
Lecture 9. Optimism for Acceleration
Advanced Optimization 2024 Fall

Peng Zhao
Nanjing University, Nanjing, 210023, China

zhaop@lamda.nju.edu.cn
February 10, 2025

1 Background: Accelerated Methods

Recall that accelerated convergence rates for smooth convex optimization can be achieved using
Nesterov’s Accelerated Gradient Descent (Nesterov’s AGD, or simply AGD). Specifically, while
the standard gradient descent method achieves a convergence rate of O(1/T ) after T iterations,
AGD improves this to O(1/T 2). Moreover, for σ-strongly convex and L-smooth functions with
κ = L/σ being the condition number, GD achieves an O(exp(−T/κ)) convergence rate, whereas
AGD can attain an accelerated rate of order O(exp(−T/

√
κ)).

In fact, Nesterov’s AGD is not the only algorithm capable of achieving accelerated convergence
rates for smooth convex optimization. Equally important is its demonstration of the possibility
of achieving accelerated rates for general smooth convex optimization (note that Polyak’s heavy
ball method, while accelerated, is restricted to the quadratic case). In this lecture, we will explore
acceleration from the lens of optimistic online learning. Specifically, we will design an accelerated
algorithm based on the optimistic OMD framework that we have covered so far, and see how these
online learning techniques can truly shine in the optimization community.

Problem Setup. We focus on the constrained optimization problem:

min
x∈X

f(x) (1)

where X ⊆ Rd is a convex and compact feasible domain, and f : Rd → R is a convex function.

Assumptions. We assume that f is L-smooth over X , i.e., ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ for
all x, y ∈ X . Moreover, we assume the feasible domain is bounded, namely, ∥x − y∥ ≤ D for all
x, y ∈ X . By default, we focus on the ℓ2 norm without loss of generality.

2 Acceleration via Optimistic Online Learning

As we have seen in the previous lecture, a standard approach to applying online learning tech-
niques to optimization is the online-to-batch conversion. Given an offline optimization problem
minx∈X f(x), we can use an online learning algorithm AOL to learn a sequence of iterates {xt}T

t=1.
By averaging these iterates, we obtain x̄T = 1

T

∑T
t=1 xt, which is then used as the solution to the

offline optimization problem. The convergence rate of the offline problem is related to the regret of
the online learning algorithm AOL. A typical example is using online gradient descent (OGD) to
solve a convex problem, which achieves a convergence rate of O(1/

√
T ).

To achieve accelerated rates, like O(1/T 2) for smooth convex functions, we need steps further.
First, we need to enhance the power of the conversion to gain a speedup. Second, we need to
employ optimistic online learning methods, rather than standard problem-independent algorithms,
to improve the learning behavior. Thus, there are two key components:

Lecture Note @ Advanced Optimization

https://www.pengzhao-ml.com/course/AOptLectureNote


offline optimization online algorithmweighted conversion

Figure 1: A pipeline of weighted online-to-batch conversion.

(i) Weighted Online-to-Batch Conversion: reduce offline optimization to online optimiza-
tion, but now a weighted and stabilized version is needed to achieve acceleration.

(ii) Optimistic OMD with Optimism Design: achieve the desired constant regret in online
optimization, where the optimism design is crucial by leveraging the problem structure.

In the following two subsections, we will present the two components in detail. We will then com-
bine them to form the final algorithm and provide the convergence guarantee in Section 2.3.

2.1 Weighted Online-to-Batch Conversion

Algorithm 1 presents a template of the weighted online-to-batch conversion. To solve an offline op-
timization problem minx∈X f(x), we will require an online learning algorithm AOL and a sequence
of weights {αt}T

t=1 with αt > 0.

The reduction scheme goes as follows: at each round t ∈ [T ], we will first calculate the weighted
average x̄t = 1

At

∑t
s=1 αsxs with At ≜

∑t
s=1 αs, and then query the gradient ∇f(x̄t); then we

will define an online function ℓt(x) = ⟨αt∇f(x̄t), x⟩ and run the online learning algorithm AOL on
{ℓs(x)}t

s=1. The output of AOL xt+1 is then fed to the weighted summation calculation for the next
round. The final output of the offline optimization problem is then given by x̄T = 1

AT

∑T
t=1 αtxt.

An illustration of the pipeline is given in Figure 1.

Algorithm 1 Weighted Online-to-Batch Conversion Template
Input: Online learning algorithm AOL, weights {αt}T

t=1 with αt > 0.
1: Initialization: x1 ∈ X
2: for t = 1, 2, . . . , T do
3: Calculate x̄t = 1

At

∑t
s=1 αsxs with At ≜

∑t
s=1 αs and receive ∇f(x̄t)

4: Define ℓt(x) = ⟨αt∇f(x̄t), x⟩ as t-th round online function to AOL
5: Obtain xt+1 from AOL(x1, {ℓs(x)}t

s=1)
6: end for
Output: x̄T = 1

AT

∑T
t=1 αtxt

For the weighted online-to-batch conversion, the following theorem relates the convergence rate of
the offline optimization problem to the weighted regret of the online learning algorithm.
Theorem 1 (weighted online-to-batch conversion). Suppose f : X → R is a convex function with a
convex and compact set X . Then, for the following output with weighted average (regardless of how
the {xt}T

t=1 are generated):

x̄t = 1
At

t∑
s=1

αsxs, (2)

with a weight αt > 0 and cumulative sum At ≜
∑t

s=1 αs, the following holds for any x⋆ ∈ X :

f(x̄T ) − f(x⋆) ≤ 1
AT

·
T∑

t=1
⟨αt∇f(x̄t), xt − x⋆⟩ ≜ 1

AT
· REGα

T (x⋆), (3)

where REGα
T (x⋆) is the weighted regret of the online learning algorithm AOL.

2



Proof. First, by convexity of f , we have

T∑
t=1

αt(f(x̄t) − f(x⋆)) ≤
T∑

t=1
αt⟨∇f(x̄t), x̄t − x⋆⟩

=
T∑

t=1
αt⟨∇f(x̄t), xt − x⋆⟩ +

T∑
t=1

αt⟨∇f(x̄t), x̄t − xt⟩.

The first term represents the weighted regret REGα
T (x⋆), while the second term is a bias term. By

definition, we have

Atx̄t =
t∑

s=1
αsxs = At−1x̄t−1 + αtxt,

which further implies

αtx̄t − αtxt = At−1(x̄t−1 − x̄t).

Consequently, we obtain

T∑
t=1

αt⟨∇f(x̄t), x̄t − xt⟩ = −
T∑

t=1
At−1⟨∇f(x̄t), x̄t − x̄t−1⟩ ≤ −

T∑
t=1

At−1

(
f(x̄t) − f(x̄t−1)

)
.

Combining this with the first inequality, we get

T∑
t=1

αt(f(x̄t) − f(x⋆)) +
T∑

t=1
At−1

(
f(x̄t) − f(x̄t−1)

)
≤ REGα

T (x⋆).

Applying telescoping and dividing both sides by AT completes the proof.

Stabilization Effect. There is actually another alterative weighted online-to-batch conversion:

f

(
1

AT

T∑
t=1

αtxt

)
− f(x⋆) ≤ 1

AT

T∑
t=1

αt

(
f(xt) − f(x⋆)

)
≤ 1

AT

T∑
t=1

αt⟨∇f(xt), xt − x⋆⟩,

where we only use the convexity of f and the definition of x̄T . The key difference is that here
the gradient ∇f(xt) is taken at the online algorithm’s iterate xt, whereas the proposed conversion
in Theorem 1 computes ∇f(x̄t) using the weighted average x̄t as in Eq. (3).

The advantage of the weighted sequence {x̄t}T
t=1 is its significantly more stable behavior due to the

smoothing effect of averaging, compared to the original iterates {xt}T
t=1, see Remark 1 for a com-

parison. This gradient stability can be highly beneficial if the online algorithm can take advantage
of it. In this sense, the conversion in Eq. (3) can be viewed not only as a weighted generaliza-
tion but also as a stabilized form of online-to-batch conversion. Consequently, we also refer to the
conversion in Algorithm 1 as the stabilized weighted online-to-batch conversion.

2.2 Optimism Design

With the weighted online-to-batch conversion, we now need to design the online algorithm AOL
and choose the weights to achieve the targeting O(1/T 2) convergence rate for convex and smooth
optimization. A natural choice is to set αt = t such that AT = Θ(T 2). This reduces our task to
designing AOL with a constant weighted regret, i.e., REGα

T (x⋆) ≤ O(1).

However, achieving this requirement is non-trivial. While increasing αt enlarges the denominator
AT , it also amplifies the weighted regret REGα

T (x⋆), as the gradient norm of online function is
scaled by αt. Therefore, an important requirement of this online algorithm is the adaptivity that can
effectively take advantage of the gradient stability. Recall that this capability has been discussed
in the previous lecture: we use optimistic OMD to achieve O(

√
VT ) gradient-variation regret with

VT =
∑T

t=2 supx∈X ∥∇ft(x) − ∇ft−1(x)∥2 for online convex optimization over {ft(x)}T
t=1.

3



To this end, we adopt the framework of Optimistic OMD (OOMD) with a carefully crafted opti-
mism. For simplicity, we focus on OOMD with a constant step size, whose update rule is:

xt = arg min
x∈X

{
η ⟨Mt, x⟩ + 1

2∥x − x̂t∥2
2

}
x̂t+1 = arg min

x∈X

{
η ⟨∇ℓt(xt), x⟩ + 1

2∥x − x̂t∥2
2

} (4)

Here, the gradient is given by ∇ℓt(xt) = αt∇f(x̄t), as specified in Line 4 of Algorithm 1. A key
issue remains is the design of the optimism Mt. To ensure a good approximation of ∇ℓt(xt) (and
thereby achieve a constant weighted regret), we define it in the following form:

Mt = αt∇f(x̃t) (5)
with x̃t to be determined (using only available information). By definition,

x̄t = 1
At

(
t−1∑
s=1

αsxs + αtxt

)
, (6)

and thus we can set the optimism as

x̃t ≜
1

At

(
t−1∑
s=1

αsxs + αtxt−1

)
. (7)

By the regret guarantee of OOMD (with a bounded domain diameter D), we have
T∑

t=1
ℓt(xt) −

T∑
t=1

ℓt(u) ≤ D2

2η
+ η

T∑
t=1

∥αt∇f(x̄t) − αt∇f(x̃t)∥2
2 − 1

4η

T∑
t=1

∥xt+1 − xt∥2
2

≤ D2

2η
+ η

T∑
t=1

α2
t L2 ∥x̄t − x̃t∥2

2 − 1
4η

T∑
t=1

∥xt+1 − xt∥2
2

= D2

2η
+

T∑
t=1

(
η

α4
t L2

A2
t

− 1
4η

)
∥xt − xt−1∥2

2 . (8)

The second inequality is by L-smoothness. Recall that αt = t and At = t(t+1)
2 . By setting η = 1

4L ,

it holds that ηα4
t L2

A2
t

− 1
4η ≤ 0, which indicates that REGα

T (x⋆) ≤ 2D2L = O(1).

Combining the constant weighted regret guarantee with the fact AT = Θ(T 2), by Theorem 1 we
have obtained an O(T −2) convergence rate!
Remark 1. A key feature of the weighted online-to-batch conversion is the stability of the weighted
average x̄t, which plays a crucial role in the analysis. Specifically, Eq. (8) holds by noting that

∥x̄t − x̃t∥2
2 =

(
αt

At

)2
∥xt − xt−1∥2

2 = Θ
(

1
t2

)
∥xt − xt−1∥2

2. (9)

This indicates that the weighted average is Θ(1/t2) more stable than the original sequence, enabling
the negative term cancellation in Eq. (8), which finally leads to a constant weighted regret.

2.3 Algorithm and Convergence Rate

The above two subsections have already outlined the final algorithm to achieve the accelerated rate
for convex and smooth functions, built on two key components: (i) the weighted online-to-batch
conversion, and (ii) optimistic OMD with a carefully designed optimism. The concrete updates are
summarized in Algorithm 2, and we have the following accelerated convergence rate guarantee.
Theorem 2. Set the weight sequence as αt = t for all t ∈ [T ], and choose the step size as η = 1

4L .
The AcceleOOMD algorithm in Algorithm 2 guarantees that

f(x̄T ) − min
x∈X

f(x) ≤ 4D2L

T (T + 1) = O
(

1
T 2

)
(10)

Proof. The result follows immediately from the (stabilized) weighted online-to-batch conversion
in Theorem 1, along with the results of O(1) weighted regret and AT = Θ(T 2) established in the
previous two subsections.

4



Algorithm 2 AcceleOOMD: Acceleration via Optimistic OMD
Input: smoothness parameter L, weight sequence {αt}T

t=1, step size η = 1
4L .

1: Initialization: x1 ∈ X and x̂1 ∈ X .
2: for t = 1, 2, . . . , T do
3: Update x̂t+1 = ΠX [x̂t − ηαt∇f(x̄t)] with x̄t = 1

At

∑t
s=1 αsxs

4: Update xt+1 = ΠX [x̂t+1 − ηαt+1∇f(x̃t+1)] with x̃t+1 = 1
At+1

(∑t
s=1 αsxs + αt+1xt

)
5: end for
Output: x̄T = 1

AT

∑T
t=1 αtxt

3 Discussions

The analysis presented here is crystalized from UnixGrad [Kavis et al., 2019]. The idea of intro-
ducing weights into the online-to-batch conversion dates back at least to [Abernethy et al., 2018],
and the stabilized version that we presented in Theorem 1 originates from [Cutkosky, 2019].

Unconstrained Optimization. The above analysis can be extended to the unconstrained optimiza-
tion setting, where the constraint set is X = Rd. This can be achieved by using optimistic FTRL
template, which is more amenable to the unconstrained setting in online learning.

Smooth and Strongly Convex Functions. To achieve the accelerated rate of O(exp(−T/
√

κ))
for L-smooth and σ-strongly convex functions (where κ = L/σ), one can also employ optimistic
OMD and the weighted online-to-batch conversion with αt = at for a suitable a > 0. An additional
useful ingredient is the negative Bregman divergence term arising from the linearization [Joulani
et al., 2020], i.e., f(x)−f(y) = ⟨∇f(x), x−y⟩−Df (y, x), which follows directly from the defini-
tion of the Bregman divergence. While this term is often simplified to f(x)−f(y) ≤ ⟨∇f(x), x−y⟩
by dropping the negative term −Df (y, x), but here it turns out to be crucial for the analysis.

References
Ali Kavis, Kfir Y. Levy, Francis R. Bach, and Volkan Cevher. UniXGrad: A universal, adaptive al-

gorithm with optimal guarantees for constrained optimization. In Advances in Neural Information
Processing Systems 32 (NeurIPS), pages 6257–6266, 2019.

Jacob D. Abernethy, Kevin A. Lai, Kfir Y. Levy, and Jun-Kun Wang. Faster rates for convex-concave
games. In Proceedings of the 31st Conference on Learning Theory (COLT), pages 1595–1625,
2018.

Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration. In Proceedings of the 36th
International Conference on Machine Learning (ICML), pages 1446–1454, 2019.

Pooria Joulani, Anant Raj, Andras Gyorgy, and Csaba Szepesvári. A simpler approach to acceler-
ated optimization: iterative averaging meets optimism. In Proceedings of the 37th International
Conference on Machine Learning (ICML), pages 4984–4993, 2020.

5


	Background: Accelerated Methods
	Acceleration via Optimistic Online Learning
	Weighted Online-to-Batch Conversion
	Optimism Design
	Algorithm and Convergence Rate

	Discussions

