(x),x —x;) + §HX — xtH2

\ . 4
Vs

£ U:(x) surrogate objective

—> to minimize f(x), it suffices to minimize the surrogate sequence {U,(x)};_;.

Claim. GD for smooth functions can be equivalently represented by

. 1
xis1 = argmin Ui(x) =y |~ 7 9£(0x0)]
xceX

where U, (x) = f(x:) + (Vf(xt),x — X¢) + Z||x — x¢||? is a quadratic upper bound of f at x;.
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Recall Non-composite Optimization

Claim. GD for smooth functions can be equivalently represented by

. 1
Kt = agmin Uy(x) = Ty [ = £V (x)|
xeX

where Uy (x) = f(x:) + (Vf(xt),x — x¢) + 2]|x — x¢||? is a quadratic upper bound of f at x;.

Proof:
: : L
X1 1 = arg min U;(x) = arg min {(Vf(xt),x> + §HXH2 — L(x,xt>}
xeX xeX
: L 1
~argmin { 2 (—2(x— 197000, x) + Ixl?) |
L 1 ? 1 1
= argmin — ||x — [ x; — =V f(x}) =argmin ||x — [ x; — =V f(xs) ||| = |x: — =V [f(x¢)
xex 2 L xXEX L L

[]

Advanced Optimization (Fall 2025) Lecture 4. Gradient Descent Method II 69



Composite Optimization
* Problem setup

min F(x) £ f(x) + h(x)

xERd

where f is smooth (namely, gradient Lipschitz) while h is not smooth.

A natural idea for surrogate objective:

Following previous argument (for non-composite optimization), to minimize
F = f + h, it’s natural to optimize surrogate sequence {U;(x)}._; defined as

Ur(x) £ F(3x0) + (V7 (x0).% — 1) + 21 — e[ + h(x)
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Composite Optimization
L

By smoothness: f(x) < f(x;) + (V[f(x),x — %) + aHX — x¢ ||

\ &

J

2 0, (x)

—> to minimize F'(x) = f(x) + h(x), it suffices to minimize

,

surrogate objective

Us(x) = ug(x) + h(x).

argmin Uy (x) = argmin § £(x,) + (V)% — x0) + 5 [x %/’ + h<x>}

X X L
( L
= arg min

X \

Y,

= arg min
x 2

D,

(9 1x)x) + 5 Il = L) + b |

5 (20— I ) ) 4 1 |
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Composite Optimization
L

By smoothness: f(x) < f(x;) + (V[f(x),x — %) + §HX — x¢ ||

\ &

J

2, (x)

surrogate objective

—> to minimize F'(x) = f(x) + h(x), it suffices to minimize

Us(x) = ug(x) + h(x).

arg?in Us(x) = arg;nin <L§ <—2<Xt — vféxt),x> + HXHQ) + h(x)}
2
= arg}fnin< g X — (Xt — Vfém)) + h(X)}

this will be abstracted as an operator, a subproblem to optimize
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Composite Optimization

* [teratively solve the surrogate optimization problem.

Deploying the following update rule:

X — <xt - %Vf(xt)> T h(x)}

. , L
x;11 = arg min U;(x) = arg min B
xcRd xcRd

Definition 2 (proximal mapping). Given a function h : R% — R, the proximal
mapping (or called proximal operator) of h over x is the operator given by

1
prox; (x) £ arg min {h(u) + = lu— XHQ} .
ucRd 2
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Proximal Gradient

Definition 2 (proximal mapping). Given a function i : RY — R, the proximal
mapping (or called proximal operator) of h on x is the operator given by

1
prox, (x) = arg min {h(u) + = ||x — uHQ} .
ucRd 2

Proximal Gradient Method

X411 = arg min {gHX — (Xt — %Vf(xt)) H2 4+ h(x)} = prox ., (Xt — %Vf(m))

x R4

1
An equivalent notation: X1 — Pﬁ(Xt) = proxaiy (Xt — va(Xt)> :
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Proximal Gradient

Proximal Gradient Method
1
Xip1 = Pr(x;) 2 proxi, (Xt — va(Xt)>

= arg min {gHX — (Xt — %Vf(xt)) H2 + h(X)} .

xERd

- Condition to work: P} (x) should be easy to compute. For example, in
LASSO h(x) = ||x||1, its P} has a closed form solution.

- Algorithmically, PG induces famous algorithms for solving LASSO problem,
which are called ISTA (GD-type) and FISTA (Nesterov’s AGD-type).
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Convergence of Proximal Gradient

Smooth Optimization

problem: min f(x)
xER4

assumption: f is L-smooth

Convergence: f(x7) — f(x*) <O (—

1
GD: Xi+1 — X — ZVf(Xt)

1
T

)

Smooth Composite Optimization

problem: min F(x) £ f(x) + h(x)

x€cR4
assumption: fis L-smooth, h not
1
PG: Xt4+1 = prOX%h (Xt — sz(Xt))

Convergence: F(xr)— F(x*) <7

Advanced Optimization (Fall 2025)
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Convergence of Proximal Gradient

Theorem 5. Suppose that f and h are convex and f is L-smooth. Setting the param-
eters properly, Proximal Gradient (PG) enjoys

* L”XO_X*HQ L 1
F(xr) — F(x") < 2T 1) _O(f>

Proximal gradient can also achieve an O (1/7") convergence rate, which is the
same as the non-composite optimization counterpart.

The result can be further boosted to O (exp(—71/k)) when the function f is
o-strongly convex (wWhere xk = L /o is the condition number).
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Convergence of Proximal Gradient

e Generalized one-step improvement lemmaon F = f + h

Lemma 7. Suppose that f and h are convex and f is L-smooth. Let x;,1 = P} (x;)
and g(x) = L(x — X¢y1). Then foranyu € X,

Flxi1) — F(u) < {g(x). % — ) — o [lg(x)

Suppose the above lemma holds for a moment, we now prove the O(1/7") con-
vergence rate of PG.
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Proof of PG Convergence

Proof Leme 7, Sppos i b oo Lo = ()
Setting u = x* in Lemma 7: F(x¢41) — F(u) < (g(x¢),x; —u) — %Hg(xt)Hz.
Flxi1) = F(x*) < (g0x0), %0 = x*) = 59|
—> F(xi41) — F(x*) < L(xt — X¢11,X¢ — X)) — g\ Xt — X¢i1| 2
= S (20x¢ — xe1, %0 — X*) — [I%¢ = %41 %)

= Y F(xe) = (T = DF(x*) < lxo — x*||?
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Proof of PG Convergence

Proof:

T—1 L||xo—x*||?
> Y Fxi) — F(x*) < 2o

which already gives an O(1/T) convergence rate of X7 = + ZtT:l Xt

What we want: F(x7) — F(x*)

Next step: analyzing F(xr) — = 32—11 F(x¢).

Setting u = x; in Lemma 7: F(x;11) — F(x¢) < —5-||g(x¢)||* < 0.
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Proof of PG Convergence

Proof:
What we want: F(xr)—F(x*) = Next step: analyzing F(x7)— Zz:ll F(xy).
T—1
Y H(F(xi41) — Z t(F(Xet1) x¢)) + F(x¢) — F(x¢)
t=1
Tr—-1 T-1
- Z LR (xpe1) — (t — 1) F(x )) ~ N F(x) = (T = DF(xr) = Y F(x) <0
t=1 t=1
What we have:
- Fler) = 755 sy Flx) <0 Ll|xo — x*|?
o L B F(xr) - F(x) < ”2(; 1)”
- T Y F(xi) — F(xr) < BB =
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Proof of One-Step Improvement Lemma

Lemma 7. Suppose that f and h are convex and f is L-smooth. Let x;,1 = P/ (x;)
and g(x;) = L(x; — X¢11). Then forany u € X,

Flxi1) — F(u) < {g(x). % ) — o= lg(x)|*

Proof: What we have: F(x) < Uy(x) forany x € X = F(xy11) — F(u) < Up(x441) — F(u)
analyzing this quantity

{Ut Xe1) = ) + (VF(%e), X1 — Xe) + F[xeq1 — %13 + Flxrra)

F(u) = f(u)+h(u) > Tt +(Vf(xt), u—x¢) + 1) + (VA(Xe41), U —Xp41)

L
D Us(x¢41) — F(u) < (V[f(x;)+ Vh(xi1), X401 —u) + §th+1 — x5

\ - 7/
~~

Next step: relate V f(x:) + Vh(x¢41) to g(x¢). =57 1g(x¢)||
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Proof of One-Step Improvement Lemma

Proof:

What we have: F(x) < Uy(x) forany x € X = F(x441) — F(u) < Up(x¢41) — F(u)

analyzing this quantity

> Ur(xt41) — F(0) <(V[(x0) + VA(xp41), Xep1 — 1) + %Hg(xt)\\g

Xi4] = arg;nin {h(x) + % HX — (Xt - %Vf(xt)) Hz}
2 H(x)

by Fermat’s
optimality condition

Theorem 5 (Fermat’s Optimality Condition). Let f : R — (—o0, 0c] be a
proper convex function. Then

x* € argmin{ f(x) | x € R"}

if and only if
0 € Of(x*).

0 =VH(xi41) = Vh(xip1) + L(xi41 — %) + VF(x;) from Lecture 2
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Proof of One-Step Improvement Lemma

Proof:

What we have: F(x) < Uy(x) forany x € X = F(x441) — F(u) < Up(x¢41) — F(u)
analyzing this quantity

{ Up(x¢41) — F(u) <(V[(x) + Vh(xip1), X1 —a) + %HQ(XQHQ

and the fact that Vf(x;) + Vh(xt11) = —L(xt41 — X¢) = 9(X¢)

= Uilxenn) — F(w) < (glxe). %001 —w) + o [la(x)
1 2
= (9(x¢), % —u) — ﬁHg(Xt)II -
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One-Step Improvement Lemma

* A fundamental result for GD/AGD of smoothed optimization.

unconstrained, GD f(Xt—l—l) — f(Xt) < — % va(Xt) H2 specialized

unconstrained, AGD f(Xt+1) — f(u) < <Vf(Xt)7Xt — U—> - %”vf(xt)HQ

constrained, GD f(xe41) — f(u) < (9(x¢), %t —u) — %Hg(xt)\?

U

1
composite, GD/AGD | F(x411) — F(u) < (g(x¢),x; —u) — 57 1g(x:) |2 general

Corollary: the proof of PG can also be used to prove the O(1/7") convergence rate of GD.
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Accelerated Proximal Gradient Method

* A natural idea: Can we achieve AGD in composite optimization?

:> This induces the Accelerated Proximal Gradient (APG) method.

Nesterov’s Accelerated GD

1
Xt+1 = Yt — va(Yt)v Yi+1 = X¢41 T+ 5t(Xt+1 — Xt)

Accelerated Proximal Gradient

1
el = [PHORE Ly (Yt — ZVf(Yt)) s Yi41 = X¢p1 T /3t(Xt+1 — Xt)

The covergence rates can be similarly obtained.
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Accelerated Proximal Gradient Method

Theorem 6. Suppose that f and h are convex and f is L-smooth. Setting the param-
eters properly, APG enjoys

2L

F(XT) _F(X*> < (T—I—l)

*HQ'

2HX0 — X

Suppose that h is convex and f is o-strongly convex and L-smooth. Setting the pa-
rameters properly, APG enjoys

Fxr) — F(x*) < exp (%) (Plxo) — Fix) + Zlixa —x7[2)

where k = L /o denotes the condition number.

The convergence rates can be obtained same as those in non-composite optimization.

Advanced Optimization (Fall 2025) Lecture 4. Gradient Descent Method II 87



Application to LASSO

* LASSQ: /;-regularized least squares

commonly encountered in
signal/image processing.

Interdisciplinary Applied Mathematics 40

Springer Series in Statistics
Monographs on Statistics and Applied Probability 143

Statistical Learning
with Sparsity
The Lasso and

René Vidal
Trevor Hastie YiMa
Robert Tibshirani S. Shankar Sastry

Generalizations maill 1l G | . d
eneralize
Principal
Data Mining, Inference, and Prediction CO m po ne nt

Analysis =

Trevor Hastie
Robert Tibshirani ’{; Xy

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression JUEAMLER
(right). Shown are contours of the error and constraint functions. The solid blue &) Springer
areas are the constraint regions |B1| + |82 < t and B3+ B3 < t3, respectively,
while the red ellipses are the contours of the least squares error function.
Regression shrinkage and selection via the lasso 67964 1996

R Tibshirani
Journal of the Royal Statistical Society. Series B (Methodological), 267-288
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Application to LASSO

* LASSQ: /;-regularized least squares

F(w) =L |wTX —y||" + A|wl,

commonly encountered in
signal/image processing.

—> composite optimization: first part is smooth, the other one is non-smooth

* ISTA (Iterative Shrinkage-Thresholding Algorithm): PG for LASSO

« FISTA (Fast ISTA): APG for LASSO

Closed-form solution:

Phwils = sign ([wi = 79w ) ([ |wi = 1970

1

_i)
Ly
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Closed-form Solution for LASSO

Optimization problem:
2

+Auwul},
2

h L
Pr(wy) = argmin ¢ — HW — vy
WERd 2

where v, = w; — %Vf(wt), fort e [T].

The optimization can be performed for each coordinate separately:

Wi — UVt q

L
PP (w¢); = arg min {—‘
w; ER 2

First-order optimality gives 0 € L(w; — v;) + A0|w;|, where

Olw;| = {ELSllgfll](wz) |3 ZZ i 8,

2
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Closed-form Solution for LASSO

Consider the three cases.

(i) w; > 0. Then 0 = L(w; — v;) + A, 80 w; = vy — %, which is feasible iff v; ; > %

(ii) w; < 0. Then 0 = L(w; — ve;) — A, S0 w; = vy, + %, feasible iff v; ; < —%.

(iil) w; = 0. Then 0 € —Lvt,z‘ + )\[—1, 1], i.e., |vt,i‘ < %

Combining the three cases yields the closed form solution:

Phwl = sign (v (il = 7 ) i€l

where v, = w; — +V f(wy), for t € [T
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Application to LASSO

* Comparison of ISTA and FISTA

Comparison of ISTA and FISTA.

-
-
-
- .
.

- = ~ISTA
——FISTA||

50

100 150 200
k

SIAM J. IMAGING SCIENCES ® 2009 Society for Industrial and Applied Mathematics
Vol. 2 No. 1, pp. 183-202

A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems*

Amir Beck! and Marc Teboulle!

Abstract. We consider the class of iterative shrinkage-thresholding algorithms (ISTA) for solving linear inverse
problems arising in signal /image processing. This class of methods, which can be viewed as an ex-
tension of the classical gradient algorithm, is attractive due to its simplicity and thus is adequate for
solving large-scale problems even with dense matrix data. However, such methods are also known to
converge quite slowly. In this paper we present a new fast iterative shrinkage-thresholding algorithm
(FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence
which is proven to be signi better, both ically and practically. Initial ising nu-
merical results for wavelet-based image deblurring demonstrate the capabilities of FISTA which is
shown to be faster than ISTA by several orders of magnitude.

Key words. iterative shrink algorithm, ion, linear inverse problem, least squares and
Iy regularization problems, optimal gradient method, global rate of convergence, two-step iterative
algorithms, image deblurring

AMS subject classifications. 90C25, 90C06, 65F22

DOI. 10.1137/080716542

1. Introduction. Linear inverse problems arise in a wide range of applications such as
astrophysics, signal and image processing, statistical inference, and optics, to name just a
few. The interdisciplinary nature of inverse problems is evident through a vast literature
which includes a large body of mathematical and algorithmic developments; see, for instance,
the monograph [13] and the references therein.

A basic linear inverse problem leads us to study a discrete linear system of the form

(1.1) Ax=b+w,

where A € R™*"™ and b € R™ are known, w is an unknown noise (or perturbation) vector,
and x is the “true” and unknown signal /image to be estimated. In image blurring problems,
for example, b € R™ represents the blurred image, and x € R" is the unknown true image,
whose size is assumed to be the same as that of b (that is, m = n). Both b and x are
formed by stacking the columns of their corresponding two-dimensional images. In these
applications, the matrix A describes the blur operator, which in the case of spatially invariant
blurs represents a two-dimensional convolution operator. The problem of estimating x from
the observed blurred and noisy image b is called an image deblurring problem.

*Received by the editors February 25, 2008; accepted for publication (in revised form) October 23, 2008; published
electronically March 4, 2009. This research was partially supported by the Israel Science Foundation, ISF grant 489-
06.
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Summary

Table 1: A summary of convergence rates of GD method for smooth optimization.

Algorithm Function Family Step Size Output Sequence Convergence Rate Remark

L-smooth and convex n=1 X7 = X7 O(1/T) suboptimal
GD

L-smooth and o-strongly convex n= X7 £ X7 O (exp (—1)) suboptimal

L-smooth and convex Xtr1 =Yt — %Vf(yt), Vi+1 = X1 + Bt (Xt+1 — Xt) XT £ XT 0(1/T2) optimal

AGD

L-smooth and o-strongly convex — x:41 =y — %Vf (¥t), Yer1 = Xe1 + %(Xt+l — X¢) X1 2 xr O (exp (—%)) optimal

PG F(x) £ f(x) + h(x) Xp+1 = PP(xs) £ Prox.uy (x¢ — £V f(xs)) X1 = X7 O(1/T) suboptimal

f and h are convex

[ is L-smooth but / is not smooth 7 N f
APG Xtt+1 = 7‘721 (yt)., Vi+1 = Xg1 + ‘J‘f‘jf (Xt+'l — Xt) X1 = XT O(]./TZ) Optlmal
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Summary

Smooth and Convex

~ [ GD FOR SMOOTH OPTIMIZATION ] Smooth and Strongly Convex

Constrained Optimization

Polyak’s momentum

< MOMENTUM AND ACCELERATION Nesterov’s Accelerated GD

Smooth and Convex/Strongly Convex Functions

~ Composite Optimization

k EXTENSION TO COMPOSITE Proximal Gradient Method (PG)

OPTIMIZATION Accelerated Proximal Gradient Method (APG)

- Application to LASSO
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