



### Lecture 4. Gradient Descent Method II

Advanced Optimization (Fall 2025)

Peng Zhao

zhaop@lamda.nju.edu.cn

Nanjing University

### Outline

- GD for Smooth Optimization
  - Smooth and Convex Functions
  - Smooth and Strongly Convex Functions
- Momentum and Acceleration
  - Polyak's Momentum
  - Nesterov's Accelerated GD
- Extension to Composite Optimization
  - Proximal Gradient and Accelerated One

### Part 1. GD for Smooth Optimization

Smooth and Convex

Smooth and Strongly Convex

Extension to Constrained Case

#### Overview

Table 1: A summary of convergence rates of GD for different function families, where we use  $\kappa \triangleq L/\sigma$  to denote the condition number.

| Function Family |                           | Step Size                        | Output Sequence                                                    | Convergence Rate                                             |              |
|-----------------|---------------------------|----------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------|
| G-Lipschitz     | convex                    | $\eta = \frac{D}{G\sqrt{T}}$     | $ar{\mathbf{x}}_T = rac{1}{T} \sum_{t=1}^T \mathbf{x}_t$          | $\mathcal{O}(1/\sqrt{T})$                                    | last lecture |
|                 | $\sigma$ -strongly convex | $\eta_t = \frac{2}{\sigma(t+1)}$ | $\bar{\mathbf{x}}_T = \sum_{t=1}^T \frac{2t}{T(T+1)} \mathbf{x}_t$ | $\mathcal{O}(1/T)$                                           |              |
| L-smooth        | convex                    | $\eta = rac{1}{L}$              | $ar{\mathbf{x}}_T = \mathbf{x}_T$                                  | $\mathcal{O}(1/T)$                                           | this lecture |
|                 | $\sigma$ -strongly convex | $\eta = \frac{2}{\sigma + L}$    | $ar{\mathbf{x}}_T = \mathbf{x}_T$                                  | $\mathcal{O}\left(\exp\left(-\frac{T}{\kappa}\right)\right)$ |              |

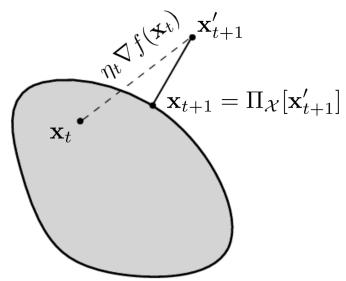
For simplicity, we mostly focus on *unconstrained* domain, i.e.,  $\mathcal{X} = \mathbb{R}^d$ .

The smoothness is defined to be with respect to  $\ell_2$ -norm.

### Gradient Descent

• GD Template:

$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \left[ \mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t) \right]$$



- $x_1$  can be an arbitrary point inside the domain.
- $\eta_t > 0$  is the potentially time-varying *step size* (or called *learning rate*).
- Projection  $\Pi_{\mathcal{X}}[\mathbf{y}] = \arg\min_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} \mathbf{y}\|$  ensures the feasibility.

#### Convex and Smooth

**Theorem 1.** Suppose the function  $f : \mathbb{R}^d \mapsto \mathbb{R}$  is convex and differentiable, and also L-smooth. GD updates by  $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t)$  with step size  $\eta_t = \frac{1}{L}$ , and then GD enjoys the following convergence guarantee:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{2L \|\mathbf{x}_1 - \mathbf{x}^*\|^2}{T - 1} = \mathcal{O}\left(\frac{1}{T}\right).$$

**Note**: we are working on *unconstrained* setting and using a *fixed* step size tuning.

#### The First Gradient Descent Lemma

**Lemma 1.** Suppose that f is proper, closed and convex; the feasible domain  $\mathcal{X}$  is nonempty, closed and convex. Let  $\{\mathbf{x}_t\}_{t=1}^T$  be the sequence generated by the gradient descent method,  $\mathcal{X}^*$  be the optimal set of the optimization problem and  $f^*$  be the optimal value. Then for any  $\mathbf{x}^* \in \mathcal{X}^*$  and  $t \geq 0$ ,

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \le \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}(f(\mathbf{x}_{t}) - f^{\star}) + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}.$$

Proof: 
$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} = \|\Pi_{\mathcal{X}}[\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t})] - \mathbf{x}^{\star}\|^{2}$$
 (GD)
$$\leq \|\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t}) - \mathbf{x}^{\star}\|^{2}$$
 (Pythagoras Theorem)
$$= \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}\langle\nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star}\rangle + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}(f(\mathbf{x}_{t}) - f^{\star}) + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$
(convexity:  $f(\mathbf{x}_{t}) - f^{\star} = f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star}) \leq \langle\nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star}\rangle$ )

# Refined Result for Smooth Optimization

Proof: 
$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} = \|\Pi_{\mathcal{X}}[\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t})] - \mathbf{x}^{\star}\|^{2}$$
 (GD)
$$\leq \|\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t}) - \mathbf{x}^{\star}\|^{2} \text{ (Pythagoras Theorem)}$$

$$= \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}\langle\nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star}\rangle + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}(f(\mathbf{x}_{t}) - f^{\star}) + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}(f(\mathbf{x}_{t}) - f^{\star}) + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$(\text{convexity: } f(\mathbf{x}_{t}) - f^{\star} = f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star}) \leq \langle\nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star}\rangle)$$

only exploited convexity, but haven't used <u>smoothness</u>

# Refined Result for Smooth Optimization

Recall the first-order characterization of smooth functions

#### **Smoothness**

**Theorem 9** (*First-order* Characterizations of *L*-smoothness). Let  $f : \mathcal{X} \to \mathbb{R}$  be a convex function, differentiable over  $\mathcal{X}$ . Then the following claims are equivalent:

- (i) f is L-smooth.
- (ii)  $f(\mathbf{y}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{x} \mathbf{y}||^2$  for all  $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ .
- (iii)  $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2L} \|\nabla f(\mathbf{x}) \nabla f(\mathbf{y})\|_*^2$  for all  $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ .

(iv) 
$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \frac{1}{L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_*^2$$
 for all  $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ .

(v) 
$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \ge \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) - \frac{L}{2}\lambda(1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^2$$
 for any  $\mathbf{x}, \mathbf{y} \in \mathcal{X}$  and  $\lambda \in [0, 1]$ . (essentially zero-th order characterization)

Proofs can be found below Theorem 5.8 of Amir Beck's book.

Advanced Optimization (Fall 2025)

Lecture 2. Convex Problems

45

co-coercivity

### Co-coercive Operator

**Lemma 2** (co-coercivity). Let f be convex and L-smooth over  $\mathbb{R}^d$ . Then for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ , one has

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \frac{1}{L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2$$

**Definition 1** (co-coercive operator). An operator C is called  $\beta$ -co-coercive (or  $\beta$ -inverse-strongly monotone, for  $\beta > 0$ , if for any  $x, y \in \mathcal{H}$ ,

$$\langle Cx - Cy, x - y \rangle \ge \beta \|Cx - Cy\|^2.$$

The co-coercive condition is relatively standard in *operator splitting* literature and *variational inequalities*.

# Refined Result for Smooth Optimization

Proof: 
$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 = \|\Pi_{\mathcal{X}}[\mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t)] - \mathbf{x}^*\|^2$$
 (GD)
$$\leq \|\mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t) - \mathbf{x}^*\|^2 \text{ (Pythagoras Theorem)}$$

$$= \|\mathbf{x}_t - \mathbf{x}^*\|^2 - 2\eta_t \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle + \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2$$

$$\leq \|\mathbf{x}_t - \mathbf{x}^*\|^2 - 2\eta_t (f(\mathbf{x}_t) - f^*) + \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2$$

$$\leq \|\mathbf{x}_t - \mathbf{x}^*\|^2 - 2\eta_t (f(\mathbf{x}_t) - f^*) + \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2$$
(convexity:  $f(\mathbf{x}_t) - f^* = f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle$ )

only exploited convexity, but haven't used <u>smoothness</u>

# Refined Result for Smooth Optimization

Proof: 
$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} = \|\Pi_{\mathcal{X}}[\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t})] - \mathbf{x}^{\star}\|^{2}$$
 (GD)
$$\leq \|\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t}) - \mathbf{x}^{\star}\|^{2} \text{ (Pythagoras Theorem)}$$

$$= \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}\langle\nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star}\rangle + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} + \left(\eta_{t}^{2} - \frac{2\eta_{t}}{L}\right)\|\nabla f(\mathbf{x}_{t})\|^{2}$$

exploiting coercivity of smoothness and unconstrained first-order optimality

$$\langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle \le \langle \nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}^*), \mathbf{x}_t - \mathbf{x}^* \rangle \ge \frac{1}{L} \|\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}^*)\|^2 = \frac{1}{L} \|\nabla f(\mathbf{x}_t)\|^2$$

$$||\mathbf{x}_{t+1} - \mathbf{x}^{\star}||^{2} \leq ||\mathbf{x}_{t} - \mathbf{x}^{\star}||^{2} + \left(\eta_{t}^{2} - \frac{2\eta_{t}}{L}\right) ||\nabla f(\mathbf{x}_{t})||^{2}$$

$$\leq ||\mathbf{x}_{t} - \mathbf{x}^{\star}||^{2} - \frac{1}{L^{2}} ||\nabla f(\mathbf{x}_{t})||^{2}$$
 (by picking  $\eta_{t} = \eta = \frac{1}{L}$  to minimize the r.h.s)
$$\leq ||\mathbf{x}_{t} - \mathbf{x}^{\star}||^{2} \leq \ldots \leq ||\mathbf{x}_{1} - \mathbf{x}^{\star}||^{2}$$

#### Smooth and Convex

**Proof:** Now, we consider the function-value level,

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*) = f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) + f(\mathbf{x}_t) - f(\mathbf{x}^*)$$

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) \qquad \text{one-step improvement}$$

$$= f(\mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t)) - f(\mathbf{x}_t) \quad \text{(utilize unconstrained update)}$$

$$\leq \langle \nabla f(\mathbf{x}_t), -\eta_t \nabla f(\mathbf{x}_t) \rangle + \frac{L}{2} \eta_t^2 \| \nabla f(\mathbf{x}_t) \|^2 \quad \text{(smoothness)}$$

$$= \left( -\eta_t + \frac{L}{2} \eta_t^2 \right) \| \nabla f(\mathbf{x}_t) \|^2$$

$$= -\frac{1}{2L} \| \nabla f(\mathbf{x}_t) \|^2 \quad \text{(recall that we have picked } \eta_t = \eta = \frac{1}{L} \right)$$

Cautious: This derivation even doesn't require convexity!!

#### Smooth and Convex

Proof:

*Next step:* relating  $\|\nabla f(\mathbf{x}_t)\|$  to function-value gap to form a telescoping structure.

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle \le \|\nabla f(\mathbf{x}_t)\| \|\mathbf{x}_t - \mathbf{x}^*\| \quad \Rightarrow \|\nabla f(\mathbf{x}_t)\|^2 \ge \frac{(f(\mathbf{x}_t) - f(\mathbf{x}^*))^2}{\|\mathbf{x}_t - \mathbf{x}^*\|^2}$$

(by optimizer's decreasing property, i.e.,  $\|\mathbf{x}_t - \mathbf{x}^*\| \le \|\mathbf{x}_1 - \mathbf{x}^*\|$ )

#### Smooth and Convex

**Proof:** 
$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*) \le -\frac{1}{2L||\mathbf{x}_1 - \mathbf{x}^*||^2} (f(\mathbf{x}_t) - f(\mathbf{x}^*))^2 + f(\mathbf{x}_t) - f(\mathbf{x}^*)$$

### Key Lemma for Smooth GD

• During the proof, we have obtained an important lemma for *smooth* optimization, that is, *one-step improvement* 

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) \le \left(-\eta_t + \frac{L}{2}\eta_t^2\right) \|\nabla f(\mathbf{x}_t)\|^2 \qquad \Longrightarrow \qquad f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \mathcal{O}\left(\frac{1}{T}\right).$$

*last-iterated* convergence

• Compare a similar result that holds for convex and *Lipschitz* functions.

**Lemma 2.** Under the same assumptions as Theorem 1. Let  $\{\mathbf{x}_t\}_{t=1}^T$  be the sequence generated by GD. Then we have

$$\sum_{t=1}^{T} \eta_t(f(\mathbf{x}_t) - f^*) \le \frac{1}{2} \|\mathbf{x}_1 - \mathbf{x}^*\|^2 + \frac{1}{2} \sum_{t=1}^{T} \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2.$$

This lemma usually implies convergence like  $f(\bar{\mathbf{x}}_T) - f^* \leq \dots$  with  $\bar{\mathbf{x}}_T \triangleq \sum_{t=1}^T \frac{\eta_t \mathbf{x}_t}{\sum_{t=1}^T \eta_t}$  (or other average).

average-iterated convergence

### One-Step Improvement for Smooth GD

**Lemma 3** (one-step improvement). Suppose the function  $f : \mathbb{R}^d \to \mathbb{R}$  is convex and differentiable, and also L-smooth. Consider the following unconstrained GD update:  $\mathbf{x}' = \mathbf{x} - \eta \nabla f(\mathbf{x})$ . Then,

$$f(\mathbf{x}') - f(\mathbf{x}) \le \left(-\eta + \frac{L}{2}\eta^2\right) \|\nabla f(\mathbf{x})\|^2.$$

In particular, when choosing  $\eta = \frac{1}{L}$ , we have

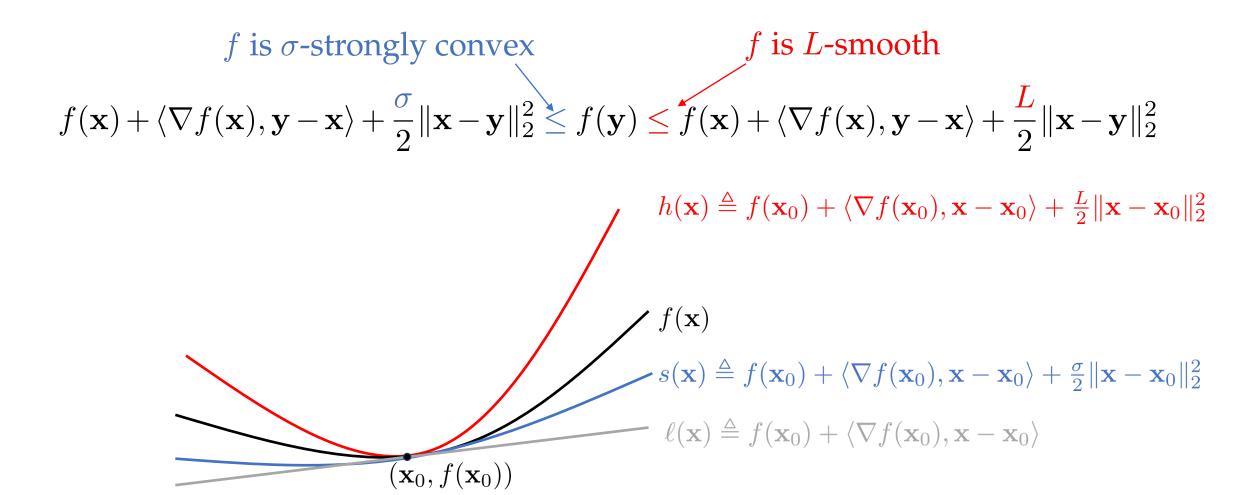
$$f\left(\mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x})\right) - f(\mathbf{x}) \le -\frac{1}{2L} \|\nabla f(\mathbf{x})\|^2.$$

Function progress is proportional to the square of gradient magnitude (consider due reasons).

• Recall the definition of strongly convex functions ( *first-order* version).

**Definition 5** (Strong Convexity). A function f is  $\sigma$ -strongly convex if, for any  $\mathbf{x} \in \text{dom}(\partial f), \mathbf{y} \in \text{dom}(f)$  and  $\mathbf{g} \in \partial f(\mathbf{x})$ ,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle + \frac{\sigma}{2} ||\mathbf{y} - \mathbf{x}||^2.$$



**Theorem 2.** Suppose the function  $f: \mathbb{R}^d \mapsto \mathbb{R}$  is  $\sigma$ -strongly-convex and differentiable, and also L-smooth. Then, setting  $\eta_t = \frac{2}{\sigma + L}$ , GD satisfies

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2} \exp\left(-\frac{4(T-1)}{\kappa+1}\right) \|\mathbf{x}_1 - \mathbf{x}^*\|^2 = \mathcal{O}\left(\exp\left(-\frac{T}{\kappa}\right)\right),$$

where  $\kappa \triangleq L/\sigma$  denotes the condition number of f.

**Note**: we are working on *unconstrained* setting and using a *fixed* step size tuning.

**Proof:** 
$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} = \|\Pi_{\mathcal{X}}[\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t})] - \mathbf{x}^{\star}\|^{2}$$
 (GD)
$$\leq \|\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t}) - \mathbf{x}^{\star}\|^{2}$$
 (Pythagoras Theorem)
$$= \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}\langle\nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star}\rangle + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

how to exploit the **strong convexity** and **smoothness** simultaneously

**Lemma 4** (co-coercivity of smooth and strongly convex function). *Let f be L-smooth and \sigma-strongly convex on*  $\mathbb{R}^d$ . *Then for all*  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ , *one has* 

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \frac{\sigma L}{\sigma + L} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{1}{\sigma + L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2.$$

### Coercivity of Smooth and Strongly Convex Function

**Lemma 4** (co-coercivity of smooth and strongly convex function). *Let* f *be* L-smooth and  $\sigma$ -strongly convex on  $\mathbb{R}^d$ . Then for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ , one has

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \frac{\sigma L}{\sigma + L} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{1}{\sigma + L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2.$$

**Proof:** Define  $h(\mathbf{x}) \triangleq f(\mathbf{x}) - \frac{\sigma}{2} ||\mathbf{x}||^2$ . Then, h enjoys the following properties:

- h is convex: by  $\sigma$ -strong convexity (see previous lecture).
- h is  $(L \sigma)$ -smooth.  $\nabla^2 h(\mathbf{x}) = \nabla^2 f(\mathbf{x}) \sigma I \preceq (L \sigma)I$ .

Then, rearranging the terms finishes the proof.

Proof: 
$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} = \|\Pi_{\mathcal{X}}[\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t})] - \mathbf{x}^{\star}\|^{2}$$
 (GD)
$$\leq \|\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t}) - \mathbf{x}^{\star}\|^{2} \text{ (Pythagoras Theorem)}$$

$$= \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t} \langle \nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star} \rangle + \eta_{t}^{2} \|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq \left(1 - \frac{2\eta_{t}\sigma L}{L + \sigma}\right) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} + \left(\eta_{t}^{2} - \frac{2\eta_{t}}{L + \sigma}\right) \|\nabla f(\mathbf{x}_{t})\|^{2}$$

exploiting co-coercivity of smooth and strongly convex function

$$\langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle = \langle \nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}^*), \mathbf{x}_t - \mathbf{x}^* \rangle \ge \frac{1}{L + \sigma} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L\sigma}{L + \sigma} \|\mathbf{x}_t - \mathbf{x}^*\|^2$$

serving as the "one-step improvement" in the analysis

**Proof:** 
$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \leq \left(1 - \frac{2\eta_{t}\sigma L}{L+\sigma}\right) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} + \left(\eta_{t}^{2} - \frac{2\eta_{t}}{L+\sigma}\right) \|\nabla f(\mathbf{x}_{t})\|^{2}$$

The step size configuration:

- (i) first, we need  $1 \frac{2\eta_t \sigma L}{L + \sigma} < 1$  to ensure the contraction property;
- (ii) second, we hope  $(\eta_t^2 \frac{2\eta_t}{L+\sigma}) \le 0$ , or it becomes 0 is enough.

$$\implies$$
 a feasible (and simple) setting:  $\eta_t = \eta = \frac{2}{L + \sigma}$ 

**Proof:** 
$$\|\mathbf{x}_T - \mathbf{x}^*\|^2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2(T - 1)} \|\mathbf{x}_1 - \mathbf{x}^*\|^2 \le \exp\left(-\frac{4(T - 1)}{\kappa + 1}\right) \|\mathbf{x}_1 - \mathbf{x}^*\|^2$$

*Next step:* relating  $\|\mathbf{x}_T - \mathbf{x}^{\star}\|^2$  to  $f(\mathbf{x}_T) - f(\mathbf{x}^{\star})$ .

$$f(\mathbf{x}_t) \le f(\mathbf{x}^*) + \langle \nabla f(\mathbf{x}^*), \mathbf{x}_t - \mathbf{x}^* \rangle + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}^*\|^2 = f(\mathbf{x}^*) + \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}^*\|^2$$

(in unconstrained case,  $\nabla f(\mathbf{x}^*) = \mathbf{0}$ )

### Constrained Optimization

• For unconstrained optimization, the key technical lemma is

$$f\left(\mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x})\right) - f(\mathbf{x}) \le -\frac{1}{2L} \|\nabla f(\mathbf{x})\|^2$$

where  $\nabla f(\mathbf{x})$  is used to measure the function progress.

• For constrained optimization, a *generalized* one-step improvement:

**Lemma 5.** Suppose f is L-smooth. Let  $\mathbf{x}_{t+1} = \prod_{\mathcal{X}} [\mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t)]$ , and define  $g(\mathbf{x}) = L(\mathbf{x} - \mathbf{x}_{t+1})$  for any  $\mathbf{x} \in \mathcal{X}$ . Then the following holds true for any  $\mathbf{u} \in \mathcal{X}$ :

$$f(\mathbf{x}_{t+1}) - f(\mathbf{u}) \le \langle g(\mathbf{x}_t), \mathbf{x}_t - \mathbf{u} \rangle - \frac{1}{2L} \|g(\mathbf{x}_t)\|^2.$$

- $g(\mathbf{x}_t)$  is used to qualify the progress; and in the unconstrained case,  $g(\mathbf{x}_t) = \nabla f(\mathbf{x}_t)$ .
- comparator u is introduced because (projected) GD is not necessary "descent".

### Constrained Optimization

**Same** convergence rates as unconstrained case can be obtained in the *constrained* setting for smooth convex optimization.

Detailed proofs for the constrained optimization will not be presented. The proof follows the same vein yet requires some additional twists, we refer anyone interested to the following parts in **Bubeck's book**:

- *Constrained* + smooth + convex: **Section 3.2**
- *Constrained* + smooth + strongly convex: **Section 3.4.2**



Convex Optimization:
Algorithms and Complexity
Sebastien Bubeck
Foundations and Trends in ML, 2015

#### Lower Bound

Lower bounds reflect the difficulty of the problem, regardless of algorithms.

notice: this lower bound only holds for first-order methods

Table 1: A summary of convergence rates of GD for different function families.

| Function Family |                           | Convergence Rate                                             | Lower Bound                                                    | Optimal? |
|-----------------|---------------------------|--------------------------------------------------------------|----------------------------------------------------------------|----------|
| G-Lipschitz     | convex                    | $\mathcal{O}(1/\sqrt{T})$                                    | $\Omega(1/\sqrt{T})$                                           | <b>√</b> |
|                 | $\sigma$ -strongly convex | $\mathcal{O}(1/T)$                                           | $\Omega(1/T)$                                                  | <b>√</b> |
| L-smooth        | convex                    | $\mathcal{O}(1/T)$                                           | $\Omega(1/T^2)$                                                | X        |
|                 | $\sigma$ -strongly convex | $\mathcal{O}\left(\exp\left(-\frac{T}{\kappa}\right)\right)$ | $\Omega\left(\exp\left(-\frac{T}{\sqrt{\kappa}}\right)\right)$ | ×        |

 $\qquad \qquad \Box >$ 

GD is suboptimal in *smooth* convex optimization!

#### Lower Bound

First-order Opt oracle. We consider the class of first-order (black-box) procedures satisfying  $\mathbf{x}_1 = \mathbf{0}$ , and for any  $t \geq 1$ ,  $\mathbf{x}_{t+1} \in \operatorname{Span}(\mathbf{g}_1, \dots, \mathbf{g}_t)$ , where  $\mathbf{g}_s = \nabla f(\mathbf{x}_s)$  is the gradient (or subgradient) queried from the oracle at  $\mathbf{x}_s$ .

**Theorem 3.13.** Let  $t \leq n$ , L, R > 0. There exists a convex and L-Lipschitz function f such that for any black-box procedure satisfying (3.15),

$$\min_{1 \le s \le t} f(x_s) - \min_{x \in B_2(R)} f(x) \ge \frac{RL}{2(1 + \sqrt{t})}.$$

There also exists an  $\alpha$ -strongly convex and L-lipschitz function f such that for any black-box procedure satisfying (3.15),

$$\min_{1 \le s \le t} f(x_s) - \min_{x \in B_2\left(\frac{L}{2\alpha}\right)} f(x) \ge \frac{L^2}{8\alpha t}.$$

convex/strongly convex & Lipschitz functions

Bubeck's book, Sec 3.5

**Theorem 3.14.** Let  $t \leq (n-1)/2$ ,  $\beta > 0$ . There exists a  $\beta$ -smooth convex function f such that for any black-box procedure satisfying (3.15),

$$\min_{1 \le s \le t} f(x_s) - f(x^*) \ge \frac{3\beta}{32} \frac{\|x_1 - x^*\|^2}{(t+1)^2}.$$

**Theorem 3.15.** Let  $\kappa > 1$ . There exists a  $\beta$ -smooth and  $\alpha$ -strongly convex function  $f : \ell_2 \to \mathbb{R}$  with  $\kappa = \beta/\alpha$  such that for any  $t \ge 1$  and any black-box procedure satisfying (3.15) one has

$$f(x_t) - f(x^*) \ge \frac{\alpha}{2} \left( \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2(t-1)} ||x_1 - x^*||^2.$$

Note that for large values of the condition number  $\kappa$  one has

$$\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2(t-1)} \approx \exp\left(-\frac{4(t-1)}{\sqrt{\kappa}}\right).$$

convex & smooth

Bubeck's book, Sec 3.5

strongly convex & smooth

Bubeck's book, Sec 3.5

#### Part 2. Momentum and Acceleration

• Polyak's Momentum

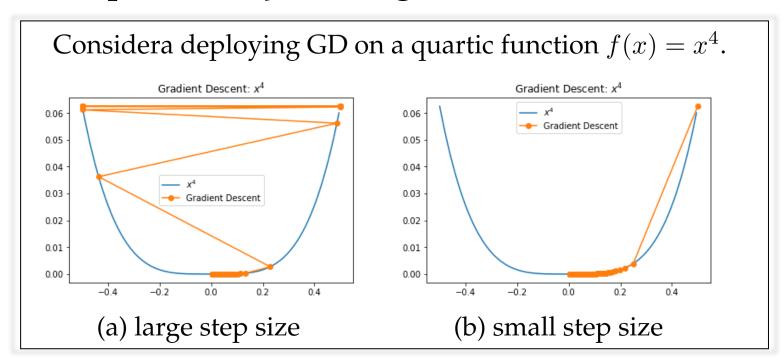
Nesterov's Accelerated GD

Smooth and Convex

Smooth and Strongly Convex

## Polyak's Momentum

- GD method (with a fixed step size):  $\mathbf{x}_{t+1} = \mathbf{x}_t \eta \nabla f(\mathbf{x}_t)$ , e.g.,  $\eta = \frac{1}{L}$
- The problem: *pathological curvature*



#### **Motivation**

- ✓ Ensure smaller steps in regions of high curvature to dampen oscillations.
- ✓ Ensure larger steps and accelerate in regions of low curvature.

Source: https://boostedml.com/2020/07/gradient-descent-and-momentum-the-heavy-ball-method.html

### Polyak's Momentum

• GD with momentum:

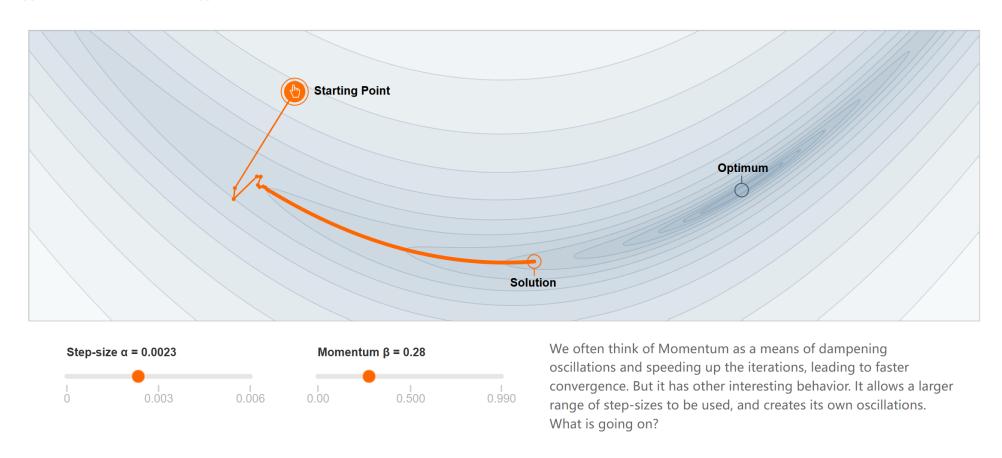
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \underbrace{\eta \nabla f(\mathbf{x}_t)}_{\text{GD}} + \underbrace{\beta(\mathbf{x}_t - \mathbf{x}_{t-1})}_{\text{momentum}}$$

where  $\beta$  is a hyperparameter (usually  $\beta \in [0, 1]$  though not limited to it), which scales down the previous step adaptively.

- ☐ If the current gradient step is in the same direction as the previous step (e.g., in the region of low curvature), then move a little further in that direction;
- ☐ If it's in the opposite direction (e.g., in the region of high curvature), move less far.
- Also known as the "heavy ball method" (think of the physical intuition).

### Polyak's Momentum: Illustration

• <a href="https://distill.pub/2017/momentum/">https://distill.pub/2017/momentum/</a>



# Polyak's Momentum: Physical Interpretation

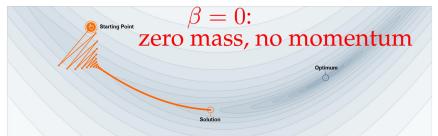
• Consider a momentum theorem with damping force, and the equation of motion at this infinitesimal moment:

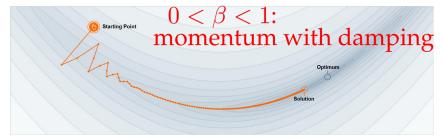
$$\frac{\mathrm{d}}{\mathrm{d}t}(m\mathbf{v}) = \frac{-c \cdot \mathbf{v}}{-\nabla(\eta f(\mathbf{x}))},$$
 $\frac{\mathrm{damping\ force}}{\mathrm{d}t} = \frac{\mathrm{force\ due\ to\ potential\ energy\ gradient}}{\mathrm{d}t}$ 

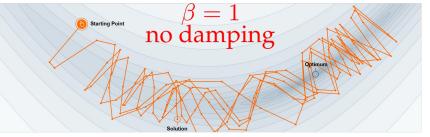
• Discretizing the equation, we obtain the Polyak's Momentum form:

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t - \eta \nabla f(\mathbf{x}_t), \quad (\mathbf{v}_t = \mathbf{x}_t - \mathbf{x}_{t-1})$$
  
$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{v}_{t+1}. \quad (\beta \in [0, 1])$$

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \underbrace{\eta \nabla f(\mathbf{x}_t)}_{ exttt{GD}} + \underbrace{\beta(\mathbf{x}_t - \mathbf{x}_{t-1})}_{ exttt{momentum}}$$



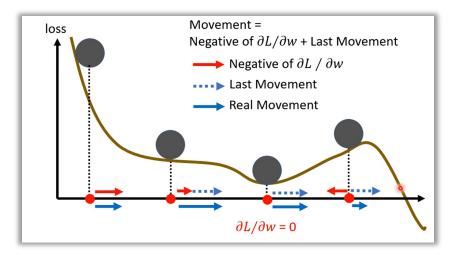




https://distill.pub/2017/momentum/

### Polyak's Momentum

- Provable benefit: can achieve *accelerated rate* for *quadratic functions*
- Other benefit: help jump out of the local region (can be useful for non-convex opt)

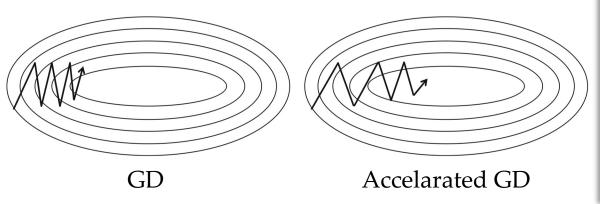


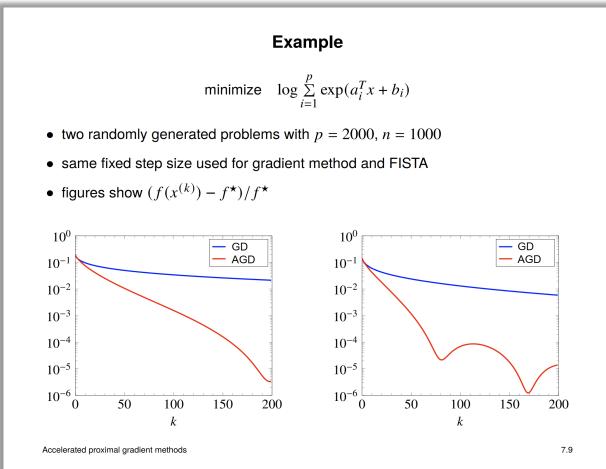
Source: Hung-yi Lee ML 2021 Spring course Lecture on batch and momentum

• But it fails for more general cases like *smooth and convex/strongly convex functions*). Details are omitted [more details].

## Nesterov's Accelerated GD

- a momentum term is added to boost the convergence
- the descent property is relaxed and not ensured now



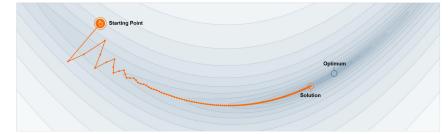


https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf

# Nesterov's AGD: Physical Interpretation

• Consider a momentum theorem with damping force, and the equation of motion at this infinitesimal moment:

$$rac{\mathrm{d}}{\mathrm{d}t}(m\mathbf{v}) = -\mathbf{c} \cdot \mathbf{v} - \nabla(\eta f(\mathbf{x'})),$$
 $damping force \quad force \ due \ to \ potential \ energy \ gradient$ 
 $\mathrm{d}\mathbf{x} = \mathbf{v}\mathrm{d}t.$ 



Polyak's Momentum:

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t - \eta \nabla f(\mathbf{x}_t),$$
  
$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{v}_{t+1}$$

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \underbrace{\eta \nabla f(\mathbf{x}_t)}_{\text{GD}} + \underbrace{\beta(\mathbf{x}_t - \mathbf{x}_{t-1})}_{\text{momentum}}$$

• Nesterov's Accelerated GD:

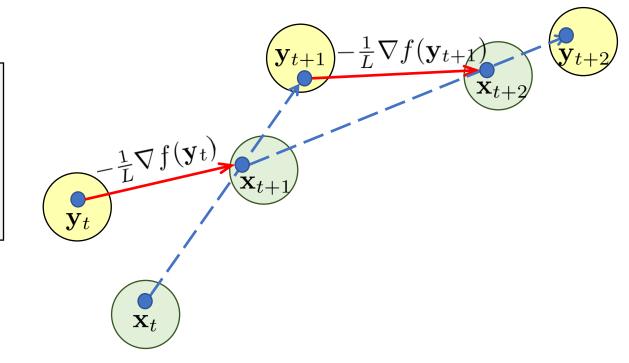
$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t - \eta \nabla f(\mathbf{x}_t + \beta \mathbf{v}_t),$$
  
$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{v}_{t+1}$$

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \underbrace{\eta \nabla f(\mathbf{x}_t + \beta(\mathbf{x}_t - \mathbf{x}_{t-1}))}_{\text{GD (twisted)}} + \underbrace{\beta(\mathbf{x}_t - \mathbf{x}_{t-1})}_{\text{momentum}}$$

## Nesterov's Accelerated GD

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t)$$

$$\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$



- Define  $\mathbf{x}_1 = \mathbf{y}_1$ .
- $\beta_t > 0$  is a *time-varying* mixing rate of  $\mathbf{x}_t$  and  $\mathbf{x}_{t+1}$ ;  $\beta_t = 0$  recovers vanilla GD.
- AGD can be also thought a version of GD with *momentum*.

## Convergence of Nesterov's Accelerated GD

**Theorem 3.** Let f be convex and L-smooth. Nesterov's accelerated GD is configured as

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t), \quad \mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t),$$

where 
$$\lambda_0 = 0, \lambda_t = \frac{1+\sqrt{1+4\lambda_{t-1}^2}}{2}$$
, and  $\beta_t = \frac{\lambda_t-1}{\lambda_{t+1}}$ . Then, we have

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{2L\|\mathbf{x}_1 - \mathbf{x}^*\|^2}{T^2} = \mathcal{O}\left(\frac{1}{T^2}\right).$$

It is *optimal* for first-order methods working on smooth convex optimization.

**Note**: for simplicity, we are working on the *unconstrained* setting.

**Proof:** First, we prove the following generalized one-step improvement lemma.

**Lemma 6.** For any  $\mathbf{u} \in \mathcal{X}$ , if  $\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{L}\nabla f(\mathbf{x}_t)$ , then the following holds true:

$$f(\mathbf{x}_{t+1}) - f(\mathbf{u}) \le \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{u} \rangle - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2.$$

a comparator variable **u** is introduced here, because now AGD is not necessary "descent" due to the momentum

 $\square$  Setting  $\mathbf{u} = \mathbf{x}_t$  recovers the one-step improvement used in earlier analysis.

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) \le -\frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2$$
 GD for smooth and convex functions

# Generalized One-Step Improvement

**Lemma 6.** For any  $\mathbf{u} \in \mathcal{X}$ , if  $\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{L}\nabla f(\mathbf{x}_t)$ , then the following holds true:

$$f(\mathbf{x}_{t+1}) - f(\mathbf{u}) \le \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{u} \rangle - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2.$$

Setting  $\mathbf{u} = \mathbf{x}_t$  recovers the one-step improvement used in earlier analysis.

## **Proof:**

$$f(\mathbf{x}_{t+1}) - f(\mathbf{u}) = f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) + f(\mathbf{x}_t) - f(\mathbf{u})$$

$$\leq \langle \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \frac{L}{2} ||\mathbf{x}_{t+1} - \mathbf{x}_t||^2 + \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{u} \rangle \quad \text{(smoothness and convexity)}$$

$$= \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{u} \rangle - \frac{1}{2L} ||\nabla f(\mathbf{x}_t)||^2 \quad (\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t))$$

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t)$$
$$\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

**Proof:** (continued proving Theorem 3)

**Lemma 6.** For any  $\mathbf{u} \in \mathcal{X}$ , if  $\mathbf{x}' = \mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x})$ , then the following holds true:

$$f(\mathbf{x}') - f(\mathbf{u}) \le \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{u} \rangle - \frac{1}{2L} \|\nabla f(\mathbf{x})\|^2.$$

(i) Plugging in  $\mathbf{u} = \mathbf{x}_t$ :

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) \le \langle \nabla f(\mathbf{y}_t), \mathbf{y}_t - \mathbf{x}_t \rangle - \frac{1}{2L} \|\nabla f(\mathbf{y}_t)\|^2.$$

(ii) Plugging in  $\mathbf{u} = \mathbf{x}^*$ :

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*) \le \langle \nabla f(\mathbf{y}_t), \mathbf{y}_t - \mathbf{x}^* \rangle - \frac{1}{2L} \|\nabla f(\mathbf{y}_t)\|^2.$$

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t)$$
$$\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

**Proof:** (continued proving Theorem 3)

- (i) Plugging in  $\mathbf{u} = \mathbf{x}_t$ :  $f(\mathbf{x}_{t+1}) f(\mathbf{x}_t) \le \langle \nabla f(\mathbf{y}_t), \mathbf{y}_t \mathbf{x}_t \rangle \frac{1}{2L} \|\nabla f(\mathbf{y}_t)\|^2$ .
- (ii) Plugging in  $\mathbf{u} = \mathbf{x}^*$ :  $f(\mathbf{x}_{t+1}) f(\mathbf{x}^*) \le \langle \nabla f(\mathbf{y}_t), \mathbf{y}_t \mathbf{x}^* \rangle \frac{1}{2L} \|\nabla f(\mathbf{y}_t)\|^2$ .

LHS of  $(\lambda_t - 1)(i) + (ii)$  equals:

$$(\lambda_t - 1) (f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t)) + f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*)$$

$$= \lambda_t (f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*)) - (\lambda_t - 1) (f(\mathbf{x}_t) - f(\mathbf{x}^*))$$

Define  $\delta_t \triangleq f(\mathbf{x}_t) - f(\mathbf{x}^*)$ , then we have

LHS = 
$$\lambda_t \delta_{t+1} - (\lambda_t - 1) \delta_t$$

Goal: design a telescoping series

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t)$$
$$\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

**Proof:** (continued proving Theorem 3)

- (i) Plugging in  $\mathbf{u} = \mathbf{x}_t$ :  $f(\mathbf{x}_{t+1}) f(\mathbf{x}_t) \le \langle \nabla f(\mathbf{y}_t), \mathbf{y}_t \mathbf{x}_t \rangle \frac{1}{2L} \|\nabla f(\mathbf{y}_t)\|^2$ .
- (ii) Plugging in  $\mathbf{u} = \mathbf{x}^*$ :  $f(\mathbf{x}_{t+1}) f(\mathbf{x}^*) \le \langle \nabla f(\mathbf{y}_t), \mathbf{y}_t \mathbf{x}^* \rangle \frac{1}{2L} \|\nabla f(\mathbf{y}_t)\|^2$ .

RHS of  $(\lambda_t - 1)(i) + (ii)$  equals:

$$(\lambda_t - 1) \left( \langle \nabla f(\mathbf{y}_t), \mathbf{y}_t - \mathbf{x}_t \rangle - \frac{1}{2L} \|\nabla f(\mathbf{y}_t)\|^2 \right) + \langle \nabla f(\mathbf{y}_t), \mathbf{y}_t - \mathbf{x}^* \rangle - \frac{1}{2L} \|\nabla f(\mathbf{y}_t)\|^2$$

$$= \langle \nabla f(\mathbf{y}_t), \lambda_t \mathbf{y}_t - (\lambda_t - 1) \mathbf{x}_t - \mathbf{x}^* \rangle - \frac{\lambda_t}{2L} \|\nabla f(\mathbf{y}_t)\|^2$$

That is

$$\lambda_t \delta_{t+1} - (\lambda_t - 1) \delta_t \le \langle \nabla f(\mathbf{y}_t), \lambda_t \mathbf{y}_t - (\lambda_t - 1) \mathbf{x}_t - \mathbf{x}^* \rangle - \frac{\lambda_t}{2L} \|\nabla f(\mathbf{y}_t)\|^2$$

 $\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t)$  $\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$ 

**Proof:** (continued proving Theorem 3)

Cautious: many terms of interest have already appeared in the following inequality.

gradient inner product optimal point 
$$\lambda_t \delta_{t+1} - (\lambda_t - 1) \delta_t \leq \langle \nabla f(\mathbf{y}_t), \lambda_t \mathbf{y}_t - (\lambda_t - 1) \mathbf{x}_t - \mathbf{x}^* \rangle - \frac{\lambda_t}{2L} \|\nabla f(\mathbf{y}_t)\|^2$$

optimality gap telescoping structure

linear combination related to momentum gradient norm

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t)$$
$$\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

**Proof:** (continued proving Theorem 3)

$$\lambda_t \delta_{t+1} - (\lambda_t - 1) \delta_t \le \langle \nabla f(\mathbf{y}_t), \lambda_t \mathbf{y}_t - (\lambda_t - 1) \mathbf{x}_t - \mathbf{x}^* \rangle - \frac{\lambda_t}{2L} \|\nabla f(\mathbf{y}_t)\|^2$$

$$\Rightarrow \lambda_t^2 \delta_{t+1} - \lambda_t (\lambda_t - 1) \delta_t \le \frac{1}{2L} \left( 2 \langle \lambda_t \nabla f(\mathbf{y}_t), L(\lambda_t \mathbf{y}_t - (\lambda_t - 1) \mathbf{x}_t - \mathbf{x}^*) \rangle - \|\lambda_t \nabla f(\mathbf{y}_t)\|^2 \right)$$

**Requirement (1):**  $\lambda_t(\lambda_t - 1) = \lambda_{t-1}^2$ 

$$\Rightarrow \lambda_t^2 \delta_{t+1} - \lambda_{t-1}^2 \delta_t \le \frac{1}{2L} \left( 2 \langle \lambda_t \nabla f(\mathbf{y}_t), L(\lambda_t \mathbf{y}_t - (\lambda_t - 1) \mathbf{x}_t - \mathbf{x}^*) \rangle - \|\lambda_t \nabla f(\mathbf{y}_t)\|^2 \right)$$

Denote by  $\mathbf{a} \triangleq \lambda_t \nabla f(\mathbf{y}_t), \mathbf{b} \triangleq L(\lambda_t \mathbf{y}_t - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^*).$ 

$$\Rightarrow \lambda_t^2 \delta_{t+1} - \lambda_{t-1}^2 \delta_t \le \frac{1}{2L} (2 \langle \boldsymbol{a}, \boldsymbol{b} \rangle - \|\boldsymbol{a}\|^2) = \frac{1}{2L} (\|\boldsymbol{b}\|^2 - \|\boldsymbol{b} - \boldsymbol{a}\|^2)$$

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t)$$
$$\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

**Proof:** (continued proving Theorem 3)

Denote by 
$$\mathbf{a} \triangleq \lambda_t \nabla f(\mathbf{y}_t), \mathbf{b} \triangleq L(\lambda_t \mathbf{y}_t - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^*).$$

$$\lambda_t^2 \delta_{t+1} - \lambda_{t-1}^2 \delta_t$$

$$\leq \frac{1}{2L} (L^2 \| \lambda_t \mathbf{y}_t - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^* \|^2 - \| L(\lambda_t \mathbf{y}_t - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^*) - \lambda_t \nabla f(\mathbf{y}_t) \|^2)$$

$$= \frac{L}{2} \left( \| \lambda_t \mathbf{y}_t - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^* \|^2 - \| \lambda_t \mathbf{y}_t - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^* - \lambda_t \frac{\nabla f(\mathbf{y}_t)}{L} \|^2 \right)$$

$$= \frac{L}{2} (\| \lambda_t \mathbf{y}_t - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^* \|^2 - \| \lambda_t \mathbf{x}_{t+1} - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^* \|^2)$$

Goal: design a telescoping series

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t)$$
$$\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

telescope

**Proof:** (continued proving Theorem 3)

$$\lambda_t^2 \delta_{t+1} - \lambda_{t-1}^2 \delta_t \le \frac{L}{2} (\|\lambda_t \mathbf{y}_t - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\lambda_t \mathbf{x}_{t+1} - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^*\|^2)$$

**Requirement (2):** 
$$\lambda_t \mathbf{x}_{t+1} - (\lambda_t - 1)\mathbf{x}_t = \lambda_{t+1}\mathbf{y}_{t+1} - (\lambda_{t+1} - 1)\mathbf{x}_{t+1}$$

$$\lambda_t^2 \delta_{t+1} - \lambda_{t-1}^2 \delta_t \le \frac{L}{2} (\|\lambda_t \mathbf{y}_t - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\lambda_{t+1} \mathbf{y}_{t+1} - (\lambda_{t+1} - 1)\mathbf{x}_{t+1} - \mathbf{x}^*\|^2)$$

Define  $\mathbf{z}_t \triangleq \lambda_t \mathbf{y}_t - (\lambda_t - 1)\mathbf{x}_t - \mathbf{x}^*$ , then we have

$$\lambda_t^2 \delta_{t+1} - \lambda_{t-1}^2 \delta_t \le \frac{L}{2} (\|\mathbf{z}_t\|^2 - \|\mathbf{z}_{t+1}\|^2)$$

$$\Rightarrow \lambda_{T-1}^2 \delta_T - \lambda_0^2 \delta_1 \le \frac{L}{2} (\|\mathbf{z}_1\|^2 - \|\mathbf{z}_T\|^2)$$

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t)$$
$$\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

**Proof:** (continued proving Theorem 3)

$$\lambda_{T-1}^2 \delta_T - \lambda_0^2 \delta_1 \le \frac{L}{2} (\|\mathbf{z}_1\|^2 - \|\mathbf{z}_T\|^2)$$

## **Requirement (3):** $\lambda_0 = 0$

$$\lambda_{T-1}^2 \delta_T \le \frac{L}{2} \|\mathbf{z}_1\|^2 \Rightarrow \delta_T \le \frac{L \|\mathbf{z}_1\|^2}{2\lambda_{T-1}^2} = \frac{L \|\lambda_1 \mathbf{y}_1 - (\lambda_1 - 1)\mathbf{x}_1 - \mathbf{x}^*\|^2}{2\lambda_{T-1}^2}$$

## Requirement (4): $y_1 = x_1$

$$\lambda_{T-1}^2 \delta_T \le \frac{L}{2} \|\mathbf{z}_1\|^2 \Rightarrow \delta_T \le \frac{L \|\mathbf{z}_1\|^2}{2\lambda_{T-1}^2} = \frac{L \|\mathbf{x}_1 - \mathbf{x}^*\|^2}{2\lambda_{T-1}^2}$$

## Proof

**Proof:** (continued proving Theorem 3)

**Theorem 3.** Let f be convex and L-smooth. Nesterov's accelerated GD is configured as

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t), \quad \mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t),$$

where 
$$\lambda_0 = 0, \lambda_t = \frac{1+\sqrt{1+4\lambda_{t-1}^2}}{2}$$
, and  $\beta_t = \frac{\lambda_t - 1}{\lambda_{t+1}}$ . Then, we have

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{2L\|\mathbf{x}_1 - \mathbf{x}^*\|^2}{T^2} = \mathcal{O}\left(\frac{1}{T^2}\right).$$

**Requirement (1):** 
$$\lambda_t(\lambda_t - 1) = \lambda_{t-1}^2$$

$$\Rightarrow \lambda_t = \frac{1 + \sqrt{1 + 4\lambda_{t-1}^2}}{2}$$

**Requirement (2):** 
$$\lambda_t \mathbf{x}_{t+1} - (\lambda_t - 1)\mathbf{x}_t = \lambda_{t+1}\mathbf{y}_{t+1} - (\lambda_{t+1} - 1)\mathbf{x}_{t+1}$$

$$\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \frac{\lambda_t - 1}{\lambda_{t+1}} (\mathbf{x}_{t+1} - \mathbf{x}_t) \qquad \Rightarrow \beta_t = \frac{\lambda_t - 1}{\lambda_{t+1}}$$

**Requirement (3):**  $\lambda_0 = 0$ 

Requirement (4):  $y_1 = x_1$ 

$$\lambda_t = \frac{1 + \sqrt{1 + 4\lambda_{t-1}^2}}{2} \implies \lambda_t \ge \frac{t+1}{2} \Rightarrow \delta_T \le \frac{L \|\mathbf{x}_1 - \mathbf{x}^\star\|^2}{2\lambda_{T-1}^2} \le \frac{2L \|\mathbf{x}_1 - \mathbf{x}^\star\|^2}{T^2} = \mathcal{O}\left(\frac{1}{T^2}\right) \quad \Box$$

## Polyak's Momentum v.s. Nesterov's AGD

Polyak's Momentum:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \underbrace{\eta \nabla f(\mathbf{x}_t)}_{\text{GD}} + \underbrace{\beta(\mathbf{x}_t - \mathbf{x}_{t-1})}_{\text{momentum}}$$

• Nesterov's AGD:

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \eta \nabla f(\mathbf{y}_t)$$
$$\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \underline{\eta \nabla f(\mathbf{x}_t + \beta(\mathbf{x}_t - \mathbf{x}_{t-1}))} + \underline{\beta(\mathbf{x}_t - \mathbf{x}_{t-1})}$$

$$\mathbf{CD} \text{ (twisted)} \qquad \mathbf{momentum}$$

Main difference: separate the gradient calculation state and the momentum state.

## Comparison in Another view

• Nesterov's AGD:

$$\mathbf{x}_{t+1} = \underbrace{\mathbf{x}_t - \eta \nabla f(\mathbf{x}_t + \beta_{t-1}(\mathbf{x}_t - \mathbf{x}_{t-1}))}_{\text{GD Update}} + \underbrace{\beta_{t-1}(\mathbf{x}_t - \mathbf{x}_{t-1})}_{\text{momentum}}$$

can be also written as

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \beta_{t-1}(\mathbf{x}_t - \mathbf{x}_{t-1}) - \eta \nabla f(\mathbf{x}_t + \beta_{t-1}(\mathbf{x}_t - \mathbf{x}_{t-1}))$$

$$\mathbf{x}^+ \triangleq \mathbf{x} - \eta \nabla f(\mathbf{x}),$$
 (gradient step)

$$\mathbf{d}_t \triangleq \gamma \cdot (\mathbf{x}_t - \mathbf{x}_{t-1}).$$
 (momentum term)

[Cauchy, 1847] 
$$\mathbf{x}_{t+1} = \mathbf{x}_t^+$$
, (gradient descent),  
[Polyak, 1964]  $\mathbf{x}_{t+1} = \mathbf{x}_t^+ + \mathbf{d}_t$ , (momentum + gradient),  
[Nesterov, 1983]  $\mathbf{x}_{t+1} = (\mathbf{x}_t + \mathbf{d}_t)^+$ , (momentum + lookahead gradient).

# Smooth and Strongly Convex

**Theorem 4.** Let f be  $\sigma$ -strongly convex and L-smooth, then Nesterov's accelerated gradient descent:

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t), \quad \mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

satisfies

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{\sigma + L}{2} \|\mathbf{x}^* - \mathbf{y}_1\|^2 \exp\left(-\frac{T}{\sqrt{\kappa}}\right),$$

where  $\kappa \triangleq L/\sigma$  denotes the condition number.

core technique: estimate sequence (developed by Yurii Nesterov)

# Smooth and Strongly Convex

### Proof sketch

Core technique: construct an estimate sequence (developed by Yurii Nesterov)

$$\Phi_{1}(\mathbf{x}) \triangleq f(\mathbf{x}_{1}) + \frac{\sigma}{2} \|\mathbf{x} - \mathbf{x}_{1}\|^{2}$$

$$\Phi_{t+1}(\mathbf{x}) \triangleq (1 - \theta)\Phi_{t}(\mathbf{x}) + \theta \left( f(\mathbf{x}_{t}) + \langle \nabla f(\mathbf{x}_{t}), \mathbf{x} - \mathbf{x}_{t} \rangle + \frac{\sigma}{2} \|\mathbf{x} - \mathbf{x}_{t}\|^{2} \right)$$

The estimate sequence  $\{\Phi_t\}_{t=1}^T$  is required to satisfy some nice properties:

(i) 
$$\Phi_{t+1}(\mathbf{x}) - f(\mathbf{x}) \le (1 - \theta)^t (\Phi_1(\mathbf{x}) - f(\mathbf{x})) \Rightarrow \text{approximate } f \text{ well.}$$

(ii)  $f(\mathbf{x}_t) \leq \min_{\mathbf{x} \in \mathbb{R}^d} \Phi_t(\mathbf{x}) \Rightarrow$  useful when giving the convergence rate.

It can be proved that the above construction satisfies the two properties.

## Smooth and Strongly Convex

### Proof sketch

Core technique: construct an estimate sequence (developed by Yurii Nesterov)

$$\Phi_{1}(\mathbf{x}) \triangleq f(\mathbf{x}_{1}) + \frac{\sigma}{2} \|\mathbf{x} - \mathbf{x}_{1}\|^{2}$$

$$\Phi_{t+1}(\mathbf{x}) \triangleq (1 - \theta)\Phi_{t}(\mathbf{x}) + \theta \left( f(\mathbf{x}_{t}) + \langle \nabla f(\mathbf{x}_{t}), \mathbf{x} - \mathbf{x}_{t} \rangle + \frac{\sigma}{2} \|\mathbf{x} - \mathbf{x}_{t}\|^{2} \right)$$

$$f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star}) \stackrel{(ii)}{\leq} \min_{\mathbf{x} \in \mathbb{R}^{d}} \Phi_{t}(\mathbf{x}) - f(\mathbf{x}^{\star}) \leq \Phi_{t}(\mathbf{x}^{\star}) - f(\mathbf{x}^{\star}) \qquad \text{(by property (ii))}$$

$$\stackrel{(i)}{\leq} (1 - \theta)^{t} (\Phi_{1}(\mathbf{x}^{\star}) - f(\mathbf{x}^{\star})) \qquad \text{(by property (i))}$$

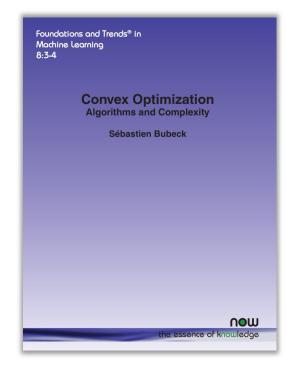
$$= (1 - \theta)^{t} \left( f(\mathbf{x}_{1}) + \frac{\sigma}{2} \|\mathbf{x}^{\star} - \mathbf{x}_{1}\|^{2} - f(\mathbf{x}^{\star}) \right) \qquad \text{(definition of } \Phi_{1})$$

$$\lesssim (\sigma + L) \|\mathbf{x}^{\star} - \mathbf{x}_{1}\|^{2} \exp(-\theta t) \qquad \text{(smoothness)}$$

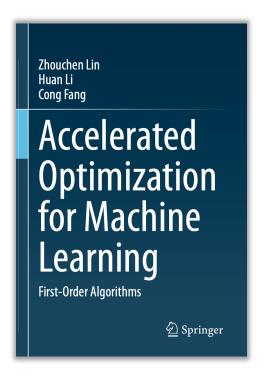
## Estimate Sequence

• Admittedly, how to construct estimate sequence is highly *tricky* 

References:



Chapter 3.7



Chapter 2.1



M. Baes, Estimate sequence methods: extensions and approximations. Technical report, ETH, Zürich (2009)

## More Explanations for Nesterov's AGD

- Ordinary Differentiable Equations
  - Su, W., Boyd, S., & Candes, E. A differential equation for modeling Nesterov's accelerated gradient method: theory and insights. *NIPS* 2014.
- Variational Analysis/Mirror Prox
  - Wibisono, A., Wilson, A. C., & Jordan, M. I. A variational perspective on accelerated methods in optimization. *PNAS* 2016, 113(47), E7351-E7358.
  - Guanghui Lan. (2020). First-order and Stochastic Optimization Methods for Machine Learning. Springer. Section 3.3.
- Linear Coupling of GD and MD
  - Allen-Zhu, Z., & Orecchia, L. Linear coupling: An ultimate unification of gradient and mirror descent. *ITCS* 2017.
  - Cutkosky A. Chapter 14 Momentum & Chapter 15 Acceleration. *Lecture Notes for EC525: Optimization for Machine Learning*, 2022.

## More Explanations for Acceleration

- Online Learning/Game with Suitable Optimism
  - Wang, Jun-Kun, and Jacob D. Abernethy. Acceleration through optimistic no-regret dynamics. *NeurIPS 2018*.
  - Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration. *ICML* 2019.
  - Kavis, A., Levy, K. Y., Bach, F., & Cevher, V. UnixGrad: A universal, adaptive algorithm with optimal guarantees for constrained optimization. *NeurIPS* 2019.
  - Yuheng Zhao, Yu-Hu Yan, Kfir Yehuda Levy, Peng Zhao. Gradient-Variation Online Adaptivity for Accelerated Optimization with Hölder Smoothness. *NeurIPS* 2025.
  - Yu-Hu Yan, Peng Zhao, and Zhi-Hua Zhou. Optimistic Online-to-Batch Conversions for Accelerated Convergence and Universality. *NeurIPS* 2025.

## History Bits

Nesterov's four ideas (three acceleration methods):

- Y. Nesterov (1983), A method for solving a convex programming problem with convergence rate  $O(1/k^2)$
- Y. Nesterov (1988), On an approach to the construction of optimal methods of minimization of smooth convex functions
- Y. Nesterov (2005), Smooth minimization of non-smooth functions
- Y. Nesterov (2007), Gradient methods for minimizing composite objective function



Yurii Nesterov 1956 – UCLouvain, Belgium

# Nesterov, Y. (1983), A method of solving a convex programming problem with convergence rate $O(1/k^2)$ , Soviet Mathematics Doklady 27(2), 372–376.

Докл. Акад. Наук СССР Том 269 (1983), № 3

### A METHOD OF SOLVING A CONVEX PROGRAMMING PRI WITH CONVERGENCE RATE O

UDC 51

YU. E. NESTEROV

1. In this note we propose a method of solving a convertible the majority of convex programming this method constructs a minimizing sequence of points (a This property allows us to reduce the amount of computation At the same time, it is possible to obtain an estimate of computation for the class of problems under consideration (see

**2.** Consider first the problem of unconstrained minimizati We will assume that f(x) belongs to the class  $C^{1,1}(E)$ , i.e. L > 0 such that for all  $x, y \in E$ 

(1) 
$$||f'(x) - f'(y)|| \le L||x - y||.$$

From (1) it follows that for all  $x, y \in E$ 

(2) 
$$f(y) \le f(x) + \langle f'(x), y - x \rangle + 0.5L$$
  
To solve the problem  $\min\{f(x) | x \in E\}$  with a nonempty

To solve the problem  $\min\{f(x)|x \in E\}$  with a nonempthe following method.

0) Select a point  $y_0 \in E$ . Put

(3) 
$$k = 0$$
,  $a_0 = 1$ ,  $x_{-1} = y_0$ ,  $\alpha_{-1} = |y_0 - z|/|$  where  $z$  is an arbitrary point in  $E$ ,  $z \neq y_0$  and  $f'(z) \neq f'(y_0)$ .

1) kth iteration. a) Calculate the smallest index  $i > 0$  for

(4) 
$$f(y_k) - f(y_k - 2^{-i}\alpha_{k-1}f'(y_k)) \ge 2^{-i-1}\alpha_{k-1}$$
  
b) Put

(5) 
$$\alpha_{k} = 2^{-i}\alpha_{k-1}, \quad x_{k} = y_{k} - \alpha_{k}f'(y_{k}),$$

$$a_{k+1} = \left(1 + \sqrt{4a_{k}^{2} + 1}\right)/2,$$

$$y_{k+1} = x_{k} + (a_{k} - 1)(x_{k} - x_{k-1})/4$$

The way in which the one-dimensional search (4) is halted [2]. The difference is only that in (4) the subdivision in the with  $\alpha_{k-1}$  (and not with 1 as in [2]). In view of this (see the p sequence  $\{x_k\}_0^\infty$  is constructed by method (3)–(5), no more sions will be made. The recalculation of the points  $y_i$  in (5) i

1980 Mathematics Subject Classification. Primary 90C25.

Let us also remark that method (3)–(5) does not guarathe sequences  $\{x_k\}_0^{\infty}$  and  $\{y_k\}_0^{\infty}$ .

THEOREM 1. Let f(x) be a convex function in C sequence  $\{x_k\}_0^\infty$  is constructed by method (3)–(5), then 1) For any  $k \ge 0$ ;

(6) 
$$f(x_k) - f^* \le C/(k - k)$$
  
where  $C = 4L||y_0 - x^*||^2$  and  $f^* = f(x^*)$ ,  $x^* \in X^*$ .  
2) In order to achieve accuracy  $\varepsilon$  with respect to the  $f$ 

a) to compute the gradient of the objective function no b) to evaluate the objective function no more than NF

Here and in what follows,  $](\cdot)[$  is the integer part of Proof. Let  $y_k(\alpha) = y_k - \alpha f'(y_k)$ . From (2) we obta

$$f(y_k) - f(y_k(\alpha)) \ge 0.5\alpha(2 - \alpha)$$

Consequently, as soon as  $2^{-i}\alpha_{k-1}$  becomes less than and  $\alpha_k$  will not be further decreased. Thus  $\alpha_k \ge 0.5L^-$  Let  $p_k = (a_k - 1)(x_{k-1} - x_k)$ . Then  $p_{k+1} - x_k$  Consequently.

$$\|p_{k+1} - x_{k+1} + x^*\|^2 = \|p_k - x_k + x^*\|^2 + 2(a_{k+1} + 2a_{k+1}\alpha_{k+1} \langle f'(y_{k+1}), x \rangle)$$

Using inequality (4) and the convexity of f(x), we o

$$\langle f'(y_{k+1}), y_{k+1} - x^* \rangle \ge f(x_{k+1}) - f^*$$
  
 $0.5\alpha_{k+1} ||f'(y_{k+1})||^2 \le f(y_{k+1}) - f(x_{k+1}) - f(x_{k+1}) - f(x_{k+1}) - f(x_{k+1}) - f(x_{k+1}) \le f(y_{k+1}) - f(x_{k+1}) - f(x_{k+1}) - f(x_{k+1}) - f(x_{k+1}) - f(x_{k+1}) - f(x_{k+1}) = f(x_{k+1}) - f(x_{k+1})$ 

We substitute these two inequalities into the preceding

$$\begin{split} \|p_{k+1} - x_{k+1} + x^*\|^2 - \|p_k - x_k + x^*\|^2 &\leq (a_k - 2a_{k+1}a_{k+1}) (f(x_{k+1} - f^*) + (a_{k+1}^2 - a_{k+1} - a_{k+1}) \\ &\leq -2a_{k+1}a_{k+1} (f(x_{k+1}) - f^*) + 2(a_{k+1}^2 - 2a_{k+1}a_{k+1}^2) (f(x_k - f^*) - 2$$

Thus

$$\begin{split} & 2\alpha_{k+1}a_{k+1}^2(f(x_{k+1}) - f^*) \leq 2\alpha_{k+1}a_{k+1}^2(f(x_{k+1}) - f^*) \\ & \leq 2\alpha_ka_k(f(x_k) - f^*) + \|p_k - x_k + x^*\|^2 \\ & \leq 2\alpha_0a_0^2(f(x_0) - f^*) + \|p_0 - x_0 + x^*\|^2 \leq \|y_0 - f^*\|^2 \end{split}$$

It remains to observe that  $a_{k+1} \ge a_k + 0.5 \ge 1 + 0.5$ . It follows from the estimate of the convergence rat method (3)–(5) needs to achieve accuracy  $\varepsilon$  will be neach iteration, one gradient and at least two values of be calculated. Let us remark, however, that to each addit function corresponds a halving of  $\alpha_k$ . Therefore the total not exceed  $\lfloor \log_2(2L\alpha_{\perp 1})\rfloor + 1$ . This completes the proof of

If the Lipschitz constant L is known for the gradient of can take  $\alpha_k \equiv L^{-1}$  in the method (3)–(5) for any  $k \ge 0$ . In to hold, and therefore Theorem 1 remains valid  $\|\|y_0 - x^*\|/2L/\varepsilon\|$  —1 and NF = 0.

To conclude this section we will show how one may me the problem of minimizing a strictly convex function.

Assume that  $f(x) - f^* \ge 0.5m||x - x^*||^2$  for all  $x \in A$  constant m is known.

We introduce the following halting rule in the method (c) We stop when

(7) 
$$k \ge 2\sqrt{2/(m\alpha_k)} - 2.$$

Suppose that the halting has occurred in the Nth step. (3)–(5), one has  $N \le |4\sqrt{L/m}| - 1$ . At the same time,

$$f(x_N) - f^* \le \frac{2||y_0 - x^*||^2}{\alpha_N(N+2)^2} \le 0.25m||y_0 - x^*||$$

After the point  $x_N$  has been obtained, it is necessary begin calculating, by the method (3)–(5), (7), from the point

As a result we obtain that after each  $]4\sqrt{L/m}[-1]$  ite to the function decreases by a factor of 2. Thus the n cannot be improved (up to a dimensionless constant) ame class of strictly convex functions in  $C^{1,1}(E)$  (see [1]).

3. Consider the following extremal problem:

(8) 
$$\min \left\{ F(\bar{f}(x)) \mid x \in Q \right\}$$

where Q is a convex closed set in E, F(u), with  $u \in R^m$ , i positive homogeneous of degree one, and  $\tilde{f}(x) = (\tilde{f}_1(x) \text{ continuously differentiable functions on } E$ . The set X assumed to be nonempty. In addition to this, we will a functions  $\{F(\cdot), \tilde{f}(\cdot)\}$  has the following property:

(\*) If there exists a vector  $\lambda \in \partial F(0)$  such that  $\lambda^{(k)} < 0$ , The notation  $\partial F(0)$  means the subdifferential of the fu As is well known, the identity  $F(u) \equiv \max\{\langle \lambda, u \rangle | \lambda$ tions that are positive homogeneous of degree one. The the convexity of the function  $F(\bar{f}(x))$  on all of E.

Problem (8) can be written in minimax form:

(9) 
$$\min\{\max\{\langle \lambda, \bar{f}(x)\rangle | \lambda \in \partial F(0)\}\}$$

One can show that the fact that the set  $X^*$  is nonempthe existence of a saddle point  $(\lambda^*, x^*)$  for problem (9). of problem (9) can be written as  $\Omega^* = \Lambda^* \times X^*$ , where

$$\Lambda^* = \operatorname{Arg\,max}\{\Psi(\lambda) \mid \lambda \in \partial F(0)\}, \qquad \Psi(\lambda) =$$

374

The problem

 $\max\{\Psi(\lambda) \mid \lambda \in \partial F(0) \cap \operatorname{dom}\Psi($ 

will be called the problem dual to (8).

Suppose the functions  $f_k(x)$ , k = 1,...,m, in problem (8 with constants  $L^{(k)} \ge 0$ . Let  $\overline{L} = (L^{(1)},...,L^{(m)})$ . Consider the function

$$\Phi(y, A, z) = F(\hat{f}(y, z)) + 0.5A||y|$$

where

$$\bar{f}(y,z) = (f^{(1)}(y,z), \dots, f^{(m)}(y,x)), 
f^{(k)}(y,z) = f_k(y) + \langle f'(y), z - y \rangle,$$

and A is a positive constant. Let

$$\Phi^*(y, A) = \min\{\Phi(y, A, z) | z \in Q\}, \quad T(y, A) = \text{ar}$$

Observe that the mapping  $y \to T(y,a)$  is a natural generaliz "gradient" mapping introduced in [1] in connection with th minimizing functions of the form  $\max_{1 \le k \le m} f_k(x)$ . For the n as for the "gradient" mapping of [1]) we have

(10) 
$$\Phi^*(y, A) + A\langle y - T(y, A), x - y \rangle + 0.5A||y - T||$$

for all 
$$x \in Q$$
,  $y \in E$  and  $A \ge 0$ , and if  $A \ge F(L)$ , then 
$$\Phi^*(y, A) \ge F(\tilde{f}(T(v, A))).$$

To solve problem (8) we propose the following method. 0) Select a point  $y_0 \in E$ . Put

(11) 
$$k = 0, \quad a_0 = 1, \quad x_{-1} = y_0, \quad A_{-1} = y_0$$
 where  $\overline{L}_0 = (L_0^{(1)}, \dots, L_0^{(m)}), \quad L_0^{(k)} = \|f_k'(y_0) - f_k'(z)\|/\|y_0 - z_0\|\|F\|_{\infty} + \|f_k(y_0) - f_k'(z)\|/\|y_0 -$ 

1) kth iteration. a) Calculate the smallest index  $i \ge 0$  for w

(12) 
$$\Phi^*(y_k, 2A_{k-1}) \ge F(\tilde{f}(T(y_k, 2A_{k-1})))$$
  
b) Put  $A_k = 2A_{k-1}, x_k = T(y_k, A_k)$  and

$$a_{k+1} = \left(1 + \sqrt{4a_k^2 + 1}\right)/2,$$

(13) 
$$a_{k+1} = \left(1 + \sqrt{4a_k^2 + 1}\right)/2,$$
$$y_{k+1} = x_k + (a_k - 1)(x_k - x_{k-1})/4$$

It is not hard to see that the method (3)–(5) is simply method (11)–(13) for the unconstrained minimization problem and Q = E in (8)).

Theorem 2. If the sequence  $\{x_k\}_0^{\infty}$  is constructed by method assertions are true:

1) For any  $k \ge 0$ 

$$F(\bar{f}(x_k)) - F(\bar{f}(x^*)) \le C_1 / (k + 1)$$

where  $C_1 = 4F(\bar{L})||y_0 - x^*||^2, x^* \in X^*$ .

2) To obtain accuracy  $\varepsilon$  with respect to the functional, one needs

a) to solve an auxiliary problem 
$$\min\{\Phi(y_k,A,x)|x\in Q\}$$
 no more than

times

b) to evaluate the collection of gradients  $f_1'(y), \ldots, f_m'(y)$  no more than ] $\frac{1}{2}C_1/\epsilon$  [ times, and  $\epsilon$ ) to evaluate the vector-valued function  $\tilde{f}(x)$  at most

 $\sqrt{C_1/\varepsilon} [+] \max \{ \log_2(F(\bar{L})/A_{-1}), 0 \} [$ 

$$2]\sqrt{C_1/\epsilon}[+] \max\{\log_2(F(L)/A_{-1}), 0\}[$$

time

Theorem 2 is proved in essentially the same way as Theorem 1. It is only necessary to use (10) instead of (2), while the analogue of  $\alpha_k f'(y_k)$  will be the vector  $y_k - T(y_k, A_k)$ , and the analogue of  $\alpha_k$  the values of  $A_k^{-1}$ .

Just as in the method (3)–(5), in the method (11)–(13) one can take into account information about the constant  $F(\bar{L})$  and the parameter of strict convexity of the function  $F(\bar{f}(x)) - m$  (for this, of course, we must have  $y_0 \in Q$ ).

In conclusion let us mention two important special cases of problem (8) in which the auxiliary problem  $\min\{\Phi(v_{\ell}, A, x) | x \in Q\}$  turns out to be rather simple.

a) Minimization of a smooth function on a simple set. By a simple set we understand a set for which the projection operator can be written in explicit form. In this case m = 1 and F(y) = y in problem (8), and

$$\Phi^*(y,A) = f(y) - 0.5A^{-1} \|f'(y)\|^2 + 0.5A \|T(y,A) - y + A^{-1}f'(y)\|^2,$$

in the method (11)-(13), where

$$T(y, A) = \arg\min\{\|y - A^{-1}f'(y) - z\| | z \in Q\}.$$

b) Unconstrainted minimization (in problem (8),  $Q \equiv E$ ). In this case the auxiliary problem  $\min\{\Phi(y,A,x)|x\in E\}$  is equivalent to the following dual problem:

(14) 
$$\max \left\{ -0.5A^{-1} \left\| \sum_{k=1}^{m} \lambda^{(k)} f_k^{(k)}(y) \right\|^2 + \sum_{k=1}^{m} \lambda^{(k)} f_k(y) \mid (\lambda^{(1)}, \lambda^{(2)}, \dots, m^{(m)}) \in \partial F(0) \right\}.$$

Here

$$T(y, A) = y - A^{-1} \sum_{k=0}^{m} \lambda^{(k)}(y) f'_{k}(y),$$

where the  $\lambda^{(k)}(y)$ , k = 1, ..., m, remark that the set  $\partial F(0)$  is ususuch cases problem (14) is the statement of the author expresses his since

Received 19/JULY/82

stimulated his interest in the questions considere Central Economico-Mathematical Institute

Academy of Sciences of the USSR

Received 19/JULY/82

### BIBLIOGRAPHY

 A. S. Nemirovskii and D. B. Yudin, Complexity of problems and efficiency of optimization methods, "Nauka" Moscow, 1979. (Russian)

B. N. Pshenichnyi and Yu. M. Danilin, Numerical methods in extremal problems, "Nauka", Moscow, 1975;
 French transl., "Mir", Moscow, 1977.

Translated by A. ROSA

372

# Nesterov, Y. (1983), A method of solving a convex programming problem with convergence rate $O(1/k^2)$ , Soviet Mathematics Doklady 27(2), 372–376.

УДК 51

#### ю.е. нестеров

### МЕТОД РЕШЕНИЯ ЗАДАЧИ ВЫПУКЛОГО ПРОІ СО СКОРОСТЬЮ СХОДИМОСТИ O

(Представлено академиком Л.В. Канторовичем

- 1. В статье предлагается метод решения задачи вания в гильберговом пространстве E. В отличее от бол лого программирования, предлагавшихся ранее, этот ме шую последовательность точек  $\{x_k\}_{k=0}^\infty$ , которая не явл особенность позволяет свести к минимуму вычислител шаге. В то же время для такого метода удается получ сматриваемом классе задач оценку скорости сходимости (
- 2. Рассмотрим сначала задачу безусловной миним  $f(\mathbf{x})$ . Мы будем предполагать, что функция  $f(\mathbf{x})$  принад что существует константа L>0, для которой при вс неравенство
- (1)  $||f'(x)-f'(y)|| \le L||x-y||$ .

Из неравенства (1) следует, что при всех  $x, y \in E$ 

(2)  $f(y) \le f(x) + \langle f'(x), y - x \rangle + 0.5L \|y - x\|^2$ .

Для репнения задачи  $\min\{f(x)\mid x\in E\}$  с непусты  $X^*$  предлагается следующий метод.

Выбираем точку y<sub>0</sub> ∈ E. Полагаем

- (3) k = 0,  $a_0 = 1$ ,  $x_{-1} = y_0$ ,  $\alpha_{-1} = ||y_0 z|| / ||f'(y_0)||$
- где z любая точка из  $E, z \neq y_0$   $f'(z) \neq f'(y_0)$ . 1) k-я Итерания.
  - а) Вычисляем наименьший номер  $i \ge 0$ , для которого
- (4)  $f(y_k) f(y_k 2^{-i}\alpha_{k-1}f'(y_k)) \ge 2^{-i-1}\alpha_{k-1} \| f'(y_k) \|$ 6) Полагаем

$$\alpha_k = 2^{-i}\alpha_{k-1}, x_k = y_k - \alpha_k f'(y_k),$$

(5) 
$$a_{k+1} = (1 + \sqrt{4a_k^2 + 1})/2,$$
  
 $y_{k+1} = x_k + (a_k - 1)(x_k - x_{k-1})/a_{k+1}.$ 

Способ прерывания одномерного поиска (4) ан женному в [2]. Разница лиць в том, что в (4) дроблени изводится, начиная с  $\alpha_{k-1}$  (а не с единицы, как в [2]) тельство теоремы 1) при построении методом (3)—(5) п будет сделано не более  $O(\log_2 L)$  таких дроблений. Пересъвляется с помощью "овражного" шага. Отметим также, ч печивает монотонное убывание функции f(x) на посл $\|y_k\|_{k=0}^{k}$ .

Теорема 1. Пусть выпуклая функция  $f(x) \in$  последовательность  $\{x_k\}_{k=0}^{\infty}$  построена методом (3)—(5),

- для любого k ≥ 0
- (6)  $f(x_k) f^* \le C/(k+2)^2$ ,
- $ede C = 4L \|y_0 x^*\|^2$ ,  $f^* = f(x^*)$ ,  $x^* ∈ X^*$ ;
  - 2) для достижения точности є по функционалу необх
     а) вычислить градиент целевой функции не более NG
- б) вычислить значение целевой функции не +1  $\log_2(2L\alpha_{-1})[+1$  раз.

Здесь и далее  $](\cdot)$  [ — целая часть числа  $(\cdot)$ . Доказательство. Пусть  $y_k(\alpha) = y_k - \alpha f'(\cdot)$  получаем  $f(y_k) - f(y_k(\alpha)) \geqslant 0, 5\alpha(2-\alpha L) \|f'(y_k)\|^2$ . С  $2^{-l}\alpha_{k-1}$  станет меньше, чем  $L^{-1}$ , неравенство (4) выпол уменьшаться не будут. Таким образом,  $\alpha_k \geqslant 0, 5L^{-1}$  для все

Обозначим  $p_k = (a_k - 1)(x_{k-1} - x_k)$ . Тогда  $p_k + a_{k+1}\alpha_{k+1}f'(y_{k+1})$ . Спедовательно,  $\|p_{k+1} - x_{k+1} + x_$ 

Пользуясь неравенством (4) и выпуклостью функци  $\langle f'(y_{k+1}), y_{k+1} - x^* \rangle \geqslant f(x_{k+1}) - f^* + 0.5\alpha_{k+1} \| f'(y_{k+1}) \|^2 \le f(y_{k+1}) - f(x_{k+1}) \le f(x_k) - a_{k+1} \| f'(y_{k+1}) \| p_k \rangle.$ 

Подставим эти два неравенства в предыдущее равенс  $\|p_{k+1}-x_{k+1}+x^*\|^2-\|p_k-x_k+x^*\|^2\leqslant 2(a_{k+1}-1)^2-a_{k+1}\alpha_{k+1}(f(x_{k+1}-f^*)+(a_{k+1}^2-a_{k+1})\alpha_{k+1}^2\|f'(y_k)-a_{k+1}\alpha_{k+1}(f(x_{k+1}-f^*)+2(a_{k+1}^2-a_{k+1})\alpha_{k+1})^2-2a_{k+1}a_{k+1}(f(x_k)-f^*)-2a_{k+1}a_{k+1}^2(f(x_k)-f^*)\leqslant -2a_{k+1}a_{k+1}^2(f(x_{k+1})-f^*).$ 

### Таким образом,

$$\begin{aligned} & 2\alpha_{k+1}a_{k+1}^2(f(x_{k+1}) - f^*) \leqslant 2\alpha_{k+1}a_{k+1}^2(f(x_{k+1}) - f^*) \\ & + \|p_{k+1} - x_{k+1} + x^*\|^2 \leqslant 2\alpha_k a_k(f(x_k) - f^*) + \|p_k - f^*\|^2 \end{aligned}$$

$$\leqslant 2\alpha_0 a_0^2 (f(x_0) - f^*) + \|p_0 - x_0 + x^*\|^2 \leqslant \|y_0 - x^*\|^2$$
 Осталось заметить, что  $a_{k+1} \geqslant a_k + 0, 5 \geqslant 1 + 0, 5(k+1)$ .

Из оценки скорости сходимости (6) следует, что ч мое методу (3)—(5) для достижения точности е, не будет При этом на каждой итерации будет вычисляться один гр два значения целевой функции. Заметим, однако, что ка вычислению значения целевой функции соответствует у вдвое. Поэтому общее число таких вычислений не превз Теорема доказана.

Если для градиента целевой функции известна ко методе (3)—(5) можно положить  $\alpha_k \equiv L^{-1}$  при любом k венство (4) будет заведомо выполнено и поэтому утвер нутся верными при  $C = 2L \| y_0 - x^* \|^2$ ,  $NC = \| y_0 - x^* \| \sqrt{2}$ 

- В заключение этого раздела покажем, как мож (3)-(5) для решения задачи минимизации сильно выпукл Предположим, что для функции f(x) при всех  $x \in I$
- $f(x) f^* \ge 0.5m \|x x^*\|^2$ , где m > 0, и пусть константа n Введем в метод (3) (5) следующее правило преры в) Останавливаемся, если
- $(7) k \ge 2\sqrt{2/(m\alpha_k)} 2.$

Пусть прерывание произошло на N-м шаге. Так к  $\geqslant 0,5L^{-1}$  , то  $N\leqslant ]4\sqrt{L/m}[-1.$  В то же время

$$f(x_N) - f^* \le \frac{2\|y_0 - x^*\|^2}{\alpha_N (N+2)^2} \le 0.25m\|y_0 - x^*\|^2 \le 0$$

После того как получена точка  $x_N$ , необходимо о чать счет методом (3) –(5), (7) из точки  $x_N$  как из началы В результате получаем, что за каждые  $14\sqrt{L/m}$ 

- в результате получаем, что за каждые  $[4 \lor L/m]$  функции убывает вдвое. Таким образом, метод (3) (5) ется неулучшаемым (с точностью до безразмерной конс вого порядка на классе сильно выпуклых функций из  $C^{1_1}$  . З. Рассмотрим следующую экстремальную задачу:
- (8)  $\min\{F(\bar{f}(x)) | x \in Q\}$

где Q — выпуклое замкнутое множество из E, F(u), u є  $R^m$  положительно-однородная степени единица функция  $\ldots$ ,  $f_m(x)$ ) — вектор выпуклых непрерывно диффере Множество  $X^*$  решений задачи (8) всегда предполагает мы всегда будем предполагать, что система функций  $\{$  дующим свойством:

(\*) Если существует вектор  $\lambda \in \partial F(0)$  такой, чт нейная функция.

Через  $\partial F(0)$  в (\*) обозначен субдифференциал фун Как известно, для выпуклых положительно-одфункций справедливо тождество  $F(u) \equiv \max\{\langle \lambda, u \rangle |$  предположения (\*) следует выпуклость функции  $F(\overline{f}(x) - 3$ адачу (8) можно записать в минимаксной форме:

(9)  $\min\{\max\{\langle \lambda, \bar{f}(x)\rangle | \lambda \in \partial F(0)\} | x \in Q\}.$ 

Можно показать, что из непустоты множества  $X^*$  и пред ществование у задачи (9) седловой точки  $(\lambda^*, x^*)$ . Пог точек задачи (9) представимо в виде  $\Omega^* = \Lambda^* \times X^*$ , гл  $\in \partial F(0)\}$ ,  $\Psi(\lambda) = \min\{(\lambda, f(x)) \mid x \in Q\}$ . Задачу

$$\max \{\Psi(\lambda) | \lambda \in \partial F(0) \cap \operatorname{dom} \Psi(\cdot) \}.$$

мы будем называть з а д а че й, д в о й с т в е н н о й к ( Пусть в задаче (8) функции  $f_k(x)$ ,  $k = 1, 2, \dots$ ,  $C^{1,1}(E)$  с константами  $L^{(k)} \ge 0$ . Обозначим  $\bar{L} = (L^{(1)}, L^{\ell})$  Рассмотрим функцию  $\Phi(y, A, z) = F(\bar{f}(y, z)) + (f^{(\ell)}(y, z), f^{(\ell)}(y, z), \dots, f^{(m)}(y, z), f^{(k)}(y, z) = f_k(x)$ 

 $(y, z), (y, z), \dots, (y, z), (y, z), (y, z)$  — y, z —

. 174

Отметим, что отображение  $y \to T(y,A)$  является естес задачи (8) "градиентного" отображения, введенного в [1 методов минимизации функций вида  $\max_{k} f_k(x)$ . Для

(как и для "градиентного" отображения" из [1]) при вополняется неравенство

(10) 
$$\Phi^*(y, A) + A\langle y - T(y, A), x - y \rangle + 0.5A \| y - T(y, A) \|$$
  
причем если  $A \geqslant F(L)$ , то

$$\Phi^*(y,A) \geqslant F(\bar{f}(T(y,A))).$$

Для решения задачи (8) предлагается следующий м 0) Выбираем точку  $y_0 \in E$ . Полагаем

- (11) k = 0,  $a_0 = 1$ ,  $x_{-1} = y_0$ ,  $A_{-1} = F(\bar{L}_0)$ , right  $\bar{L}_0 = (L_0^{(1)}, L_0^{(2)}, \dots, L_0^{(m)})$ ,  $L_0^{(k)} = \|f_k'(y_0) f_k'(z)\|/1$  toka by  $E, z \neq y_0$ .
- 1) k-я Итерация. а) Вычисляем наименьший номер  $i \geqslant 0$ , для вывенство
- (12)  $\Phi^*(y_k, 2^i A_{k-1}) \ge F(\bar{f}(T(y_k, 2^i A_{k-1}))).$ 
  - б) Полагаем  $A_k = 2^i A_{k-1}$ ,  $x_k = T(y_k, A_k)$ ,

(13) 
$$a_{k+1} = (1 + \sqrt{4a_k^2 + 1})/2, \\ y_{k+1} = x_k + (a_k - 1) \cdot (x_k - x_{k-1})/a_{k+1}.$$

Нетрудно заметить, что метод (3)—(5) являетс записи метода (11)—(13) для задачи безусловной мини  $m=1,\ F(y)=y,\ Q=E)$ .

T е орем а 2. Если последовательность  $\{x_k\}_{k=0}^{\infty}$ 

- (13), то: 1) для любого  $k \ge 0$   $F(\bar{f}(x_k)) - F(\bar{f}(x^*))$
- а) решить вспомогательную задачу  $\min \{\Phi(y_k, ]\sqrt{C_1/\epsilon}[+] \max \{\log_2(F(\bar{L})/A_{-1}), 0\}[$  раз,
- б) вычислить набор градиентов  $f_1'(y), f_2'(y)$   $\sqrt{C_1/\epsilon}[pa3,$
- в) вычислить вектор-функцию  $\bar{f}(x)$  не более  $2]\sqrt{C_1}$  0}[ раз.
  Теорема 2 доказывается практически так же, как

только вместо неравенства (2) использовать неравенство вектора  $\alpha_k f'(y_k)$  будет вектор  $y_k - T(y_k, A_k)$ , а ана Точно так же, как и в методе (3)—(5), в методе

информацию о константе  $F(\bar{L})$  и параметре сильной выпул- m (для этого, правда, необходимо, чтобы  $y_0 \in Q$ ). В заключение отметим два важных частных случ

- вспомогательная задача  $\min\{\Phi(y_k,A,x)|\ x\in Q\}$ оказы а) Минимизация гладкой выпуклой функции на
- а) Минимизация гладкой выпуклой функции н простым множеством мы понимаем такое множество, д ектирования записывается в явном виде. В этом случае в

и в методе (11) - (13)

$$\Phi^*(y,A) = f(y) - 0.5A^{-1} \|f'(y)\|^2 + 0.5A \|T(y,A) - y + A^{-1}f'(y)\|^2,$$

- где  $T(y, A) = \operatorname{argmin} \{ \| y A^{-1} f'(y) z \| \| z \in Q \}.$
- б) Безусловная минимизация (в задаче (в)  $Q\equiv E$ ). В этом случае вспомогательная задача  $\min\{\Phi(y,A,x)\mid x\in E\}$  эквивалентна следующей двойственной задаче.

(14) 
$$\max \left\{ -0.5A^{-1} \left\| \sum_{k=1}^{m} \lambda^{(k)} f'_k(y) \right\|^2 + \sum_{k=1}^{m} \lambda^{(k)} f_k(y) | (\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(m)}) \in \partial F(0) \right\}.$$

При этом  $T(y, A) = y - A^{-1} \sum_{k=0}^{\infty} \chi(k)(y) f'(y) = po \chi(k)(y) k = 1.2$  шения задачи (14) при ф объчно задачоя простыми

ких случаях задача (14) - Автор искренне при лировали его интерес к расс Received 19/JULY/82

Центральный экономико-математический институт Академии наук СССР, Москва

19 VII 1982

#### ЛИТЕРАТУРА

 Немировский А.С., Юдин Д.Б. Спожность задач и эффективность методов оптимизации. М.: Наука, 1979.
 Пшеничный Б.Н., Данилин Ю.М. Численные методы в экстремальных запазах М. Наука, 1975.

УДК 515.1

МАТЕМАТИКА

### Е.И. НОЧКА

### к теории мероморфных кривых

(Представлено академиком В.С. Владимировым 18 V 1982)

- 1. Пусть задана мероморфная кривая, т.е. мероморфное отображение  $\widetilde{f}\colon \ \mathbb{C} \to \mathbb{C}\mathbf{P}^n.$
- и пусть голоморфное отображение

$$f: \ \mathbf{C} \to \mathbf{C}^{n+1}, \quad f = (f_1, f_2, \dots, f_{n+1}),$$

является редуцированным представлением кривой  $\tilde{f}$ . Характеристическую функцию  $\tilde{f}$  определим, следуя А. Картану [1]:

$$T(\widetilde{f}, r) = \frac{1}{2\pi} \int_{0}^{2\pi} \log|f(re^{i\gamma})|^2 d\gamma - \log|f(0)|^2.$$

Пусть A — гиперплоскость в  ${\bf CP}^n$  и a — единичный вектор такой, что равенство (w,a) = 0 (скобки обозначают эрмитово скалярное произведение) есть уравнение гиперплоскости A в одинородных координатах; обозначим  $f_A = (f,a)$ .

54

## History Bits

Polyak's Momentum, credit goes to Polyak, date back to 1960s

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.



**Boris T. Polyak** 1935-2023

Math. Program., Ser. B 91: 401-416 (2002)

Digital Object Identifier (DOI) 10.1007/s101070100258

B.T. Polyak

## History of mathematical programming in the USSR: analyzing the phenomenon\*

Received: January 29, 2001 / Accepted: May 17, 2001 Published online October 2, 2001 – © Springer-Verlag 2001

**Abstract**. I am not a historian; these are just reminiscences of a person involved in the development of optimization theory and methods in the former USSR. I realize that my point of view may be very personal; however, I am trying to present as broad and unbiased picture as I can.

## Part 3. Extension to Composite Optimization

Composite Optimization

• Proximal Gradient Method (PG)

Accelerated Proximal Gradient Method (APG)

Application to LASSO

Problem setup

$$\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq f(\mathbf{x}) + h(\mathbf{x})$$

where f is **smooth** (namely, gradient Lipschitz) while h is **not smooth**.

• The composite optimization problem is common in practice.

**Example 1.** The objective of *LASSO*: 
$$F(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}^{\top} X - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{1}$$
, where  $X = [\mathbf{x}_{1}, \dots, \mathbf{x}_{n}], \mathbf{y} = [y_{1}, \dots, y_{n}]^{\top}$ .

How to effectively leverage the (partial) smoothness to improve convergence?

## Recall Non-composite Optimization

Recall how we *invent* GD for unconstrained non-composite optimization.

## Idea: surrogate optimization

We aim to find a sequence of *local upper bounds*  $U_1, \dots, U_T$ , where the surrogate function  $U_t : \mathbb{R}^d \to \mathbb{R}$  may depend on  $\mathbf{x}_t$  such that

- (i)  $f(\mathbf{x}_t) = U_t(\mathbf{x}_t)$ ;
- (ii)  $f(\mathbf{x}) \leq U_t(\mathbf{x})$  holds for all  $\mathbf{x} \in \mathbb{R}^d$ ;
- (iii)  $U_t(\mathbf{x})$  should be simple enough to minimize.

 $\square$  Then, our proposed algorithm would be  $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}} U_t(\mathbf{x})$ 

## Recall Non-composite Optimization

• Consider  $\min_{\mathbf{x}} f(\mathbf{x})$ , and assume f is L-smooth.

By smoothness: 
$$f(\mathbf{x}) \leq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{x}_t||^2$$

$$\triangleq U_t(\mathbf{x}) \quad \text{surrogate objective}$$

 $\implies$  to minimize  $f(\mathbf{x})$ , it suffices to minimize the *surrogate* sequence  $\{U_t(\mathbf{x})\}_{t=1}^T$ .

Claim. GD for smooth functions can be equivalently represented by

$$\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg \, min}} \ U_t(\mathbf{x}) = \Pi_{\mathcal{X}} \left[ \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right],$$

where  $U_t(\mathbf{x}) \triangleq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{x}_t||^2$  is a quadratic upper bound of f at  $\mathbf{x}_t$ .

# Recall Non-composite Optimization

Claim. GD for smooth functions can be equivalently represented by

$$\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg\,min}} \ U_t(\mathbf{x}) = \Pi_{\mathcal{X}} \left[ \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right],$$

where  $U_t(\mathbf{x}) \triangleq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{x}_t||^2$  is a quadratic upper bound of f at  $\mathbf{x}_t$ .

## **Proof:**

$$\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg \, min}} \ U_t(\mathbf{x}) = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg \, min}} \ \left\{ \langle \nabla f(\mathbf{x}_t), \mathbf{x} \rangle + \frac{L}{2} \|\mathbf{x}\|^2 - L \langle \mathbf{x}, \mathbf{x}_t \rangle \right\}$$
 (remove irrelative terms)
$$= \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg \, min}} \ \left\{ \frac{L}{2} \left( -2 \left\langle \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t), \mathbf{x} \right\rangle + \|\mathbf{x}\|^2 \right) \right\}$$
 (rearrange)
$$= \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg \, min}} \ \frac{L}{2} \left\| \mathbf{x} - \left( \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right) \right\|^2 = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg \, min}} \ \left\| \mathbf{x} - \left( \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right) \right\| = \prod_{\mathcal{X}} \left[ \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right]$$

Problem setup

$$\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq f(\mathbf{x}) + h(\mathbf{x})$$

where f is **smooth** (namely, gradient Lipschitz) while h is **not smooth**.

## A natural idea for surrogate objective:

Following previous argument (for non-composite optimization), to minimize  $F \triangleq f + h$ , it's natural to optimize surrogate sequence  $\{U_t(\mathbf{x})\}_{t=1}^T$  defined as

$$U_t(\mathbf{x}) \triangleq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{x}_t||^2 + h(\mathbf{x})$$

By smoothness: 
$$f(\mathbf{x}) \leq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{x}_t||^2$$

$$\triangleq u_t(\mathbf{x})$$

surrogate objective

 $\implies$  to minimize  $F(\mathbf{x}) = f(\mathbf{x}) + h(\mathbf{x})$ , it suffices to minimize  $U_t(\mathbf{x}) \triangleq u_t(\mathbf{x}) + h(\mathbf{x})$ .

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} U_{t}(\mathbf{x}) = \underset{\mathbf{x}}{\operatorname{arg\,min}} \left\{ f(\mathbf{x}_{t}) + \langle \nabla f(\mathbf{x}_{t}), \mathbf{x} - \mathbf{x}_{t} \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}_{t}\|^{2} + h(\mathbf{x}) \right\} \\
= \underset{\mathbf{x}}{\operatorname{arg\,min}} \left\{ \langle \nabla f(\mathbf{x}_{t}), \mathbf{x} \rangle + \frac{L}{2} \|\mathbf{x}\|^{2} - L\langle \mathbf{x}, \mathbf{x}_{t} \rangle + h(\mathbf{x}) \right\} \\
= \underset{\mathbf{x}}{\operatorname{arg\,min}} \left\{ \frac{L}{2} \left( -2 \langle \mathbf{x}_{t} - \frac{\nabla f(\mathbf{x}_{t})}{L}, \mathbf{x} \rangle + \|\mathbf{x}\|^{2} \right) + h(\mathbf{x}) \right\}$$

By smoothness: 
$$f(\mathbf{x}) \leq f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{x}_t||^2$$

$$\triangleq u_t(\mathbf{x})$$

surrogate objective

 $\implies$  to minimize  $F(\mathbf{x}) = f(\mathbf{x}) + h(\mathbf{x})$ , it suffices to minimize  $U_t(\mathbf{x}) \triangleq u_t(\mathbf{x}) + h(\mathbf{x})$ .

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} U_t(\mathbf{x}) = \underset{\mathbf{x}}{\operatorname{arg\,min}} \left\{ \frac{L}{2} \left( -2 \left\langle \mathbf{x}_t - \frac{\nabla f(\mathbf{x}_t)}{L}, \mathbf{x} \right\rangle + \|\mathbf{x}\|^2 \right) + h(\mathbf{x}) \right\}$$
$$= \left[ \underset{\mathbf{x}}{\operatorname{arg\,min}} \left\{ \frac{L}{2} \left\| \mathbf{x} - \left( \mathbf{x}_t - \frac{\nabla f(\mathbf{x}_t)}{L} \right) \right\|^2 + h(\mathbf{x}) \right\} \right]$$

this will be abstracted as an operator, a subproblem to optimize

• Iteratively solve the surrogate optimization problem.

Deploying the following update rule:

$$\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \mathbb{R}^d}{\operatorname{arg\,min}} \ U_t(\mathbf{x}) = \underset{\mathbf{x} \in \mathbb{R}^d}{\operatorname{arg\,min}} \ \left\{ \frac{L}{2} \left\| \mathbf{x} - \left( \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right) \right\|^2 + h(\mathbf{x}) \right\}$$

**Definition 2** (proximal mapping). Given a function  $h : \mathbb{R}^d \to \mathbb{R}$ , the *proximal mapping* (or called *proximal operator*) of h over  $\mathbf{x}$  is the operator given by

$$\mathbf{prox}_h(\mathbf{x}) \triangleq \operatorname*{arg\,min}_{\mathbf{u} \in \mathbb{R}^d} \left\{ h(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \right\}.$$

### Proximal Gradient

**Definition 2** (proximal mapping). Given a function  $h : \mathbb{R}^d \to \mathbb{R}$ , the *proximal mapping* (or called *proximal operator*) of h on  $\mathbf{x}$  is the operator given by

$$\operatorname{\mathbf{prox}}_h(\mathbf{x}) \triangleq \operatorname*{arg\,min}_{\mathbf{u} \in \mathbb{R}^d} \left\{ h(\mathbf{u}) + \frac{1}{2} \|\mathbf{x} - \mathbf{u}\|^2 \right\}.$$

#### **Proximal Gradient Method**

$$\mathbf{x}_{t+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^d} \left\{ \frac{L}{2} \left\| \mathbf{x} - \left( \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right) \right\|^2 + h(\mathbf{x}) \right\} \triangleq \mathbf{prox}_{\frac{1}{L}h} \left( \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right) \right\}$$

An equivalent notation:  $\mathbf{x}_{t+1} = \mathcal{P}_L^h(\mathbf{x}_t) \triangleq \mathbf{prox}_{\frac{1}{L}h} \left( \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right)$ .

### Proximal Gradient

#### **Proximal Gradient Method**

$$\mathbf{x}_{t+1} = \mathcal{P}_{L}^{h}(\mathbf{x}_{t}) \triangleq \mathbf{prox}_{\frac{1}{L}h} \left( \mathbf{x}_{t} - \frac{1}{L} \nabla f(\mathbf{x}_{t}) \right)$$

$$= \underset{\mathbf{x} \in \mathbb{R}^{d}}{\operatorname{arg min}} \left\{ \frac{L}{2} \left\| \mathbf{x} - \left( \mathbf{x}_{t} - \frac{1}{L} \nabla f(\mathbf{x}_{t}) \right) \right\|^{2} + h(\mathbf{x}) \right\}.$$

- Condition to work:  $\mathcal{P}_L^h(\mathbf{x})$  should be easy to compute. For example, in LASSO  $h(\mathbf{x}) = \|\mathbf{x}\|_1$ , its  $\mathcal{P}_L^h$  has a closed form solution.
- Algorithmically, PG induces famous algorithms for solving LASSO problem, which are called **ISTA** (GD-type) and **FISTA** (Nesterov's AGD-type).

# Convergence of Proximal Gradient

#### Smooth Optimization

problem:  $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ 

assumption: f is L-smooth

GD: 
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t)$$

Convergence:  $f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \mathcal{O}\left(\frac{1}{T}\right)$ 

#### Smooth Composite Optimization

problem:  $\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq f(\mathbf{x}) + h(\mathbf{x})$ 

assumption: f is L-smooth, h not

PG: 
$$\mathbf{x}_{t+1} = \mathbf{prox}_{\frac{1}{L}h} \left( \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right)$$

Convergence:  $F(\mathbf{x}_T) - F(\mathbf{x}^*) \leq ?$ 

## Convergence of Proximal Gradient

**Theorem 5.** Suppose that f and h are convex and f is L-smooth. Setting the parameters properly, Proximal Gradient (PG) enjoys

$$F(\mathbf{x}_T) - F(\mathbf{x}^*) \le \frac{L \|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2(T-1)} = \mathcal{O}\left(\frac{1}{T}\right)$$

Proximal gradient can also achieve an  $\mathcal{O}(1/T)$  convergence rate, which is the *same* as the non-composite optimization counterpart.

The result can be further boosted to  $\mathcal{O}(\exp(-T/\kappa))$  when the function f is  $\sigma$ -strongly convex (where  $\kappa = L/\sigma$  is the condition number).

# Convergence of Proximal Gradient

• Generalized one-step improvement lemma on  $F \triangleq f + h$ 

**Lemma 7.** Suppose that f and h are convex and f is L-smooth. Let  $\mathbf{x}_{t+1} = \mathcal{P}_L^h(\mathbf{x}_t)$  and  $g(\mathbf{x}) \triangleq L(\mathbf{x} - \mathbf{x}_{t+1})$ . Then for any  $\mathbf{u} \in \mathcal{X}$ ,

$$F(\mathbf{x}_{t+1}) - F(\mathbf{u}) \le \langle g(\mathbf{x}_t), \mathbf{x}_t - \mathbf{u} \rangle - \frac{1}{2L} \|g(\mathbf{x}_t)\|^2.$$

Suppose the above lemma holds for a moment, we now prove the  $\mathcal{O}(1/T)$  convergence rate of **PG**.

# Proof of PG Convergence

#### **Proof:**

Setting  $\mathbf{u} = \mathbf{x}^*$  in Lemma 7:

**Lemma 7.** Suppose that f and h are convex and f is L-smooth. Let  $\mathbf{x}_{t+1} = \mathcal{P}_L^h(\mathbf{x}_t)$  and  $g(\mathbf{x}) \triangleq L(\mathbf{x} - \mathbf{x}_{t+1})$ . Then for any  $\mathbf{u} \in \mathcal{X}$ ,

$$F(\mathbf{x}_{t+1}) - F(\mathbf{u}) \le \langle g(\mathbf{x}_t), \mathbf{x}_t - \mathbf{u} \rangle - \frac{1}{2L} \|g(\mathbf{x}_t)\|^2.$$

$$F(\mathbf{x}_{t+1}) - F(\mathbf{x}^*) \le \langle g(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle - \frac{1}{2L} \|g(\mathbf{x}_t)\|^2$$

$$F(\mathbf{x}_{t+1}) - F(\mathbf{x}^*) \leq L\langle \mathbf{x}_t - \mathbf{x}_{t+1}, \mathbf{x}_t - \mathbf{x}^* \rangle - \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 \quad (g(\mathbf{x}_t) \triangleq L(\mathbf{x}_t - \mathbf{x}_{t+1}))$$

$$= \frac{L}{2} (2\langle \mathbf{x}_t - \mathbf{x}_{t+1}, \mathbf{x}_t - \mathbf{x}^* \rangle - \|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2)$$

$$= \frac{L}{2} (\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2) \quad (2\langle \mathbf{a}, \mathbf{b} \rangle - \|\mathbf{a}\|^2 = \|\mathbf{b}\|^2 - \|\mathbf{b} - \mathbf{a}\|^2)$$

## Proof of PG Convergence

#### **Proof:**

which already gives an  $\mathcal{O}(1/T)$  convergence rate of  $\bar{\mathbf{x}}_T = \frac{1}{T} \sum_{t=1}^T \mathbf{x}_t$ .

What we want:  $F(\mathbf{x}_T) - F(\mathbf{x}^*)$ 

*Next step:* analyzing  $F(\mathbf{x}_T) - \frac{1}{T-1} \sum_{t=1}^{T-1} F(\mathbf{x}_t)$ .

Setting  $\mathbf{u} = \mathbf{x}_t$  in Lemma 7:  $F(\mathbf{x}_{t+1}) - F(\mathbf{x}_t) \le -\frac{1}{2L} \|g(\mathbf{x}_t)\|^2 \le 0$ .

$$\Longrightarrow \sum_{t=1}^{T} t(F(\mathbf{x}_{t+1}) - F(\mathbf{x}_t)) \le 0$$

## Proof of PG Convergence

#### **Proof:**

What we want:  $F(\mathbf{x}_T) - F(\mathbf{x}^*) \Rightarrow \text{Next step:}$  analyzing  $F(\mathbf{x}_T) - \frac{1}{T-1} \sum_{t=1}^{T-1} F(\mathbf{x}_t)$ .

$$\sum_{t=1}^{T-1} t(F(\mathbf{x}_{t+1}) - F(\mathbf{x}_t)) = \sum_{t=1}^{T-1} t(F(\mathbf{x}_{t+1}) - F(\mathbf{x}_t)) + F(\mathbf{x}_t) - F(\mathbf{x}_t)$$

$$= \sum_{t=1}^{T-1} \left( tF(\mathbf{x}_{t+1}) - (t-1)F(\mathbf{x}_t) \right) - \sum_{t=1}^{T-1} F(\mathbf{x}_t) = (T-1)F(\mathbf{x}_T) - \sum_{t=1}^{T-1} F(\mathbf{x}_t) \le 0$$

#### What we have:

- 
$$F(\mathbf{x}_T) - \frac{1}{T-1} \sum_{t=1}^{T-1} F(\mathbf{x}_t) \le 0$$
  
-  $\frac{1}{T-1} \sum_{t=1}^{T-1} F(\mathbf{x}_t) - F(\mathbf{x}^*) \le \frac{L \|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2(T-1)}$   $\Longrightarrow F(\mathbf{x}_T) - F(\mathbf{x}^*) \le \frac{L \|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2(T-1)}$ 

# Proof of One-Step Improvement Lemma

**Lemma 7.** Suppose that f and h are convex and f is L-smooth. Let  $\mathbf{x}_{t+1} = \mathcal{P}_L^h(\mathbf{x}_t)$  and  $g(\mathbf{x}_t) \triangleq L(\mathbf{x}_t - \mathbf{x}_{t+1})$ . Then for any  $\mathbf{u} \in \mathcal{X}$ ,

$$F(\mathbf{x}_{t+1}) - F(\mathbf{u}) \le \langle g(\mathbf{x}_t), \mathbf{x}_t - \mathbf{u} \rangle - \frac{1}{2L} \|g(\mathbf{x}_t)\|^2.$$

**Proof:** What we have:  $F(\mathbf{x}) \leq U_t(\mathbf{x})$  for any  $\mathbf{x} \in \mathcal{X} \Rightarrow F(\mathbf{x}_{t+1}) - F(\mathbf{u}) \leq U_t(\mathbf{x}_{t+1}) - F(\mathbf{u})$  analyzing this quantity

$$\begin{cases} U_{t}(\mathbf{x}_{t+1}) = f(\mathbf{x}_{t}) + \langle \nabla f(\mathbf{x}_{t}), \mathbf{x}_{t+1} - \mathbf{x}_{t} \rangle + \frac{L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_{t}\|_{2}^{2} + h(\mathbf{x}_{t+1}) \\ F(\mathbf{u}) = f(\mathbf{u}) + h(\mathbf{u}) \geq f(\mathbf{x}_{t}) + \langle \nabla f(\mathbf{x}_{t}), \mathbf{u} - \mathbf{x}_{t} \rangle + h(\mathbf{x}_{t+1}) + \langle \nabla h(\mathbf{x}_{t+1}), \mathbf{u} - \mathbf{x}_{t+1} \rangle \text{ (convexity)} \end{cases}$$

$$\Longrightarrow U_{t}(\mathbf{x}_{t+1}) - F(\mathbf{u}) \leq \langle \nabla f(\mathbf{x}_{t}) + \nabla h(\mathbf{x}_{t+1}), \mathbf{x}_{t+1} - \mathbf{u} \rangle + \underbrace{\frac{L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_{t}\|_{2}^{2}}_{=\frac{1}{2L} \|g(\mathbf{x}_{t})\|^{2}} (g(\mathbf{x}_{t}) \triangleq L(\mathbf{x}_{t} - \mathbf{x}_{t+1}))$$

*Next step:* relate  $\nabla f(\mathbf{x}_t) + \nabla h(\mathbf{x}_{t+1})$  to  $g(\mathbf{x}_t)$ .

# Proof of One-Step Improvement Lemma

#### Proof:

What we have:  $F(\mathbf{x}) \leq U_t(\mathbf{x})$  for any  $\mathbf{x} \in \mathcal{X} \Rightarrow F(\mathbf{x}_{t+1}) - F(\mathbf{u}) \leq U_t(\mathbf{x}_{t+1}) - F(\mathbf{u})$  analyzing this quantity

$$\mathbf{x}_{t+1} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \left\{ \frac{h(\mathbf{x}) + \frac{L}{2} \left\| \mathbf{x} - \left( \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right) \right\|^2}{\triangleq H(\mathbf{x})} \right\} \begin{bmatrix} \\ by \ \textit{Fermat's} \end{bmatrix}$$

**Theorem 5** (Fermat's Optimality Condition). Let  $f : \mathbb{R}^d \to (-\infty, \infty]$  be a proper convex function. Then  $\mathbf{x}^* \in \operatorname{argmin}\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^d\}$ 

$$\mathbf{x}^* \in \operatorname{argmin}\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^d\}$$

if and only if

$$\mathbf{0} \in \partial f(\mathbf{x}^{\star}).$$

$$\mathbf{0} = \nabla H(\mathbf{x}_{t+1}) = \nabla h(\mathbf{x}_{t+1}) + L(\mathbf{x}_{t+1} - \mathbf{x}_t) + \nabla f(\mathbf{x}_t)$$

from Lecture 2

# Proof of One-Step Improvement Lemma

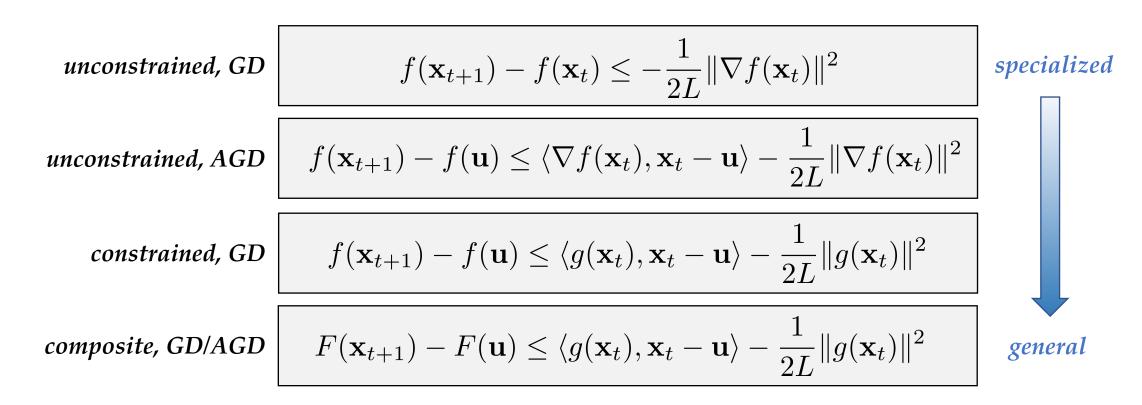
#### Proof:

What we have:  $F(\mathbf{x}) \leq U_t(\mathbf{x})$  for any  $\mathbf{x} \in \mathcal{X} \Rightarrow F(\mathbf{x}_{t+1}) - F(\mathbf{u}) \leq U_t(\mathbf{x}_{t+1}) - F(\mathbf{u})$ analyzing this quantity

$$\begin{cases} U_t(\mathbf{x}_{t+1}) - F(\mathbf{u}) \leq \langle \nabla f(\mathbf{x}_t) + \nabla h(\mathbf{x}_{t+1}), \mathbf{x}_{t+1} - \mathbf{u} \rangle + \frac{1}{2L} \|g(\mathbf{x}_t)\|^2 \\ \text{and the fact that } \nabla f(\mathbf{x}_t) + \nabla h(\mathbf{x}_{t+1}) = -L(\mathbf{x}_{t+1} - \mathbf{x}_t) = g(\mathbf{x}_t) \end{cases}$$

### One-Step Improvement Lemma

• A *fundamental* result for GD/AGD of smoothed optimization.



*Corollary:* the proof of **PG** can also be used to prove the O(1/T) convergence rate of GD.

### Accelerated Proximal Gradient Method

- A natural idea: Can we achieve AGD in composite optimization?
  - This induces the Accelerated Proximal Gradient (APG) method.

#### Nesterov's Accelerated GD

$$\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t), \quad \mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

#### **Accelerated Proximal Gradient**

$$\mathbf{x}_{t+1} = \mathbf{prox}_{\frac{1}{L}h} \left( \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t) \right), \quad \mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

The covergence rates can be similarly obtained. *Proofs are omitted.* 

### Accelerated Proximal Gradient Method

**Theorem 6.** Suppose that f and h are convex and f is L-smooth. Setting the parameters properly, APG enjoys

$$F(\mathbf{x}_T) - F(\mathbf{x}^*) \le \frac{2L}{(T+1)^2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

Suppose that h is convex and f is  $\sigma$ -strongly convex and L-smooth. Setting the parameters properly, APG enjoys

$$F(\mathbf{x}_T) - F(\mathbf{x}^*) \le \exp\left(-\frac{T}{\sqrt{\kappa}}\right) \left(F(\mathbf{x}_0) - F(\mathbf{x}^*) + \frac{\sigma}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2\right),$$

where  $\kappa \triangleq L/\sigma$  denotes the condition number.

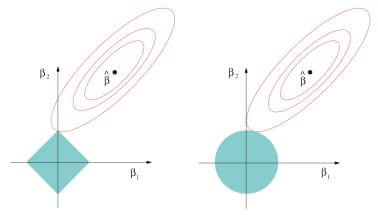
The convergence rates can be obtained same as those in non-composite optimization.

## Application to LASSO

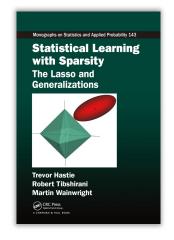
• LASSO:  $\ell_1$ -regularized least squares

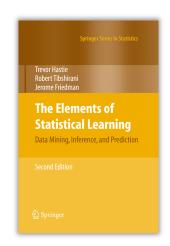
$$F(\mathbf{w}) = \frac{1}{2} \| \mathbf{w}^{\top} X - \mathbf{y} \|^2 + \lambda \| \mathbf{w} \|_1$$

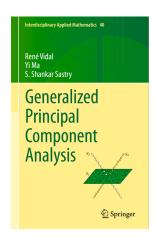
commonly encountered in *signal/image processing*.



**FIGURE 3.11.** Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions  $|\beta_1| + |\beta_2| \le t$  and  $\beta_1^2 + \beta_2^2 \le t^2$ , respectively, while the red ellipses are the contours of the least squares error function.







#### Regression shrinkage and selection via the lasso

R Tibshirani

Journal of the Royal Statistical Society. Series B (Methodological), 267-288

67964

1996

## Application to LASSO

• LASSO:  $\ell_1$ -regularized least squares

$$F(\mathbf{w}) = \frac{1}{2} \| \mathbf{w}^{\top} X - \mathbf{y} \|^2 + \lambda \| \mathbf{w} \|_1$$

commonly encountered in *signal/image processing*.

- composite optimization: first part is *smooth*, the other one is *non-smooth*
- ISTA (Iterative Shrinkage-Thresholding Algorithm): PG for LASSO
- FISTA (Fast ISTA): APG for LASSO

Closed-form solution: 
$$(x_{+} \triangleq \max\{x, 0\})$$
 
$$[\mathcal{P}_{L}^{h}(\mathbf{w}_{t})]_{i} = \operatorname{sign} \left( \left[ \mathbf{w}_{t} - \frac{1}{L} \nabla f(\mathbf{w}_{t}) \right]_{i} \right) \left( \left| \left[ \mathbf{w}_{t} - \frac{1}{L} \nabla f(\mathbf{w}_{t}) \right]_{i} \right| - \frac{\lambda}{L} \right)_{+}$$

### Closed-form Solution for LASSO

Optimization problem:

$$\mathcal{P}_L^h(\mathbf{w}_t) = \underset{\mathbf{w} \in \mathbb{R}^d}{\arg\min} \left\{ \frac{L}{2} \left\| \mathbf{w} - \mathbf{v}_t \right\|_2^2 + \lambda \|\mathbf{w}\|_1 \right\},\,$$

where  $\mathbf{v}_t = \mathbf{w}_t - \frac{1}{L} \nabla f(\mathbf{w}_t)$ , for  $t \in [T]$ .

The optimization can be performed for each coordinate separately:

$$\mathcal{P}_L^h(\mathbf{w}_t)_i = \underset{w_i \in \mathbb{R}}{\arg\min} \left\{ \frac{L}{2} \left\| w_i - v_{t,i} \right\|_2^2 + \lambda |w_i| \right\}, \quad i \in [d].$$

First-order optimality gives  $0 \in L(w_i - v_i) + \lambda \partial |w_i|$ , where

$$\partial |w_i| = \begin{cases} \{ sign(w_i) \}, & w_i \neq 0, \\ [-1, 1], & w_i = 0. \end{cases}$$

#### Closed-form Solution for LASSO

Consider the three cases.

(i) 
$$w_i > 0$$
. Then  $0 = L(w_i - v_{t,i}) + \lambda$ , so  $w_i = v_{t,i} - \frac{\lambda}{L}$ , which is feasible iff  $v_{t,i} > \frac{\lambda}{L}$ .

(ii) 
$$w_i < 0$$
. Then  $0 = L(w_i - v_{t,i}) - \lambda$ , so  $w_i = v_{t,i} + \frac{\lambda}{L}$ , feasible iff  $v_{t,i} < -\frac{\lambda}{L}$ .

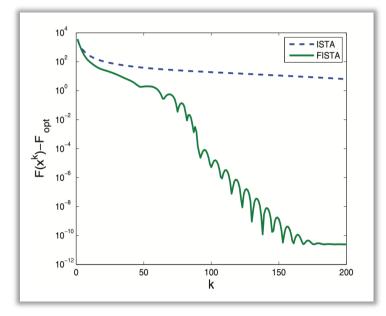
(iii) 
$$w_i = 0$$
. Then  $0 \in -Lv_{t,i} + \lambda[-1,1]$ , i.e.,  $|v_{t,i}| \leq \frac{\lambda}{L}$ .

Combining the three cases yields the closed form solution:

$$[\mathcal{P}_L^h(\mathbf{w}_t)]_i = \mathrm{sign}\,(v_{t,i}) \left(|v_{t,i}| - \frac{\lambda}{L}\right)_+, \quad i \in [d]$$
 where  $\mathbf{v}_t = \mathbf{w}_t - \frac{1}{L} \nabla f(\mathbf{w}_t)$ , for  $t \in [T]$ . 
$$(x_+ \triangleq \max\{x, 0\})$$

# Application to LASSO

Comparison of ISTA and FISTA



Comparison of ISTA and FISTA.

SIAM J. IMAGING SCIENCES

© 2009 Society for Industrial and Applied Mathematics

#### A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems\*

Amir Beck<sup>†</sup> and Marc Teboulle

Abstract. We consider the class of iterative shrinkage-thresholding algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods, which can be viewed as an extension of the classical gradient algorithm, is attractive due to its simplicity and thus is adequate for solving large-scale problems even with dense matrix data. However, such methods are also known to converge quite slowly. In this paper we present a new fast iterative shrinkage-thresholding algorithm (FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence which is proven to be significantly better, both theoretically and practically. Initial promising numerical results for wavelet-based image deblurring demonstrate the capabilities of FISTA which is shown to be faster than ISTA by several orders of magnitude.

Key words. iterative shrinkage-thresholding algorithm, deconvolution, linear inverse problem, least squares and l<sub>1</sub> regularization problems, optimal gradient method, global rate of convergence, two-step iterative algorithms, image deblurring

AMS subject classifications, 90C25, 90C06, 65F22

DOI: 10.1137/080716542

1. Introduction. Linear inverse problems arise in a wide range of applications such as astrophysics, signal and image processing, statistical inference, and optics, to name just a few. The interdisciplinary nature of inverse problems is evident through a vast literature which includes a large body of mathematical and algorithmic developments; see, for instance, the monograph [13] and the references therein.

A basic linear inverse problem leads us to study a discrete linear system of the form

Ax = b +

where  $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$  are known, w is an unknown noise (or perturbation) vector, and x is the "true" and unknown signal/image to be estimated. In image blurring problems, for example,  $b \in \mathbb{R}^m$  represents the blurred image, and  $x \in \mathbb{R}^n$  is the unknown true image, whose size is assumed to be the same as that of b (that is, m = n). Both b and x are formed by stacking the columns of their corresponding two-dimensional images. In these applications, the matrix A describes the blur operator, which in the case of spatially invariant blurs represents a two-dimensional convolution operator. The problem of estimating x from the observed blurred and noisy image b is called an image abburning problem.

"Received by the editors February 25, 2008; accepted for publication (in revised form) October 23, 2008; published electronically March 4, 2009. This research was partially supported by the Israel Science Foundation, ISF grant 489-06.

http://www.siam.org/journals/siims/2-1/71654.html

<sup>†</sup>Department of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa 32000, Israel (becka@ie.technion.ac.il.).

\*School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (teboulle@post.tau.ac.il.).

183

A fast iterative shrinkage-thresholding algorithm for linear inverse problems

15211

2009

A Beck, M Teboulle SIAM journal on imaging sciences 2 (1), 183-202

# Summary

Table 1: A summary of convergence rates of GD method for smooth optimization.

| Algorithm | Function Family                                                                                                                                                | Step Size                                                                                                                                                                                     | Output Sequence                           | Convergence Rate                                                    | Remark     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------|------------|
| GD -      | L-smooth and convex                                                                                                                                            | $\eta=rac{1}{L}$                                                                                                                                                                             | $ar{\mathbf{x}}_T 	riangleq \mathbf{x}_T$ | $\mathcal{O}(1/T)$                                                  | suboptimal |
|           | $L$ -smooth and $\sigma$ -strongly convex                                                                                                                      | $\eta=rac{2}{\sigma+L}$                                                                                                                                                                      | $ar{\mathbf{x}}_T 	riangleq \mathbf{x}_T$ | $\mathcal{O}\left(\exp\left(-\frac{T}{\kappa}\right)\right)$        | suboptimal |
| AGD       | L-smooth and convex                                                                                                                                            | $\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t), \ \mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t (\mathbf{x}_{t+1} - \mathbf{x}_t)$                                     | $ar{\mathbf{x}}_T 	riangleq \mathbf{x}_T$ | $\mathcal{O}(1/T^2)$                                                | optimal    |
|           | $L$ -smooth and $\sigma$ -strongly convex                                                                                                                      | $\mathbf{x}_{t+1} = \mathbf{y}_t - \frac{1}{L} \nabla f(\mathbf{y}_t), \ \mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} (\mathbf{x}_{t+1} - \mathbf{x}_t)$ | $ar{\mathbf{x}}_T 	riangleq \mathbf{x}_T$ | $\mathcal{O}\left(\exp\left(-\frac{T}{\sqrt{\kappa}}\right)\right)$ | optimal    |
| PG        | $F(\mathbf{x}) \triangleq f(\mathbf{x}) + h(\mathbf{x})$ $- \qquad f \text{ and } h \text{ are convex}$ $f \text{ is $L$-smooth but } h \text{ is not smooth}$ | $\mathbf{x}_{t+1} = \mathcal{P}_L^h(\mathbf{x}_t) \triangleq \mathbf{prox}_{\frac{1}{L}h} \left( \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t) \right)$                                   | $ar{\mathbf{x}}_T 	riangleq \mathbf{x}_T$ | $\mathcal{O}(1/T)$                                                  | suboptimal |
| APG       |                                                                                                                                                                | $\mathbf{x}_{t+1} = \mathcal{P}_L^h(\mathbf{y}_t), \ \mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t(\mathbf{x}_{t+1} - \mathbf{x}_t)$                                                          | $ar{\mathbf{x}}_T 	riangleq \mathbf{x}_T$ | $\mathcal{O}(1/T^2)$                                                | optimal    |

## Summary

