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Outline
• Online Optimization

• Online Convex Optimization

• Online-to-Batch Conversion
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Part 1. Online Optimization
• Fixed Optimization

• Interactive Optimization

• Online Optimization: Problem and Measure
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Optimization
• Originally, we focus on the optimization problem:

for simplicity, consider last-iterate convergence

Note that the objective function remains fixed throughout the entire 
optimization process as the iterative algorithm progresses.
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Interactive Optimization
• However, in many ML applications, the optimization objective 

does not stay fixed.

Optimization is no longer performed against a single, fixed target; 

instead, it involves interactions between an algorithm and an evolving objective.
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Example 1: Large-Scale ERM
• Consider the model training. Our goal is to minimize ERM

- Big data: facing millions of samples (𝑀𝑀 is very large).
- Computing full gradient is almost impossible (like due to 

limited memory of GPU facilities).
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Stochastic Optimization as Interaction
Stochastic optimization using mini-batch (by SGD/Adam or others)

Note that 𝑆𝑆𝑡𝑡 is still sampled 
from a fixed distribution 

(over all 𝑀𝑀 samples)
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Example 2: Learning with Data Streams
• In applications, data may arrive in a form of stream, which requires 

the model to make sequential predictions or even decisions.

A loss function

A classifier

• For example: spam filtering
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Sequential Predictions as Interaction
• We can formulate the sequential prediction problem as follows:

Note that the loss function 𝑓𝑓𝑡𝑡
is sampled from (unknown) 

distribution  𝒟𝒟⋆ or 𝒟𝒟𝑡𝑡
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Online Optimization: distribution-free
• Online optimization: an even general framework without 

distributional assumption.
• The function 𝑓𝑓𝑡𝑡 may be arbitrary, or even chosen adversarially

• The general interactive procedures of online optimization:
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A Game-theoretic Language
• Online (Interactive) optimization as a repeated game between 

- Player: essentially the learner, or you can think as  the “learning model“

- Environments: an abstraction of all factors evaluating the model.
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Fixed vs Interactive Optimization
• Fixed Optimization (Closed-world Learning)

• The training data are all available on hand
• The objective is fixed with no changes.

• Online Optimization (Open-ended Learning)
• This may be due to sampling issue, so connected to 

stochastic optimization
• Or since data are in the form of stream, so it is crucial 

for continual learning
• Even more complicated: decision this round may also 

influent the environment, decision-theoretic RL/control
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Performance Measure
• The best in hindsight 

Then the best single decision in hindsight would be:

which we obviously could not know in advance.

“If I had known all the outcomes ahead of time, I would have 
chosen differently — and I regret the extra loss I’ve accumulated.”

benchmark performance with the 
offline model (optimal in hindsight)

Regret: 
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Performance Measure

benchmark performance with the 
offline model (optimal in hindsight)

ALT’16

Hannan Consistency

We hope the regret be sub-linear dependence with 𝑇𝑇

•

worst-case-dynamic regret

general dynamic regret

suffer from overfitting issue

“online ensemble” framework
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Part 2. Online Convex Optimization
• Online Convex Optimization

• Problem Space

• Online Gradient Descent

• Lower Bound
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Is Online Optimization (provably) solvable?
• In general, the online optimization is too hard to solve.

A Trackable Case: Online Convex Optimization
requiring feasible domain and online functions to be convex
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Online Convex Optimization
• Requirements:

(1) feasible domain is a convex set

(2) online functions are convex
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Online Convex Optimization: Hardness
Clearly, curvature information influences:

• Convex vs Strongly convex? 

• Lipschitz vs Smooth?

There are other issues due to the interaction nature:
• Feedback: How much information can the learner access from environments?

• Environments: How powerful is the environment? 

Given that it can choose the loss function!
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Hardness: Different Feedback

on the feedback information:

less information

full information

horse racing

partial information

multi-armed bandits
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Hardness: Different Environments

less restricted 
but harder

oblivious adversary

examination interview

adaptive adversary
on the difficulty of environments:

- stochastic setting

- adversarial setting oblivious

adaptive 
(non-oblivious)



Lecture 5. Online Convex OptimizationAdvanced Optimization (Fall 2025) 21

Online Learning: Problem Space

Yevgeny Seldin. The Space of Online Learning Problems, ECML-PKDD, Porto, Portugal, 2015.

• Full-information setting:
• Online Convex Optimization
• Prediction with Expert Advice
• ...

• Partial-information setting:
• Multi-Armed Bandits
• Linear Bandits
• Parametric Bandits
• Bandit Convex Optimization
• ...
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Online Learning: Problem Space

Yevgeny Seldin. The Space of Online Learning Problems, ECML-PKDD, Porto, Portugal, 2015.

• Full-information setting:
• Online Convex Optimization
• Prediction with Expert Advice
• ...

• Partial-information setting:
• Multi-Armed Bandits
• Linear Bandits
• Parametric Bandits
• Bandit Convex Optimization
• ...

OCO
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OCO: Convex Functions
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Regret Minimization in OCO
• We focus on the G-Lipschitz functions

Essentially working on Lipschitz (online) optimization with a bounded feasible domain.

• The following is domain boundedness
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On the domain boundedness 

Francesco Orabona. A Modern Introduction to Online Learning. 2025 (Version 7) Chapter 5.
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Recall Lipschitz (offline) optimization

Can we extend the GD idea to 
online optimization?



Lecture 5. Online Convex OptimizationAdvanced Optimization (Fall 2025) 27

OCO: OGD Algorithm

Online Gradient Descent (OGD)

Actually, only gradient is required, so it’s also called gradient-feedback OCO model.
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Regret Analysis of OGD
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The First Gradient Descent Lemma

Proof:

(Pythagoras Theorem)

(GD)
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Proof for OGD Regret Bound
Proof: We use the first gradient descent lemma to analyze online gradient descent.
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Proof for OGD Regret Bound
Proof:
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OCO: Strongly Convex Functions
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Recall Lipschitz (offline) Optimization

Again, we extend it to online optimization.
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OGD for Strongly Convex Functions

Online Gradient Descent (OGD)
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OGD for Strongly Convex Functions
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OGD for Strongly Convex Functions
Proof: we start by extending the first GD lemma to strongly convex case.

Strongly convex case:

(rearranging)
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OGD for Strongly Convex Functions
Proof:
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Strongly Convex

Comparisons

Convex

OGD: 

Property: Property:

OGD: 
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Lower Bounds
• A natural question: whether previous regret can be improved?

• Lower bound argument:

minimax bound: smallest possible worst-case regret of any algorithm
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Lower Bounds

Proof Sketch.
Construct a hard environment:

• Binary classification, loss functions in each iteration are chosen at random

• The hardness comes from the compression of a sequence of 𝑇𝑇-round random bits 
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Comparison

Algo. Step 
size

Upper 
Bound

Lower 
Bound

Convex OGD

OGD

Jacob Abernethy, Peter L. Bartlett, Alexander 
Rakhlin, and Ambuj Tewari. Optimal 

strategies and minimax lower bounds for 
online convex games. In COLT, 2008.

Lower bound for strongly convex functions is more non-trivial.
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Part 3. Online-to-Batch Conversion
• Convex Functions

• Strongly Convex Functions
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Offline Optimization
• Consider offline optimization                with stochastic opt method

full gradient computation requires a pass of all data

stochastic method only uses a mini batch at each round
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Online-to-Batch Conversion
• Reducing offline optimization as an online optimization.

Offline function Online algorithm
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Proof: Using Jensen’s inequality, we have

(Jensen) (Convexity)

Online-to-Batch Conversion
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Stochastic Optimization
• Optimization Goal
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Understand SGD from Online Learning
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Stochastic Optimization
• Optimization Goal
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O2B Conversion for Strongly Convex 

retain strong convexity
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Weighted O2B Conversion
• To achieve the optimal rate for strongly convex optimization, 

we introduce the weighted Online-to-Batch Conversion.

Offline function Online algorithm
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Proof:

Weighted O2B Conversion
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O2B for Strongly Convex Functions 
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Proof:

O2B for Strongly Convex Functions 



Lecture 5. Online Convex OptimizationAdvanced Optimization (Fall 2025) 54

oblivious adversary

examination interview

adaptive adversary

More bits of OGD
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History: SGD
Robbins-Monro Method Kiefer-Wolfowitz Method

A Stochastic Approximation Method.
Herbert Robbins, Sutton Monro 
Ann. Math. Statist. 22(3): 400-407 (September, 1951).

Stochastic Estimation of the Maximum of a Regression Function 
Jack Kiefer, Jacob Wolfowitz 
Ann. Math. Statist. 23(3): 462-466 (September, 1952)

Herbert Ellis Robbins 
(1915 - 2001) Jacob Wolfowitz 

(1910 - 1981)

Jack Kiefer
(1924 - 1981)
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History: SGD

Herbert Ellis Robbins 
(1915 - 2001)
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History: Two-Player Zero-Sum Games

Nicolo Cesa-Bianchi, Online Learning and Online Convex Optimization. Tutorial at the Simons Institute. 2017.
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History: Prediction with Expert Advice

Volodimir G. Vovk. “Aggregating 
Strategies." COLT 1990: 371-383.

Nick Littlestone and Manfred K. Warmuth. 
"The Weighted Majority Algorithm." FOCS 1989: 256-261.

Volodimir G. Vovk
Royal Holloway, 

University of London

Manfred Warmuth

UC Santa Cruz
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Summary

Q & A
Thanks!
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