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Part 1. Online Optimization

* Fixed Optimization
* Interactive Optimization

* Online Optimization: Problem and Measure
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Optimization

* Originally, we focus on the optimization problem: migfl F(x)
S

Iterative algorithm (like GD) generates a sequence of iterates x; ..., xr,

aiming to ensure that F'(xr) — F'(x*) is small with respect to T’

for simplicity, consider last-iterate convergence

Foreachroundt=1,...,7T:

- Algorithm outputs a decision x; € X.

- Algorithm has information about F'(x;) and VF'(x;).

j> Note that the objective function remains fixed throughout the entire
optimization process as the iterative algorithm progresses.

Advanced Optimization (Fall 2025) Lecture 5. Online Convex Optimization



Interactive Optimization

* However, in many ML applications, the optimization objective
does not stay fixed.

Foreachroundt¢t=1,...,7T:
- Algorithm outputs a decision x; € X.
- A new loss function f; : X — R is revealed.

- Algorithm suffers the loss f;(x;).

Optimization is no longer performed against a single, fixed target;

instead, it involves interactions between an algorithm and an evolving objective.
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Example 1: Large-Scale ERM

* Consider the model training. Our goal is to minimize ERM
| M
Px) = 37 3tz

- Big data: facing millions of samples (M is very large).

- Computing full gradient is almost impossible (like due to
limited memory of GPU facilities).
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Stochastic Optimization as Interaction

Stochastic optimization using mini-batch (by SGD/Adam or others)

Note that S; is still sampled
| S | Z £(x; 2;) from a fixed distribution
b ies, (over all M samples)

- The optimization objective f; varies across iterations (due to chang-
ing mini-batches).

- This renders the optimization process interactive — the algorithm
continuously adapts in response to a new batch of samples.
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Example 2: Learning with Data Streams

* In applications, data may arrive in a form of stream, which requires
the model to make sequential predictions or even decisions.

* For example: spam filtering

-~ +
. d
A classifier + % _E R

An instance, feature ¢, € R?

Predict a label by x; ¢; = M

Receive the true label y;

A loss function
fi(x) = max (1 — yeX | &y, O)
Suffer f; (x;) and update x;
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Sequential Predictions as Interaction

* We can formulate the sequential prediction problem as follows:

At each step t:
- The learner outputs a prediction x;. Note that the loss function f;
. is sampled from (unknown)
- Then a new sample z; is revealed. distribution D, or D,
- The instantaneous loss is f;(x;) = £(x¢; 2¢).

- If data are stationary, we can view f; as sampled from a fixed distribution D,.

- Alternatively, if having non-stationarity, distribution D, may vary with ¢.
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Online Optimization: distribution-free

* Online optimization: an even general framework without
distributional assumption.

* The function f; may be arbitrary, or even chosen adversarially

* The general interactive procedures of online optimization:

Foreachround¢t=1,...,T":
- Learner gives a decision x; € X.

- Learner observes f; : X — R and suffers the loss f;(x;).
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A Game-theoretic Language

* Online (Interactive) optimization as a repeated game between
- Player: essentially the learner, or you can think as the “learning model”

- Environments: an abstraction of all factors evaluating the model.

Ateachroundt=1,2,---
- Player first picks a model x; € X.

- Simultaneously environments pick an online function f; : X — R.

- Player suffers loss f;(x:), observes some information about f; and up-
dates the model.
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Fixed vs Interactive Optimization

* Fixed Optimization (Closed-world Learning)

* The training data are all available on hand

 The objective is fixed with no changes.

* Online Optimization (Open-ended Learning)

* This may be due to sampling issue, so connected to
stochastic optimization

* Or since data are in the form of stream, so it is crucial
for continual learning

* Even more complicated: decision this round may also
influent the environment, decision-theoretic RL/control
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Performance Measure

* The best in hindsight

After T rounds, suppose we look back and imagine that we did know all {f;}7_;.

Then the best single decision in hindsight would be:

x* € arg min ZtT:l fi(x)
xXeX

which we obviously could not know in advance.

T
Regret: REGT = Z fi (Xt mm Z ft benchmark performance with the
— offline model (optimal in hindsight)

“If I had known all the outcomes ahead of time, | would have
chosen differently — and | regret the extra loss I've accumulated.”

Advanced Optimization (Fall 2025) Lecture 5. Online Convex Optimization 13



Performance Measure

* In online learning, we define regret as measure for {x;}/_;:

T T
_ : benchmark performance with the
REGT = E fi(x¢) — min g fi(x) . perf .
— xCX — offline model (optimal in hindsight)
, _ ALT'16
We hope the regret be sub-linear dependence with T Hannan Consistency in On-Line Learning
in Case of Unbounded Losses Under Partial
REGT O T Monitoring*:**
— U as — OO .
T Hannan Cons’Stency Chamy Allenberg!, Peter Auer?, Laszl6 Gyorfi3, and Gyérgy Ottucsak®
T
worst-case-dynamic regret REG7({x; }) E fr(x3) E +(Xy)  suffer from overfitting issue
T

general dynamic regret REGp({u;}) Z fe(x¢) Z fi(uy) “online ensemble” framework
t=1
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Part 2. Online Convex Optimization

* Online Convex Optimization
* Problem Space
* Online Gradient Descent

 Lower Bound
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Is Online Optimization (provably) solvable?

* In general, the online optimization is foo hard to solve.

Ateachroundt=1,2,---
- Player first picks a model(x; € X.

- Simultaneously environments pick an online function|f; : X — R.

- Player suffers loss f;(x:), observes some information about f; and up-
dates the model.

> ATrackable Case: Online Convex Optimization

requiring feasible domain and online functions to be convex
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Online Convex Optimization

* Requirements:

(1) feasible domain is a convex set

(2) online functions are convex

Ateachroundt=1,2,---
- Player first picks a model x; from a convex set X C R,

- Environments pick an online convex function f; : X — R.

dates the model.

- Player suffers loss f;(x;), observes some information about f; and up-
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Online Convex Optimization: Hardness

Clearly, curvature information influences:
* Convex vs Strongly convex?

* Lipschitz vs Smooth?

There are other issues due to the interaction nature:
* Feedback: How much information can the learner access from environments?

* Environments: How powerful is the environment?

Given that it can choose the loss function!
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Hardness: Different Feedback

Ateachroundt=1,2,---

- Player first picks a model x; from a convex set X C R,

- Environments pick an online convex function f; : X — R.

- Player suffers loss f;(x;), observes|some information about f;|and up-
dates the model.

on the feedback information:

, , , full information partial information
- full information: observe entire f; (or at 3

least gradient V f;(x:)) ?,%:] T 9%
- partial information (bandits): observe s soee ;g; seee
function value f;(x;) only less information horse racing multi-armed bandits
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Hardness: Different Environments

Ateachroundt=1,2,---

- Player first picks a model x; from a convex set X C R,

- Environments| pick an online convex function f; : X — R.

- Player suffers loss f;(x;), observes some information about f; and up-

dates the model.
on the difficulty of environments:
— oblivious adversary || adaptive adversary
- stochastic setting F . -
less restricted , re
ivi but harder N.%
- adversarial setting { oblivious ‘ﬁi* / : L 4 \
adaptive N examination interview

(non-oblivious)
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Online Learning: Problem Space

environment

* Full-information setting:

Adversarial _* *adversarial bandits * Online Convex Optlmlzatlon
expert advice * Prediction with Expert Advice
g * *stochastic bandits
feedback * Partial-information setting:
no state - . ) .
SR b * Multi-Armed Bandits

Linear Bandits

reinforcemen

Parametric Bandits

Bandit Convex Optimization

structure

Yevgeny Seldin. The Space of Online Learning Problems, ECML-PKDD, Porto, Portugal, 2015.
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Online Learning: Problem Space

environment

* Full-information setting:

*adversarial bandits * Online Convex Optlmlzatlon

adversarial

* Prediction with Expert Advice

*stochastic bandits

feedback * Partial-information setting:

e .‘__."E'gndit - * Multi-Armed Bandits

Linear Bandits

no state

reinforcemen

Parametric Bandits

Bandit Convex Optimization

structure

Yevgeny Seldin. The Space of Online Learning Problems, ECML-PKDD, Porto, Portugal, 2015.
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OCO: Convex Functions

Definition 2 (Convex Function). A function f : X — R is convex if for any
x,y € X,itholdsVa € [0,1], f((1 —a)x+ ay) < (1 — a) f(x) + af(y).

Equivalently, if f is differentiable, we have that Vx,y € X,

fly) > f(x) +Vf(x)' (y —x).

The feasible set X is closed and convex in Euclidean space, and

fi,..., fr are convex functions.
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Regret Minimization in OCO

* We focus on the G-Lipschitz functions

Assumption 1 (Bounded Gradient). The norm of the subgradients
is upper bounded by G, i.e., |V fi(x)|| < Gforallx € X and t € [T].

* The following is domain boundedness

Assumption 2 (Bounded Domain). The diameter of the feasible do-

main X is upper bounded by D, ie, Vx,y € X, ||[x —y| < D.

Essentially working on Lipschitz (online) optimization with a bounded feasible domain.
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On the domain boundedness

Theorem 5.1. Let V C R? be any non-empty bounded closed convex subset. Let D = sup, ,cy ||v — w||2 be the
diameter of V. Let A be any (possibly randomized) algorithm for OLO on V. Let T be any non-negative integer. Then,
there exists a sequence of vectors g, . .., g with ||g,||2 < L and u € V such that the regret of algorithm A satisfies

Regretr(u) = 3 (g @0) — Y (gou) = Y2V

Theorem 5.6. For T' € N suppose that there is an online convex optimization algorithm that guarantees regret at
most e against the null competitor on any sequence of T' linear and L-Lipschitz losses {; : R — R fort =1,...,T.
Let U > 0 be such that 1 < W ( ‘/Eigl’ ) < \/QT, then there exists a sequence of g, with ||g,||2 < L and a competitor

w € RY with ||ul|| = U, such that

Z(gt,azt —u) > Rr(U) :=ULVT Ser

t=1

T
2W (\/TUL) — 1| —2UL + e,

where W : R>og — R is the Lambert function.

Francesco Orabona. A Modern Introduction to Online Learning. 2025 (Version 7) Chapter 5.
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Recall Lipschitz (otfline) optimization

For G-Lipschitz optiminization with min, f(x), we use GD to

optimize it and obtain O (%) optimal rate.

Optimal Result with Known T° X¢p1 = Iy [Xt _ Utvf(Xt)]

Theorem 5. Under the same assumptions with Theorem 1, assume the feasible domain
X is bounded and convex with a diameter D > 0, that is, | x — y||» < D holds for any

x,y € X. Let {x;}]_, be the sequence generated by GD with step size Can we extend the GD |dea to
N online optimization?
GVT

Then
f(iT)—f*s%:O<%>, @

where X7 = arg ming, 7 f(x) or X £ 1 Zthl X¢.
X1 = Iy [x¢ — 7V f1(x4))]

Advance d Optimization (Fall 2025) Lecture 3. Gradient Descent Method 29
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OCO: OGD Algorithm

Online Gradient Descent (OGD)
Ateachroundt=1,2,---
1. the player first picks a model x; € &;
2. and simultaneously environments pick a convex online function f; : X — R;

3. the player suffers loss f; (x;), observes the information of f; and update the

model according to x; 1 = Iy [x; — 1,V fi(x4)].

This belongs to the full-information setting, so player can access the gradient V f;(x;).

Actually, only gradient is required, so it’s also called gradient-feedback OCO model.
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Regret Analysis of OGD

Theorem 3 (Regret bound for OGD). Under Assumption 1 (G-Lipschitz) and
Assumption 2 (D-bounded domain), online gradient descent (OGD) with step sizes
e = o for t € [T] guarantees:

T
REGr = th(xt mmet < gGD\/T = O(VT).
t=1
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The First Gradient Descent Lemma

Lemma 1. Suppose that f, is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x;}{_, be the sequence generated by the gradient
descent method. Then for any u € X and t > 0,

Ixes1 —afl® < e —ull® = 2 (fe(xe) — fe(w)) + 07 [V fe(oxe) 1.

Proof: |[xi11 — UHQ = [Ty [x¢ — m:V fir(xe)] — UHQ
< |lxe — 7V fe(xe) — uf|’
=[x, — ull” = 20 (V fe(xe), x¢ — 1) + 07 |V fir(xe) |
<l — ull” = 2ne(fe(xe) — fe(0) + 07 [V fr(xe) ||
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Proof for OGD Regret Bound

Proof: We use the first gradient descent lemma to analyze online gradient descent.

Lemma 1. Suppose that f, is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x;}]_, be the sequence generated by the gradient
descent method. Then for any u € X and t > 0,

Ixe+1 = ull* < [lxe —ull® = 200 (fe(xe) = fe(w)) + 07 [V f(xe) |12

By Lemma 1 and the gradient boundedness, we have

2 2
o xe —uall” = lIxs41 — ul

2(fe(x¢) — fr(u)) < ” + G
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Proof for OGD Regret Bound

Proof: By setting n; = L\[ (with ;- O) , summing over T":

1 Mt Me—1 i1
T /4 | T
< D? (— — ) + G* ur:
; Mt Me—1 ;
T
<D*—+G*D n
< 3DGVT.
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OCO: Strongly Convex Functions

Definition 3 (Strong Convexity). A function f is o-strongly convex if, for any
X,y € dom f,

F¥) 2 f) + V) (v = %) + 5 |y =],

or equivalently, V* f(x) = al.
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Recall Lipschitz (offline) Optimization

For G-Lipschitz optiminization with min, f(x), we use GD to
optimize it and obtain O () optimal rate.

Strongly Convex and Lipschitz X1 = Hy [Xt — V[ (Xt)]

Theorem 7. Under the same assumptions with Theorem 1, except that f is o-strongly-
convex. Let {x;}1_, be the sequence generated by GD with step size

_ 2
"=t 1)

Then (i)

2G? 1
fxr) — f* < _0 (—)
o(T'+1 T S _

(T+1) Xep1 = [Xt Utvft(xt)]
where X7 £ arg ming, 3z f(x¢) or Xr Ayl ﬁxf
And (ii) , : : Y

1%y — x| < —2 Again, we extend it to online optimization.
T ovIT +1
Advance d Optimization (Fall 2025) Lecture 3. Gradient Descent Method 39
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OGD for Strongly Convex Functions

Online Gradient Descent (OGD)
Ateachroundt=1,2,---
(1) the player first picks a model x; € X’;

model according to x; 1 = Iy [x; — 1,V fi(x4)].

(2) and simultaneously environments pick a strongly convex function f; : X — R;

(3) the player suffers loss f; (x;), observes the information of f; and update the

Advanced Optimization (Fall 2025) Lecture 5. Online Convex Optimization
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OGD for Strongly Convex Functions

Theorem 4 (Regret bound for strongly-convex functions). Under Assumption 1
(G-Lipschitz), for o-strongly convex loss functions, online gradient descent with step

sizes 1, = — achieves the following guarantee

G2
REGy < 2—(1 +logT) = O(logT).
o

e Strongly convex case compared with convex case: O(logT) vs. O(v/T)

e A caveat is that we now don’t need Assumption 2 (bounded domain).
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OGD for Strongly Convex Functions

Proof: we start by extending the first GD lemma to strongly convex case.

Strongly convex case:

I =l < [ = ul® = 20 (T fi (), %0 = w) + 0 1V £ (x0)
o
< o —ul® = 2m (fi(xe) = folw)+5 3 = ul]?) + 07 [V £l

< (1= o) e = ull® = 2m0 (fe(xe) = fi(w) + 17 |V £ x|

Y .
= folxe) = Jo(w) < Py = ul]? = P — ul? + 25
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OGD for Strongly Convex Functions

1 —1 2
Proof:  fi(x:) — fi(u) < d 5 Ix; — ul]* — ntTHXtH —ul® + nt2
Summing from ¢ = 1 to 7T, setting ; = = (define nio = O)
T r 11 -
Qz<ft(xt)_ft(u)) gZth—uH < — —0) —|—G2277t
Pt 1 nt 77t—1 t—1
T
1
=0+ G* Y —
ot
t=1
G2
<—(1+1logT)
o
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Comparisons

Convex Strongly Convex
Property: f;(x) > fi(y) + Vfi(y)' (x—y) | | Property: f,(y) > fi(x)+ Vfi(x)"(y — %)
+ 2y —x?
OGD: xi+1 = Iy [xt - %v ft(xt)] OGD: x4 = Iy [xt - =V ft(xt)]
REGT < SGD\/T REGy < g—j(l + logT)

Advanced Optimization (Fall 2025) Lecture 5. Online Convex Optimization 38



Lower Bounds

* A natural question: whether previous regret can be improved?

* Lower bound argument:

minimax bound: smallest possible worst-case regret of any algorithm

min max REGrt
A lq,... 01

Theorem 5 (Lower Bound for OCO). Any algorithm for online convex optimiza-
tion incurs Q(DG~/T) regret in the worst case. This is true even if the cost functions
are generated from a fixed stationary distribution.
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Lower Bounds

Theorem 5 (Lower Bound for OCO). Any algorithm for online convex optimiza-
tion incurs Q(DG~/T) regret in the worst case. This is true even if the cost functions
are generated from a fixed stationary distribution.

Proof Sketch.

Construct a hard environment:
* Binary classification, loss functions in each iteration are chosen at random

* The hardness comes from the compression of a sequence of T-round random bits
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Comparison

Algo.

Step
size

Upper
Bound

Lower
Bound

Convex OGD

<

o-Strongly OGD

Convex

3~

log T’

log T’

Optimal Strategies and Minimax Lower Bounds for Online Convex Games

Jacob Abernethy*
UC Berkeley
jake@cs.berkeley.edu
Alexander Rakhlin*

UC Berkeley
lin@cs.berkeley.edu

Abstract

A number of learning problems can be cast as an
Online Convex Game: on each round. a learner
makes a prediction 2 from a convex set, the envi-
ronment plays a loss function f. and the learner
long-term goal is to minimize regret. Algorithms
have been proposed by Zinkevich, when f is as-
sumed to be convex, and Hazan et al., when f is
assumed to be strongly convex, that have provably
low regret. We consider these two settings and
analyze such games from a minimax perspective,
proving minimax strategies and lower bounds in
cach case. These results prove that the existing al-
gorithms are essentially optimal.

1 Introduction

The decision maker’s greatest fear is regrer: knowing, with
the benefit of hindsight, that a better alternative existed. Yet,
given only hindsight and not the gift of foresight, imperfect
decisions can not be avoided. It is thus the decision maker’s
ultimate goal to suffer as little regret as possible.

In the present paper, we consider the notion of “regret
minimization” for a particular class of decision problems.
Assume we are given a set X and some set of functions F
onX. Oneachroundt = 1,..., T, we must choose some
x; from a set X. After we have made this choice, the envi-
ronment chooses a function f; € F. We incur a cost (loss)
fi(x¢). and the game proceeds to the next round. Of course,
had we the fortune of perfect foresight and had access to
the sum f; + ... + fr. we would know the optimal choice
x* = argminy 31—, fy(x). Instead, at time ¢, we will have
only seen fi, fi—1. and we must make the decision x;
with only historical knowledge. Thus, a natural long-term
goal is to minimize the regrer, which here we define as

T T
D filxe) = fnf Y7 filx)
=

I case of this setting is when the decision space S
aconvex set and  is some set of convex functions on X. In

“Division of Computer Science
TDivision of Computer Science, Department of Statistics

Peter L. Bartlett’
UC Berkeley
bartlett@cs.berkeley.edu

Ambuj Tewari
TTI Chicago
ambuj@cs.berkeley.edu

the literature, this framework has been referred to as Online
Convex Optimization (OCO), since our goal is to minimize a
global function. i.e. fi + fo +---+ fr. while this objective
is revealed to us but one function at a time. Online Convex
Optimization has attracted much interest in recent years [4,
9, 6, 1], as it provides a general analysis for a number of
standard online learning problems including., among others,
online classification and regression, prediction with expert
advice, the portfolio selection problem, and online density
estimation.

While instances of OCO have been studied over the past
two decades, the general problem was first analyzed by Zinke-
vich [9], who showed that a very simple and natural algo-
rithm, online gradient descent, elicits a bound on the regret
that is on the order of vT'. Online gradient descent can be
described simply by the update x¢11 = x¢ — V fi(xe),
where 7 is some parameter of the algorithm. This regret
bound only required that f; be smooth, convex. and with
bounded derivative.

A regret bound of order O(v/T) is not surprising: a num-
ber of online learning problems give rise o similar bounds,
More recently, however, Hazan et al. [4] showed that when
JF consists of curved functions, i.e. f; is strongly convex,
then we get a bound of the form O(logT). It is quite sur-
prising that curvature gives such a great advantage to the
player. Curved loss functions, such as square loss or loga-
rithmic lo: e very natural in a number of settin

Finding algorithms that can guarantee low regret is, how-
ever, only half of the story: indeed., it is natural to ask “can we
obtain even lower regre(?” or “do better algorithms exist?”

The goal of the present paper is to address these questions, in
some detail. for several classes of such online optimization
problems. We answer both in the negative: the algorithms of
Zinkevich and Hazan et al. are tight even up to their multi-
plicative constants.

This is achieved by a game-theoretic analysis: if we pose
the above online optimization problem as a game between a
Player who chooses x; and an Adversary who chooses f;, we
may consider the regret achieved when each player is playing
optimally. This is typically referred to as the value V of the
game. In general, computing the value of zero-sum games
s difficult, as we may have to consider exponentially many,
or even uncountably many. strategies of the Player and the
Adversary. Ultimately we will show that this value, as well
as the optimal strategies of both the player and the adversary.

Jacob Abernethy, Peter L. Bartlett, Alexander
Rakhlin, and Ambuj Tewari. Optimal
strategies and minimax lower bounds for
online convex games. In COLT, 2008.

Lower bound for strongly convex functions is more non-trivial.
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Part 3. Online-to-Batch Conversion

 Convex Functions

* Strongly Convex Functions
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Offline Optimization

* Consider offline optimization min F(x) with stochastic opt method
xcX

Computational oracle: only access noisy gradient oracle, namely, g(x), such that

Elg(x)] = VF(x), and E[[|g(x)]]|*] < G

for some G > 0.

Example (large-scale opt.). Given dataset S = {(x1,¥1), .-, (Xm, ¥m )}, ERM optimizes

™m

min / ( h(x;), yz) = full gradient computation requires a pass of all data

i=1 stochastic method only uses a mini batch at each round
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Online-to-Batch Conversion

* Reducing offline optimization as an :
« Xt+1
F() i A
Offline function l, (X) Online algorithm

Algorithm 2 Online-to-Batch Conversion for Convex Functions

Input: noisy gradient oracle g(-), step sizes {7 }, online learning algorithm A
1: fort=1,....T do
2. Obtain noisy gradient g(x;)
3. Passloss function ¢;(x) = (g(x:),x) to online learning algorithm .A
4:  Receive next point x;; from A
5. end for
6: return X = 7 Z:{:l X,

Advanced Optimization (Fall 2025) Lecture 5. Online Convex Optimization
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Online-to-Batch Conversion

Theorem 6 (Vanilla O2B Conversion). Assume F'(x) is convex, and let x* € arg miny F'(X)
and REG7: (u) & Zle 01 (x¢) — £ () be the regret of the online learning algorithm A on the
sequence of loss functions ¢, (x) = (g(x:), x). Algorithm 2 achieves the following guarantee:

E [REG#(X*)} |

E[F(xr)] - F(x") < =

Proof: Using Jensen’s inequality, we have

E[F(%r)] — F(w) < 7 Y E[F(x)] ~ F(u) <

T A -
- LS Bl x ) = TR
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Stochastic Optimization

. Optlmlz ation Goal Computational oracle: only access noisy gradient oracle,
namely, g(x), such that
min F'(x
x€X () Eg(x)] = VF(x), and E[||g(x)][*] < G*.

Algorithm 2 Online-to-Batch Conversion for Convex Functions

By dep10y1ng OGD as A 1n Algorlthm 2 , Input: noisy gradient oracle g(-), step sizes {7, }, online learning algorithm A
. . . 1. fort=1,..., T d

we obtain a practical algorithm for convex ¢ .

functions, which updates as follows:

2. Obtain noisy gradient g(x;)

3:  Passloss function 4;(x) = (g(x¢), x) to online learning algorithm A
4:  Receive next point x;,; from A

5: end for

6: return X, = % Zle Xy

Xep1 = oy [x¢ — meg (%))

Plugging the O(+v/T) regret bound of OGD into Theorem 6, we can achieve O ( : ) rate.

5
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Understand SGD from Online Learning

Algorithm 3 Stochastic Gradient Descent

Input: noisy gradient oracle g(-), step sizes {n;}

1: fort=1,....T do OGD: Xp41 = I1 [Xt . ntvgt(xt)]
:  Obtain noisy gradient g(x;)

Update the model [x;+1 = Iy [x¢ — n:g(x¢)] = 1l [Xt — ntg(xt)]

2
3
4: end for
5: return Xy = & Y, X

SGD is equivalent to deploying OGD in Algorithm 2 over functions {¢;(x)}/_;.

Theorem 7 (Convergence of SGD). Assume F(x) is convex, and let x* €
arg miny F'(x). Algorithm 3 achieves the following quarantee:

BlF(xr)] - Fx') <0 (= ).
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Stochastic Optimization

. Optlmlz ation Goal Computational oracle: only access noisy gradient oracle,
namely, g(x), such that
min F'(x
x€X () Eg(x)] = VF(x), and E[||g(x)][*] < G*.

Algorithm 2 Online-to-Batch Conversion for Convex Functions

By dep10y1ng OGD as A 1n Algorlthm 2 , Input: noisy gradient oracle g(-), step sizes {7, }, online learning algorithm A
. . . 1. fort=1,..., T d
we obtain a practical algorithm for convex ’ .

2. Obtain noisy gradient g(x;)
funCtionS Wthh up d ates as fOHOWS: 3:  Passloss function 4;(x) = (g(x¢), x) to online learning algorithm A
/ 4:  Receive next point x;,; from A
5: end for
Xt—l—l — HX [Xt T ntg (Xt)] 6: return X = %Zle Xy

Plugging the O(+v/T) regret bound of OGD into Theorem 6, we can achieve O (%) rate.

Note that function /;(x) = g(x;) ' x actually depends on the decision x;, which

reveals that OGD regret can hold even against adaptive adversary.
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O2B Conversion for Strongly Convex

e For o-strongly convex functions, we can revise the O2B conversion and
y

select OGD as A to achieve an O (IO%T> convergence rate.

Algorithm 4 Online-to-Batch Conversion for Convex Functions

Require: noisy gradient oracle g(-), step sizes {: }, online learning algorithm A
1: fort=1,...,T do

2. Obtain noisy gradient g(x;)

3. Pass loss function ¢;(x) = (g(x;), x)+%||x, — x| to online learning algorithm A

4 Receive next point x;; from A retain strong convexity

5 end for

6

_ T
. return X = 7)., X

However, this rate exhibits a gap to the €2(1/7") lower bound for stochastic
optimization over strongly convex functions.
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Weighted O2B Conversion

* To achieve the optimal rate for strongly convex optimization,
we introduce the weighted Online-to-Batch Conversion.

Xt+1

<
F() A
Offline function l, (X) Online algorithm

Algorithm 5 Weighted O2B Conversion for Strongly Convex Functions

Input: noisy gradient oracle g(-), step sizes {1, }, online learning algorithm 4, and weights {a,};_,
1: fort=1,...,7T do

2. Obtain noisy gradient g(x;)

3:  Pass loss function £;(x) = (aug(x:), x) + “£%||x; — x||* to online learning algorithm A

4:  Receive next point x;,1 from A

5. end for

6: return X, = ﬁ Zthl Xy

Advanced Optimization (Fall 2025) Lecture 5. Online Convex Optimization



Weighted O2B Conversion

Theorem 8 (Weighted O2B Conversion for Strongly Convex Functions). Assume F'(x) is
o-strongly convex, and let x* = argmin, F(x) and REG(u) = Zle 0 (x4) — £ (u) be

the regret of the online learning algorithm A on the sequence of loss functions ¢;(x) =

(ouge, x) + 2%||x; — x||*. Algorithm 4 achieves the following guarantee:

~ . E [REG?(u)]
ElF(xt) — F(x*) < T .
F(xr)] — F(x") S

Proof:  gipx.)) - F(u) <

1 T

<
— T
Zt:l O{t t=1

“(u
& [Oét<g(xt)axt —u) — %”Xt - u||2} = = [;:ETGT(i )] . []

Advanced Optimization (Fall 2025) Lecture 5. Online Convex Optimization 51



O2B for Strongly Convex Functions

Theorem 9 (O2B for Strongly Convex Functions). Assume F'(x) is o-strongly-convex,

and let x* = argminy F(x). By setting A as OGD with learning rate 1, = —= and

i=1 %1

o = t, Algorithm 4 achieves the following guarantee:

BiF(r)] - F(x') <07 ).

Recall that in Theorem 8, we have
T(T+1)

First, as a; = t, the denominator becomes —=;

E [REG#(u)} |

E|F(xp)| — F(x*) < =
F(xr)| — F(x7) S

Next, we focus on E [REG?(u)], where /;(x) is

defined by ¢,(x) = (g, x) + 242 ||x; — x||.

2
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O2B for Strongly Convex Functions

Gt = OétG
Proof:
a a , (1 1 o L G2,
E [REGA (o) = fow) | <E |3 [x — ul (—————) +E[Y
, _ Choosin = L wehave
OCO with Strongly Convex Functions S = oxi e
1 —1 2 T 2
Proofs () — flw) = = T =l = 2o s — il + 25 E [REG7 (x)] < Gtt = O(T).
120
Summing from ¢ = 1 to T, setting r, = = (define nio = 0>:
r r 11 r Plugging it back to Theorem 8, we obtain
237 () - fiw) <Y I —ul? (2 - L) w62 3o
sy L 1
AP ElF(xr) - F(x") <O (T>
<—2(1—|—logT) O
Advanced Optimization (Fall 2025) Lecture 5. Online Convex Optimization 36 |:|
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More bits of OGD

e Note that function /;(x) = g(x;) ' x depends on the decision x;, which actually
reveals that OGD regret can hold even against adaptive adversary.

Ateachroundt=1,2,---
(1) the player first picks a model x; € X;

(2) and simultaneously environments pick an online

function f; : X — R;

(3) the player suffers loss fi(x:), observes some in-

formation about f; and updates the model.

oblivious adversary

r'%- :
e :‘&

examination

adaptive adversary
[ [N

2ol

interview

The “simultaneously” requirement can be sometimes not necessary!

OGD for full-info OCO can handle the case when online functions depend on x; !

Advanced Optimization (Fall 2025)
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History: SGD

Robbins-Monro Method Kiefer-Wolfowitz Method

A STOCHASTIC APPROXIMATION METHOD'

By HerBERT RoBBINS AND SuTToN MoONRO
University of North Carolina

1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M (x) is assumed to he a monotone function of z but is
unknown to the experimenter, and it is desired to find the solution z = 6 of the
equation M (z) = a, where a is a given constant. We give a method for making
successive experiments at levels z, , 2, , - - - in such a way that z, will tend to 6 in
probability.

2. Introduction. Let M (z) be a given function and « a given constant such
that the equation
(1 M) = o

has a unique root z = 0. There are many methods for determining the value of ¢
by successive approximation. With any such method we begin by choosing one or

more values 2y , - - -, , more or less arbitrarily, and then successively obtain new
values z, as certain functions of the previously obtained 2, , - - - , Za—1 , the values
M(x), - -+, M(%s-1), and possibly those of the derivatives M'(zy), - -+ , M'(z,..1),
ete. If
2) lim z, = 6,

frowest
irrespective of the arbitrary initial values z;, ---, 2,, then the method is

effective for the particular function M(z) and value . The speed of the con-
vergence in (2) and the ease with which the z, can be computed determine the
practical utility of the method.

We consider a stochastic generalization of the above problem in which the
nature of the function M (z) is unknown to the experimenter. Instead, we suppose
that to each value  corresponds a random variable ¥ = Y(z) with distribution
function Pr{Y(z) < 4] = H(y | %), such that

3 M) =[ ydH(y | )
is the expected value of Y for the given x Neither the exact nature of H(y | z)

nor that of M (z) is known to the experimenter, but it is assumed that equation (1)
has a unique root 6, and it is desired to estimate § by making successive observa-

tions on Y at levels z; , 2, - - - determined sequentially in accordance with some
definite experimental procedure. If (2) holds in probability irrespective of any
arbitrary initial values z;, - - - , 2, , we shall, in conformity with usual statistical

terminology, call the procedure consistent for the given H(y | z) and value a.

* This work was supported in part by the Office of Naval Research.
400

S
Herbert Ellis Robbins
(1915 - 2001)

STOCHASTIC ESTIMATION OF THE MAXIMUM OF A REGRESSION
FUNCTION!
By J. Kizéer anp J. WoLrowrTz
Cornell University

1. Summary. Let M (z) be a regression function which has a maximum at the
unknown point 8. M (z) is itself unknown to the statistician who, however, can
take observations at any level z. This paper gives a scheme whereby, starting
from an arbitrary point z;, one obtains successively 2, zs, - - - such that z,
converges to 8 in probability as n — «.

2. Introduction. Let H(y | z) be a family of distribution functions which
depend on a parameter z, and let

(2.1) M(z) = f_: ydH(y | 2).
‘We suppose that
(2.2) /_: - M@)dH(y|a) = §< =,

and that M (z) is strictly increasing for ¢ < 6, and M(z) is strictly decreasing
for z > 6. Let {a.} and {c.} be infinite sequences of positive numbers such that

(23) e — 0,
249 Dt = w,
(2.5) D anen < @,
(2.6) Ydhea’ < w.

(For example, a, = n, ¢, = n7%)
We can now describe a recursive scheme as follows. Let z be an arbitrary

number. For all positive integral n we have

@ Zati = 2n + @n (an = ns) ,

¢
where ya,—1 and . are independent chance variables with respective distribu-
tions H(y | 2. — ¢.) and H(y | 2. + c.). Under regularity conditions on M(x)
which we shall state below we will prove that z, converges stochastically to
0 (asn — o).
The statistical importance of this problem is obvious and need not be dis-
cussed. The stimulus for this paper came from the interesting paper by Robbins
and Monro [1] (see also Wolfowitz [2]).

1 Research under contract with the Office of Naval Research. Presented to the American

Mathematical Society at New York on April 25, 1952.

462

Jack Kiefer
(1924 - 1981)

Jacob Wolfowitz
(1910 - 1981)

Stochastic Estimation of the Maximum of a Regression Function
Jack Kiefer, Jacob Wolfowitz
Ann. Math. Statist. 23(3): 462-466 (September, 1952)

A Stochastic Approximation Method.
Herbert Robbins, Sutton Monro
Ann. Math. Statist. 22(3): 400-407 (September, 1951).
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History: SGD

/

Herbert Ellis Robbins
(1915 - 2001)

Statistical Science
1986, Vol. 1, No. 2, 276-284

The Contributions of Herbert Robbins to

Mathematical Statistics

Tze Leung Lai and David Siegmund

Herbert Robbins was born on January 12, 1915, in
New Castle, Pennsylvania. In 1931 he entered Har-
vard College at the age of 16. Although his interests
until then had been predominantly literary, he found
himself increasingly attracted to mathematics under
the influence of Marston Morse, who during many
long conversations conveyed a vivid sense of the in-
tellectual challenge of creative work in that field
(cf. Page, 1984, p. 7). He received the A.B. summa
cum laude in 1935, and the Ph.D. in 1938, also from
Harvard. His thesis, in the field of combinatorial
topology and written under the supervision of Hassler
Whitney, was published in 1941 [3]. (Numbers in
brackets refer to Robbins’ bibliography at the end of
this article.)

After graduation, Robbins worked for a year at the
Institute for Advanced Study at Princeton as Marston
Morse’s assistant. He then spent the next three years
at New York University as instructor in mathematics.
He became nationally known in 1941 as the coauthor,

North Carolina at Chapel Hill. Having read [7] and
[10], and greatly impressed by Robbins’ mathematical
skills, Hotelling offered him the position of associate
professor to teach measure theory and probability to
the graduate students in the new department. Robbins
accepted the position and spent the next six years at
Chapel Hill. During this relatively short period Rob-
bins not only studied and developed an increasingly
deep interest in statistics, but he also made a number
of profound contributions to his new field: complete
convergence [12], compound decision theory [25], sto-
chastic approximation [26], and the sequential design
of experiments [28], to name a few.

After a Guggenheim Fellowship at the Institute for
Advanced Study during 1952-1953, Robbins moved
from Chapel Hill to Columbia University as professor
and chairman of the Department of Mathematical
Statistics. Since 1953, with the exception of the three
years 1965-1968 spent at Minnesota, Purdue, Berke-
ley, and Michigan, he has been at Columbia, where he

Advanced Optimization (Fall 2025)
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History: Two-Player Zero-Sum Games

Theory of repeated games

N N

e
4 2N
2 ~‘-";:~,§ ,
R-" t
S » ‘)

James Hannan
(1922-2010)

Learning to play a game (1956)
Play a game repeatedly against a possibly suboptimal opponent

Zero-sum 2-person games played more than once

—_
(a5
—
—_
~
—
N—
o~
—
—_
~
N
—

@ Row player (player)
has N actions

@ Column player (opponent)
has M actions

David Blackwell
(1919-2010)

@ The player suffers loss {(i¢,yt¢)

For each gameround t =1,2, ...

@ Player chooses action i; and opponent chooses action y

(= gain of opponent)

Player can learn from opponent’s history of past choices y1,...,yt—1 J

N. Cesa-Bianchi (UNIMI)

N. Cesa-Bianchi (UNIMI)

Online Learning

Nicolo Cesa-Bianchi, Online Learning and Online Convex Optimization. Tutorial at the Simons Institute. 2017.
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History: Prediction with Expert Advice

Nick Littlestone *

Harvard Univ.

Abstract

We study the construction of prediction algo-
rithms in a situation in which a learner faces
a sequence of trials, with a prediction to be
made in each, and the goal of the learner is
to make fow mistakes. Wa are interested in the
case that the learner has reason to bebeve that
one of some pool of known algorithms will per-
form well, but the learner does not know which
one. A simple and effective method, hased on
weighted voting, is introduced for constructing
a compound algorithm in sech a circumstance.
We call this method the Weighted Ma jority Al-
gorithm, We show that this algorithm & ro-
bust w.r.t. errors in the data. We discuss var-
jons versions of the Weighted Majority Algo-
rithm and prove mistake bounds for them that
are closely related to the mistake bounds of the
best algorithms of the pool. For example, given
asequence of triak, if there is an algorithm in
the pool A that makes at most m mistakes then
the Weighted Majority Algorithm will make at

“Supparied by ONH grant NODI14-B5-KO445. Part
of thin reacarch was done while this suthor was i the
Univemity of Calil ai Samia Crus with support from
ONR grant NOD014-86- K-0454

'Supparied by ONR grani NO14-86-1-0454. Part
of tlis rmesch was dane whik ilis suthor was on
sabbaical 2t Aiken Computation Laboratory, Harvand,
with partial support from the ONR grania N 00014-85
K-0485 and NOODLA--K.0454

The Weighted Majority Algorithm

Aiken Computation Laboratory Dept. of Computer Sci.

Manfred K. Warmuth |

U. C. Santa Cruz

most elog| A| + m) mistakes on that sequence,
where ¢ is fixed constant.

1 Introduction

We study online prediction algorithms that
learn according to the following protocol.
Learning proceeds in a sequence of triak. In
each trial the algorithm receives an instance
from some fixed domain and is to produce a
‘binary pradiction. At the end of the trial the al
gorithm receives a binary reinforeement, which
«can be viewad as the correct prediction for the
instance. We evaluate such algorithms accord-
ing to how many mistakes they make as in
[Lit88,Lits0). (A mistake occurs if the predic-
tion and the reinforcement disagree.)

In this paper we investigate the situation
where we are given a pool of prediction algo-
rithms that make varying numbers of mista kes.
We aim to design a master algorithm that uses
the predictions of the pool to make its own pre-
diction. Ideally the master algorithm should
make wot many more mistakes than the best
algorithm of the pool, even though it does not
have any a priori knowledge as to which of the
algorithms of the pool make few mistakes for a
given sequence of trials.

The overall protocol proceeds as follows in
each trial: The same instance is fed to all al-
gorithms of the pool Each algorithm makes

Manfred Warmuth

UC Santa Cruz

CHZ806-8/8%0000/0256/501.00 © 1089 [EEE

Nick Littlestone and Manfred K. Warmuth.
"The Weighted Majority Algorithm." FOCS 1989: 256-261.

FOCS 30-year
Test of Time Award!

AGGREGATING STRATEGIES

Volodimir G. Vovk’™
Research Council for Cybernetics
40 ulitsa Vavilova,
Moscow 117333, USSR

ABSTRACT

The following situation is considered. At each moment of
discrete time a decision maker, who does not know the current
state of Nature but knows all its past states, must make a
decision. The decision together with the current state of
Nature determines the 1loss of the decision maker . The
performance of the decision maker is measured by his total
loss. We suppose there is a pool of the decision maker'’s
potential strategies one of which is believed to perform well,
and construct an “aggregating" strategy for which the total
loss is not much bigger than the total loss under strategies in
the pool, whatever states of Nature. Our construction
generalizes both the Weighted Majority Algorithm of
N.Littlestone and M.K.Warmuth and the Bayesian rule.

NOTATION

IN, @ and R stand for the sets of positive integers, rational
numbers and real numbers respectively, B symbolizes the set
€0,1>. We put

= .

"= u BB = U B
i <n tSn

The empty sequence is denoted by o. The n)ouuon for logarithms
is 1n Cnaturald, 1lb Cbinary) and log)\ Cbase A). The integer

part of a real number t is denoted by |t]. For 4 € R?, con 4 is
the convex hull of 4.

1. UNIFORM MATCHES

We are working within Cthe finite horizon variant of >
A.P.Dawid’s “prequential” (predictive sequentiald framework
Csee (Dawid, 1988>; in detail it is described in (Dawid,
19883). Nature and a decision maker function in discrete time
€0,1,...,n-1>. Nature sequentially finds itself in states sor

B s comprising the string s = s_s. For

yreeer Spgy o 051" Spg-
simplicity we suppose s € B'. At each moment i the decision

maker does not know the current state s; of Nature but knows

*address for correspondence: 9-3-451 ulitsa Ramenki, Moscow
117607, USSR.
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Volodimir G. Vovk
Royal Holloway,
University of London

Volodimir G. Vovk. “Aggregating
Strategies." COLT 1990: 371-383.

Advanced Optimization (Fall 2025)

Lecture 5. Online Convex Optimization

58



Summary

Interaction optimization

[ ONLINE OPTIMIZATION ] {

Game-theoretic language

Online-to-batch conversion

[ ONLINE-TO-BATCH CONVERSION ] Weighted O2B conversion

SGD, stochastic optimization

Problem formulation
Regret measure
ONLINE CONVEX OPTIMIZATION

Convex functions: OGD

Strongly convex functions: OGD

Q& A
Thanks!
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