
Provably Efficient Online RLHF with
One-Pass Reward Modeling

Long-Fei Li∗, Yu-Yang Qian∗, Peng Zhao, Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, China

School of Artificial Intelligence, Nanjing University, China
{lilf, qianyy, zhaop, zhouzh}@lamda.nju.edu.cn

Abstract

Reinforcement Learning from Human Feedback (RLHF) has shown remarkable
success in aligning Large Language Models (LLMs) with human preferences. Tra-
ditional RLHF methods rely on a fixed dataset, which often suffers from limited
coverage. To this end, online RLHF has emerged as a promising direction, enabling
iterative data collection and refinement. Despite its potential, this paradigm faces a
key bottleneck: the requirement to continuously integrate new data into the dataset
and re-optimize the model from scratch at each iteration, resulting in computational
and storage costs that grow linearly with the number of iterations. In this work,
we address this challenge by proposing a one-pass reward modeling method that
eliminates the need to store historical data and achieves constant-time updates per
iteration. Specifically, we first formalize RLHF as a contextual preference bandit
and develop a new algorithm based on online mirror descent with a tailored local
norm, replacing the standard maximum likelihood estimation for reward modeling.
We then apply it to various online RLHF settings, including passive data collection,
active data collection, and deployment-time adaptation. We provide theoretical
guarantees showing that our method enhances both statistical and computational
efficiency. Finally, we design practical algorithms for LLMs and conduct experi-
ments with the Llama-3-8B-Instruct and Qwen2.5-7B-Instruct models on
Ultrafeedback and Mixture2 datasets, validating the effectiveness of our approach.

1 Introduction

Reinforcement Learning from Human Feedback is a critical technique for training large language
models using human preference feedback [Ouyang et al., 2022, Bai et al., 2022]. Typical RLHF
methods involve collecting extensive data, each consisting of a prompt, a pair of responses, and a
preference label indicating which response is preferred. Then, a reward model is trained to predict
the human preference, and the LLM is fine-tuned based on the reward model by the RL algorithms.

Traditional RLHF methods primarily rely on fixed preference datasets, which typically suffer from
limited coverage. As a result, the learned reward models struggle to generalize to out-of-distribution
samples, constraining the effectiveness of the aligned models. To address this, online RLHF has
emerged as a promising paradigm, enabling iterative data collection and model improvement. The
general process can be described as (i) collect the preference data; (ii) update the model using the
collected data. The above two steps are repeated for several iterations to boost model performance.
In practice, Claude [Bai et al., 2022] and LLaMA-2 [Touvron et al., 2023] have demonstrated that
online RLHF can significantly enhance model performance [Dong et al., 2024]. Theoretically, recent
works [Xie et al., 2025, Cen et al., 2025] indicate that online exploration can improve the statistical

∗Equal contribution.
†Correspondence: Peng Zhao <zhaop@lamda.nju.edu.cn>

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

ar
X

iv
:2

50
2.

07
19

3v
3

 [
cs

.L
G

]
 2

5
O

ct
 2

02
5

https://arxiv.org/abs/2502.07193v3

Table 1: Comparison between previous works and our work in terms of the statistical and computational
efficiency across different online RLHF settings. The column “Context” and “Action” represent the context and
action are determined by the environment (�) or the algorithm (ü). For the computational efficiency (time and
storage), we highlight the dependence on the t at iteration t. Here, d is the feature dimension, T is the total
number of iterations, κ is the non-linearity coefficient, Φ = Ex∼ρ [ϕ(x, π

∗(x))] is the concentrability vector,
VT and HT are two local norms satisfying ∥Φ∥H−1

T
≤

√
κ∥Φ∥

V −1
T

(*: amortized complexity over T).

Setting Context Action Gap/Regret Time Storage Reference

Passive � �
Õ
(√
d · κ∥Φ∥V −1

T

)
O(log T)∗ O(t) Zhu et al. [2023]

Õ
(√
d · ∥Φ∥H−1

T

)
O(1) O(1) Ours (Theorem 1)

Active ü ü
Õ
(
d
√
κ/T

)
O(t log t) O(t) Das et al. [2025]

Õ
(
d
√
κ/T

)
O(1) O(1) Ours (Theorem 2)

Deploy � ü
Õ
(
dκ

√
T
)

O(t log t) O(t) Saha et al. [2023]
Õ
(
d
√
κT
)

O(1) O(1) Ours (Theorem 3)

efficiency of RLHF. Beyond performance gains, online RLHF serves as a crucial step toward agentic
applications, where models can continuously integrate environmental feedback to enable real-time
interaction, adaptive reasoning, and autonomous decision-making [Silver and Sutton, 2025].

Despite its empirical success, online RLHF may introduces significant computational challenges.
Specifically, the typical process of online RLHF involves continuously integrating newly collected
data into the historical dataset and re-optimizing the model from scratch over the expanded dataset.
While this strategy is statistically efficient, its computational and storage costs scale linearly with the
number of iterations, which becomes prohibitive in long-term iterations, especially on edge devices
where computation and memory resources are inherently limited. This raises a pressing question:

Can we design online RLHF algorithms that are both statistically and computationally efficient?

In this work, we provide an affirmative answer to this question in the setting of contextual preference
bandits with linearly parameterized reward functions. Specifically, building on recent theoretical
advancements in RLHF [Zhu et al., 2023, Das et al., 2025, Ji et al., 2025], we formulate the
RLHF problem as a contextual dueling bandit problem [Yue et al., 2012, Saha, 2021]. While
prior work has explored this formulation, most existing methods focus on statistical efficiency and
overlook the growing computational burden. To bridge this gap, inspired by recent progress in bandit
learning [Zhang and Sugiyama, 2023, Li et al., 2024], we introduce a novel one-pass reward modeling
method based on the online mirror descent framework with a tailored local norm that captures
second-order information. Unlike traditional approaches, our method eliminates the need to store
historical data and achieves constant-time updates per iteration, i.e., the computational cost remains
invariant with respect to the cumulative number of iterations. We then apply our method to several
online RLHF settings, including passive data collection, active data collection, and deployment-time
adaptation. We establish theoretical guarantees showing that our method improves both statistical and
computational efficiency. Table 1 summarizes the comparison of our method with the existing works.

To enable usage in LLMs, we develop practical variants of our method. Direct computation and
storage of the Hessian matrix is prohibitively expensive; thus, we propose an efficient approximation
using Hessian-Vector Products (HVP) combined with conjugate gradient descent, avoiding explicit
second-order information and relying only on first-order computation. Additionally, we employ
rejection sampling to approximate model uncertainty in a computationally efficient manner. With the
above techniques, we conduct experiments using the LLaMA-3-8B-Instruct [Llama Team, 2023]
and Qwen2.5-7B-Instruct [Qwen Team, 2024] models on the Ultrafeedback [Cui et al., 2024] and
Mixture2 [Dong et al., 2024] datasets. Experimental results validate the effectiveness of our method.

To summarize, our contributions are as follows:

• By formulating the RLHF problem as a contextual dueling bandit, we propose a novel one-pass
reward modeling algorithm and establish the corresponding estimation error bound. Our method is
built upon the online mirror descent framework and incorporates a carefully designed local norm
that captures second-order information for improved learning efficiency.

2

• We apply our method to a broad range of online RLHF settings, including passive data collection,
active data collection, and deployment-time adaptation. For each setting, we design tailored
algorithms and establish corresponding theoretical guarantees, demonstrating that our approach
achieves improved statistical and computational efficiency compared to existing methods.

• We develop practical algorithms by approximating the update using Hessian-Vector Products
combined with conjugate gradient descent, and estimating uncertainty via rejection sampling. Based
on the above techniques, we conduct empirical evaluations using the LLaMA-3-8B-Instruct and
Qwen2.5-7B-Instruct models on the Ultrafeedback and Mixture2 datasets, showing that our
method improves both statistical and computational efficiency compared to existing methods.

Organization. Section 2 reviews the related work. Section 3 introduces the problem setup. Section 4
presents our proposed one-pass reward modeling method and section 5 applies it to various online
RLHF settings. Section 6 provides practical versions of our method. Section 7 presents experimental
results. Section 8 concludes the paper. The proofs and experiment details are deferred to the appendix.

2 Related Work

In this section, we review the works most closely related to ours, including online RLHF, contextual
dueling bandits, and active learning.

Online RLHF. Traditional RLHF methods predominantly rely on fixed datasets, which often suffer
from limited data coverage. Consequently, the resulting reward models struggle to generalize to
out-of-distribution samples, thereby limiting the effectiveness of the aligned models. To overcome this
limitation, online RLHF has emerged as a promising alternative, enabling iterative data collection and
continuous model refinement. The works [Dong et al., 2023, Guo et al., 2024, Yuan et al., 2024, Wu
et al., 2025] have demonstrated that online iterative variants of direct preference learning algorithms
significantly outperform their offline counterparts. Xiong et al. [2024] identified key challenges in
offline RLHF and theoretically demonstrated the potential benefits of online exploration. Recent
work has incorporated optimism-driven bonus terms into the objective to encourage exploration
in online RLHF [Xie et al., 2025, Cen et al., 2025, Zhang et al., 2025, Zhao et al., 2025]. These
approaches primarily focus on the sample efficiency, but do not consider the accompanying increase
in computational complexity. To improve computational efficiency, Foster et al. [2025] tackled the
challenge of enumerating an exponentially large response space. Differently, our work focuses on
alleviating the computational burden that scales linearly with the number of iterations in online RLHF.

Contextual Dueling Bandits and RL. Dueling bandits are a variant of the multi-armed bandit
problem in which the learner sequentially selects a pair of arms and receives binary feedback [Yue
et al., 2012]. The contextual dueling bandit framework extends this setting by incorporating contextual
information [Dudík et al., 2015, Saha, 2021, Bengs et al., 2022]. Within this framework, Saha [2021]
studied the K-armed contextual dueling bandit problem, and Saha et al. [2023] further extended it
to the reinforcement learning setting. Additionally, Sekhari et al. [2023] investigated the contextual
dueling bandit problem under an active learning paradigm, where the learner adaptively queries to
minimize both regret and the number of queries. To move beyond linear reward functions, Verma et al.
[2025a] introduced the neural dueling bandit problem, modeling the reward function using neural
networks. These prior works commonly rely on maximum likelihood estimation to learn the reward
function, leading to computational complexity that grows linearly with the number of iterations. In
contrast, we propose algorithms that maintain constant per-iteration computational complexity.

Active Learning. Active learning is a paradigm that aims to reduce the labeling cost by selecting the
most informative samples for annotation [Settles, 2009]. In general, existing work can be categorized
into two settings: pool-based and stream-based. The pool-based setting [Seung et al., 1992, Freund
et al., 1997, Huang et al., 2010] involves the learner iteratively selecting a batch of informative
samples from a large unlabeled pool, querying their labels, updating the model, and repeating this
process. In contrast, the stream-based setting [Cesa-Bianchi et al., 2004, 2006, Cacciarelli and
Kulahci, 2024] requires the learner to sequentially observe data points and decide in real time whether
to query their labels. Within the context of RLHF, Das et al. [2025] and Verma et al. [2025b] studied
pool-based active learning, while Ji et al. [2025] focused on the stream-based setting. In this work,
we focus on the pool-based strategy, which can be naturally extended to the stream-based scenario.

3

3 Problem Setup

Following recent advancements in RLHF [Zhu et al., 2023, Das et al., 2025, Xiong et al., 2024], we
formulate RLHF as a contextual bandit problem. Specifically, we have a set of contexts X and a set of
possible actions A per context. To learn with human preference feedback, the learner selects a tuple
(x, a, a′) to present to the human, where x ∈ X is the context, a, a′ ∈ A are the actions. The human
then provides a binary preference feedback y ∈ {0, 1}, where y = 1 indicates that the human prefers
action a over action a′, and y = 0 otherwise. We study the commonly used Bradley-Terry (BT)
model in preference learning [Bradley and Terry, 1952], which assumes that the human’s preference
is generated by a logistic function of the difference in the rewards of the two actions.
Definition 1 (Bradley-Terry Model). Given a context x ∈ X and two actions a, a′ ∈ A, the
probability of the human preferring action a over action a′ is given by P [y = 1 | x, a, a′] =

exp(r(x,a))
exp(r(x,a))+exp(r(x,a′)) , where r : X ×A → R is a latent reward function.

To facilitate theoretical analysis, following prior works [Zhu et al., 2023, Cen et al., 2025], we
consider the linear realizable setting, where the reward function is parameterized by a linear model.
Assumption 1. It holds that r(x, a) = ϕ(x, a)⊤θ∗ where ϕ(x, a) : X × A → Rd is the known
and fixed feature map, and θ∗ ∈ Rd is the unknown parameter vector. Furthermore, we assume
∥ϕ(x, a)∥2 ≤ L for all x ∈ X and a ∈ A and θ∗ ∈ Θ where Θ = {θ ∈ Rd | ∥θ∥2 ≤ B}.
Remark 1. While this setting is a simplification of the real-world problem, it serves as a useful and
analytically tractable starting point. Specifically, the feature mapping ϕ can be obtained by removing
the final layer of a pre-trained large language model, with θ∗ corresponding to the weights of that
layer. Moreover, this assumption can be further relaxed by allowing model misspecification [Jin et al.,
2020] and neural function approximation [Du et al., 2024, Verma et al., 2025b].

Then, we can rewrite the probability as P [y = 1 | x, a, a′] = σ(ϕ(x, a)⊤θ∗ − ϕ(x, a′)⊤θ∗), where
σ(w) = 1

1+exp(−w) . Next, we introduce a key quantity that captures learning complexity.

Definition 2. Let σ̇(w) = σ(w)(1 − σ(w)) be the derivative function of σ, the non-linearity
coefficient κ is defined as κ = maxx∈X ,a,a′∈A,θ∈Θ

1
σ̇(ϕ(x,a)⊤θ−ϕ(x,a′)⊤θ) .

Intuitively, the quantity κ, defined as the inverse of the derivative, characterizes the learning difficulty
of the reward function. In particular, a smaller derivative leads to a larger κ, implying that the model
output changes less for the same input variation and thus the function is harder to learn. By direct
calculation, we have κ ≤ 3 + exp(2BL). Therefore, κ can be exceedingly large, exhibiting an
exponential dependence on the magnitude of the features and the model parameters.

4 Our Framework

In this section, we first introduce the general framework for online RLHF. We then present our
one-pass reward modeling method. Finally, we show the theoretical guarantee of our method.

4.1 General framework for online RLHF

The general process of online RLHF involves iteratively collecting data and updating the model based
on the collected data. At iteration t, the process can be formulated as:

(i) New data collection: Sample a prompt xt and two responses at and a′t, query the oracle to
obtain the preference label yt ∈ {0, 1}, expand the dataset Dt+1 = Dt ∪ {(xt, at, a′t, yt)}.

(ii) Reward modeling: Train a reward model rt+1 using the historical dataset Dt+1.
(iii) Policy optimization (Optional): Update the policy πt+1 using the reward model rt+1.

A key challenge in online RLHF is that the reward model needs to be trained on the entire historical
dataset at each iteration, which is computationally expensive. Specifically, let zt = ϕ(xt, at) −
ϕ(xt, a

′
t) be the feature difference, given the historical dataset Dt+1 = {(xi, ai, a′i, yi)}

t
i=1, the

reward model is estimated via maximum likelihood estimation as

θ̂t+1 = argmin
θ∈Rd

t∑
i=1

ℓi(θ),where ℓt(θ) = −yt log(σ(z⊤t θ))− (1− yt) log(1− σ(z⊤t θ)). (1)

4

However, Eq. (1) does not admit a closed-form solution, requiring iterative optimization techniques,
such as gradient descent, to achieve an ε-accurate estimate. As discussed by Faury et al. [2022],
obtaining such accuracy with MLE typically requires O(log(1/ε)) optimization steps. Since the loss
function is defined over the entire historical dataset, each iteration incurs a computational cost of
O(t) gradient evaluations. In practice, ε is often set to 1/t to ensure that the optimization error does
not dominate the overall estimation error. As a result, the total computational complexity at iteration
t becomes O(t log t), a cost that is prohibitive for long-term online RLHF applications.

4.2 One-pass reward modeling

Drawing inspiration from recent advancements in logistic bandits [Faury et al., 2022, Zhang and
Sugiyama, 2023] and multinomial logit MDPs [Li et al., 2024], we propose a novel one-pass reward
modeling method that reduces the complexity to constant time per iteration. First, define the gradient
gt(θ) and Hessian Ht(θ) of loss ℓt(θ) as gt(θ) = (σ(z⊤t θ)− yt)zt and Ht(θ) = σ̇(z⊤t θ)ztz

⊤
t .

Implicit OMD. To improve the computational efficiency, Faury et al. [2022] observed that the
cumulative past log-loss is strongly convex and can therefore be well approximated by a quadratic
function. Building on this observation, they proposed the following update rule:

θ̄t+1 = argmin
θ∈Θ

{
ℓt(θ) +

1

2η

∥∥θ − θ̄t
∥∥2
H̄t

}
, (2)

where H̄t =
∑t−1
i=1Hi(θ̄i+1)+λI is the local norm, and η is the step size. The optimization problem

can be decomposed into two terms. The first term is the instantaneous log-loss ℓt(θ), which accounts
for the information of the current sample. The second consists of a quadratic proxy for the past
losses constructed through the sequence {θ̄i}i≤t. A key component is the design of the local norm
H̄t, which approximates the Hessian matrix by Hi(θ̄i+1) at a lookahead point θ̄i+1. Such a Hessian
matrix effectively captures local information and is crucial for ensuring statistical efficiency.

The update rule in Eq. (2) benefits from a one-pass data processing property, which eliminates
the need to store the entire historical dataset. However, the optimization problem in Eq. (2) still
does not have a closed-form solution. But since the loss is defined only on the current sample, it
requires only O(1) gradient computations per step, leading to a total computational complexity of
O(log t) at iteration t. This represents a significant improvement over the O(t log t) complexity of
the MLE estimator in Eq. (1). Nevertheless, the computational complexity of the implicit OMD is
still increasing with the number of iterations, which motivates us to design a constant-time method.

Standard OMD. To enhance computational efficiency, a natural alternative is to replace this
formulation with the standard OMD framework, which permits a closed-form solution and thus
eliminates the need for iterative optimization. However, the standard OMD minimizes a first-order
approximation of the loss function, which sacrifices several key properties compared to its implicit
counterpart, as demonstrated by Campolongo and Orabona [2020]. Specifically, the standard OMD
formulation updates using gt(θt), whereas the implicit OMD updates the algorithm approximately
with the subsequent sub-gradient, gt(θt+1). This distinction results in a notable gap in the convergence
rates of the two methods. To this end, we propose to approximate the current loss ℓt(θ) using a
second-order Taylor expansion, drawing inspiration from Zhang and Sugiyama [2023]. Define the
second-order approximation of ℓt(θ) as ℓ̃t(θ) = ℓt(θ̃t) + gt(θ̃t)

⊤(θ − θ̃t) +
1
2∥θ − θ̃t∥2Ht(θ̃t)

. Then,

we replace the loss ℓt(θ) in Eq. (2) with the approximation ℓ̃t(θ), leading to the update rule:

θ̃t+1 = argmin
θ∈Θ

{〈
gt(θ̃t), θ

〉
+

1

2η

∥∥θ − θ̃t
∥∥2
H̃t

}
, (3)

where η is the step size and H̃t = Ht + ηHt(θ̃t) is the local norm with Ht ≜
∑t−1
i=1Hi(θ̃i+1) + λI .

Eq. (3) can be solved with a projected gradient step with the following equivalent form:

θ̃′t+1 = θ̃t − ηH̃−1
t gt(θ̃t), θ̃t+1 = argmin

θ∈Θ
∥θ − θ̃′t+1∥2H̃t

.

Thus, the estimator θ̃t+1 provides a closed-form solution, leading to a O(1) computational complexity
per iteration. Furthermore, since the estimator processes the samples in a one-pass manner, it mitigates
the memory burden associated with computing the gradient of the full dataset. These properties make
the method particularly suitable for edge devices, where both memory and computational resources
are severely constrained. The detailed process of our proposed method is presented in Algorithm 1.

5

Algorithm 1 One-Pass Reward Modeling

Input: Preference data (xt, at, a
′
t, yt)

1: Define the loss function ℓt(θ) as Eq. (1)
2: Update H̃t = Ht + ηHt(θ̃t)

3: Compute θ̃′t+1 = θ̃t − ηH̃−1
t gt(θ̃t)

4: Compute θ̃t+1 = argminθ∈Θ∥θ− θ̃′t+1∥2H̃t

5: Update Ht+1 = Ht +Ht(θ̃t+1)

Output: θ̃t+1

Algorithm 2 Passive Data Collection

Input: Regularization parameter λ, step size η
1: Initialize θ̃1 = 0 and H̃1 = λI
2: for t = 1, 2, . . . , T do
3: Observe preference data (xt, at, a

′
t, yt)

4: θ̃t+1 = Algorithm 1 (xt, at, a
′
t, yt)

5: end for
6: Construct J̃T+1(π) as in Eq. (4)
Output: πT+1 = argmaxπ∈Π J̃T+1(π)

4.3 Theoretical guarantee

Note that the update rule in Eq. (3) is a special case of online mirror descent, specifically:

θ̃t+1 = argmin
θ∈Θ

{
η
〈
gt(θ̃t), θ

〉
+Dψt

(θ, θ̃t)
}
,

where ψt(θ) = 1
2∥θ∥

2
H̃t

is the regularizer and Dψt
(θ, θ̃t) = ψt(θ)− ψt(θ̃t)− ⟨∇ψt(θ̃t), θ − θ̃t⟩ is

Bregman divergence. Leveraging the modern analysis of online mirror descent [Zhao et al., 2024,
Zhang and Sugiyama, 2023], we derive the following estimation error bound.
Lemma 1. Let δ ∈ (0, 1], set η = (1/2) log 2 + (BL+ 1) and λ = 84

√
2η(dL2 + BL3), define

Ct = {θ ∈ Θ | ∥θ − θ̃t∥Ht
≤ β̃t ≜ O

(√
d log(t/δ)

)
}. Then, we have Pr [∀t ⩾ 1, θ∗ ∈ Ct] ⩾ 1− δ.

Comparison with MLE. For the MLE estimator in Eq. (1), prior works [Zhu et al., 2023, Das et al.,
2025, Ji et al., 2025] have shown ∥θ − θ̃t∥Vt

≤ Õ(κ
√
d), where Vt =

∑t−1
i=1 ziz

⊤
i + λI . By the

definition of Ht, it holds that Ht ⪰ κ−1Vt, Lemma 1 implies that ∥θ − θ̃t∥Vt ≤
√
κ∥θ − θ̃t∥Ht ≤

Õ(
√
κd). This result shows that Lemma 1 improves upon previous bounds by at least a factor of

√
κ.

5 Applications in Three Online RLHF Scenarios

In this section, we apply our framework to three distinct RLHF scenarios, including online RLHF
with passive data collection, active data collection, and deployment-time adaptation.

5.1 Online RLHF with passive data collection

We first consider the passive data collection setting, where the algorithm cannot control the data
collection process. At each iteration, the learner obtains (xt, at, a′t, yt) and updates by Eq. (3). We
adopt the “pessimism in the face of uncertainty” principle and define the value function J̃t+1(π) as

J̃T+1(π) = (Ex∼ρ [ϕ(x, π(x))])⊤θ̃T+1 − β̃T+1∥Ex∼ρ [ϕ(x, π(x))]∥H−1
T+1

. (4)

where ρ is the context distribution. The policy πT+1 is selected as πT+1 = argmaxπ∈Π J̃T+1(π).
The detailed procedure is present in Algorithm 2, and we show it enjoys the following guarantee.
Theorem 1. Set parameters as in Lemma 1, with probability at least 1− δ, Algorithm 2 ensures

SubOpt(πT+1) = Ex∼ρ [r(x, π∗(x))− r(x, πT+1(x))] ≤ Õ
(√

d ·
∥∥Ex∼ρ [ϕ(x, π∗(x))]

∥∥
H−1

T+1

)
,

where ρ is the context distribution and π∗ is the optimal policy.
Remark 2. The term ∥Ex∼ρ [ϕ(x, π∗(x))]∥H−1

T+1
is usually referred to “concentrability coefficient”

in the literature. It measures the distribution shift between the optimal policy and the collected data.

Remark 3. For statistical efficiency, since Ht ⪰ κ−1Vt, Theorem 1 improves the Õ(
√
dκ ·

∥Ex∼ρ [ϕ(x, π∗(x))]∥V −1
T+1

) result of Zhu et al. [2023] at least by a factor of
√
κ. Regarding com-

putational efficiency, their algorithm has a total storage complexity of O(T) and a time complexity
of O(T log T), leading to an amortized per-iteration cost of O(log T). In contrast, our algorithm
maintains a strict O(1) complexity per iteration, offering a substantial computational advantage.

6

!! !!" Model

Model

Model

!# !#"

!$!$"

!

!

!

Model

Model

Model

Model

Model

Model

"#

"!

"$

#!

##

#$

!

!

!

!! !!"

!# !#"

!$!$"

"#

"!

"$

#!

##

#$

!! !!"

!# !#"

!$!$"

"#

"!

"$

#!

##

#$

!

!

!

… … …
(a) Passive Data Collection

!! !!" Model

Model

Model

!# !#"

!$!$"

!

!

!

Model

Model

Model

Model

Model

Model

"#

"!

"$

#!

##

#$

!

!

!

!! !!"

!# !#"

!$!$"

"#

"!

"$

#!

##

#$

!! !!"

!# !#"

!$!$"

"#

"!

"$

#!

##

#$

!

!

!

… … …
(b) Active Data Collection

!! !!" Model

Model

Model

!# !#"

!$!$"

!

!

!

Model

Model

Model

Model

Model

Model

"#

"!

"$

#!

##

#$

!

!

!

!! !!"

!# !#"

!$!$"

"#

"!

"$

#!

##

#$

!! !!"

!# !#"

!$!$"

"#

"!

"$

#!

##

#$

!

!

!

… … …
(c) Deployment-Time Adaptation

Figure 1: Different settings of online RLHF. Contexts and actions selected by the environment (�)
are shown in grey, while those selected by the algorithm (ü) are highlighted in color.

5.2 Online RLHF with active data collection

As established in Theorem 1, the sub-optimality gap depends on the concentrability coefficient, which
quantifies the distributional mismatch between the optimal policy and the collected data. In this
subsection, we propose an active data collection method that removes this dependency.

Active Data Collection. At each iteration, we select a triplet (xt, at, a′t) to query for human feedback
yt, and then update the reward model using our one-pass method as defined in Eq. (3). To guide data
acquisition, we adopt an active selection strategy that queries the sample with the highest predictive
uncertainty under the current reward model. Specifically, the next query is chosen by solving:

(xt+1, at+1, a
′
t+1) = argmax

x,a,a′∈X×A×A

{∥∥ϕ(x, a)− ϕ(x, a′)
∥∥
H−1

t+1

}
. (5)

Policy Optimization. After T rounds, we define the reward as the average of all the past estimations
r̃T+1(x, a) =

1
T+1

∑T+1
t=1 ϕ(x, a)

⊤θ̃t. The policy is given by πT+1(x) = argmaxa∈A r̃T+1(x, a).

The detailed procedure is present in Algorithm 3. We show it enjoys the following guarantee.
Theorem 2. Set parameters as in Lemma 1, with probability at least 1− δ, Algorithm 3 ensures

SubOpt(πT+1) = Ex∼ρ [r(x, π∗(x))− r(x, πT+1(x))] ≤ Õ
(
d
√
κ/T

)
,

where ρ is the context distribution and π∗ is the optimal policy.
Remark 4. We attain the same sub-optimality gap as Das et al. [2025], but improve the computational
efficiency significantly. Our algorithm has an O(1) time and space complexity per round, while their
MLE estimator needs O(t log t) time and O(t) space complexity at iteration t.

5.3 Online RLHF with deployment-time adaptation

In this section, we consider the deployment-time adaptation setting, where users provide input
contexts in an online manner, and the learner generates responses while simultaneously collecting
feedback to improve the model. In this scenario, the learner faces a dual objective: selecting actions
that maximize rewards to ensure a positive user experience, while also choosing actions that yield
informative feedback to facilitate continual model improvement. To this end, we consider the measure:
RegT =

∑T
t=1

(
r (xt, π

∗(xt))− 1
2 (r (xt, at) + r (xt, a

′
t))
)
, where π∗ is the optimal policy.

Action selection. At each iteration, given a prompt xt from the user, the learner selects two actions
at and a′t and obtain the feedback yt. The learner must select actions that are both informative and
with high rewards. To this end, we choose the first action at+1 to maximize the estimated reward, i.e.,

at+1 = argmax
a∈A

ϕ(xt+1, a)
⊤θ̃t+1. (6)

The second action a′t+1 aims to maximize the reward and the distance between the two actions, i.e.,

a′t+1 = argmax
a′∈A

{
ϕ(xt+1, a

′)⊤θ̃t+1 + β̃t+1∥ϕ(xt+1, a
′)− ϕ(xt+1, at+1)∥H−1

t+1

}
. (7)

The overall algorithm is summarized in Algorithm 4. We show it enjoys the following regret bound.

7

Algorithm 3 Active Data Collection

Input: Regularization parameter λ, step size η
1: Initialize θ̃1 = 0 and H1 = λI
2: for t = 1, 2, . . . , T do
3: Choose (xt, at, a′t) as Eq. (5), observe yt
4: θ̃t+1 = Algorithm 1 (xt, at, a

′
t, yt)

5: end for
6: Set r̃T+1(x, a) =

1
T+1

∑T+1
t=1 ϕ(x, a)

⊤θ̃t
Output: πT+1(x) = argmaxa∈A r̃T+1(x, a)

Algorithm 4 Deployment-Time Adaptation

Input: Regularization parameter λ, step size η
1: Initialize θ̃1 = 0 and H1 = λI .
2: for t = 1, 2, . . . , T do
3: Observes the context xt.
4: Selects at and a′t as Eq. (6) and Eq. (7)
5: Observe the preference feedback yt
6: θ̃t+1 = Algorithm 1 (xt, at, a

′
t, yt)

7: end for

Theorem 3. For any δ ∈ (0, 1], set parameters as in Lemma 1, Algorithm 4 ensures the regret
satisfies RegT ≤ Õ

(
d
√
κT
)

with probability at least 1− δ.
Remark 5. Our result improves upon Saha et al. [2023] in both computational and statistical efficiency.
Statistically, Theorem 3 improves their Õ

(
dκ

√
T
)

result by a factor of
√
κ. Computationally, our

algorithm has an O(1) time and space complexity per round, while their MLE estimator needs
O(t log t) time and O(t) space complexity at iteration t due to optimization over the historical data.

6 Practical Implementation

While the proposed one-pass algorithm completely removes the need to store historical data and
achieves constant-time updates per iteration, its computational cost still exhibits an implicit depen-
dence on the feature dimension d, which can become non-negligible in large-scale model optimization.
To further alleviate this issue, we introduce in this section several empirical approximation techniques
designed to reduce the effective dependence on dimensionality and enhance practical efficiency.

6.1 Computation of inverse Hessian

Although the OMD update in Eq. (3) enjoys one-pass property, it requires the computation of
matrix inversion. Specifically, by omitting the projection operation, Eq. (3) can be rewritten as
θ̃t+1 = θ̃t − ηH̃−1

t gt(θ̃t) where H̃t =
∑t−1
i=1Hi(θ̃i+1) + ηHt(θ̃t) + λI . Computing the full H̃−1

t

directly incurs a time complexity of O(d3), which is prohibitive for LLMs as d is typically large.

This cost can be reduced to O(d2) by applying the Sherman-Morrison-Woodbury formula, leveraging
the fact that the Hessian is a rank-one update. Specifically, for a matrix of the form A+xx⊤ where A
is invertible and x is a vector, the inverse is given by (A+ xx⊤)−1 = A−1 − A−1xx⊤A−1

1+x⊤A−1x
, requiring

only O(d2) time. Nevertheless, even this reduced complexity remains costly for large models.

To further reduce the computational burden to O(d), we employ the Hessian-vector product tech-
nique combined with conjugate gradient descent [Boyd and Vandenberghe, 2004]. Instead of ex-
plicitly computing H̃−1

t , we define vt = H̃−1
t gt(θ̃t) and solve the linear system H̃tvt = gt(θ̃t)

using the conjugate gradient method. The required matrix–vector product decomposes as H̃tvt =∑t−1
i=1Hi(θ̃i+1)vt + λvt + ηHt(θ̃t)vt.

For the first term, materializing and storing all past Hessians Hi(θ̃i+1) is infeasible. We therefore
absorb their effect into the second term by replacing λ with λt = λ0 ·min{1, f(t/T)}, where f(·)
is a monotonic increasing function, such as a linear or logarithmic function. The last term can be
computed via the Pearlmutter trick as Ht(θ̃t)vt = ∇θ

(
∇θℓt(θ)

⊤vt
)∣∣
θ=θ̃t

. Each iteration therefore
requires only HVPs and vector operations, yielding an overall O(d) per-iteration cost with a small
fixed number of iterations.

6.2 Computation of model uncertainty

In both online RLHF with active data collection and deployment-time adaptation, our algorithm
utilizes uncertainty-driven query selection strategies. While quantifying uncertainty using the local

8

0 200 400 600 800
Iterations

0.50

0.55

0.60

0.65

Lo
ss

Passive-MLE Ours

(a) training loss

0 200 400 600 800
Iterations

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Ac
cu

ra
cy

Passive-MLE Ours

(b) training accuracy

100 200 300 400 500 600 700 800 900
Iterations

0.56

0.58

0.60

0.62

Lo
ss

Passive-MLE Ours

(c) evaluation loss

100 200 300 400 500 600 700 800 900
Iterations

0.680

0.685

0.690

0.695

0.700

0.705

0.710

Ac
cu

ra
cy

Passive-MLE Ours

(d) evaluation accuracy

Figure 2: For online RLHF with passive data collection, we report the comparison of MLE and our
method about (a) training loss, (b) training accuracy, (c) evaluation loss and (d) evaluation accuracy.

0 100 200 300 400 500 600 700 800
Iterations

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Lo
ss

Rand-MLE
Active-MLE

Rand-OMD
Ours

(a) training loss

0 100 200 300 400 500 600 700 800
Iterations

0.65

0.66

0.67

0.68

0.69

0.70

Ac
cu

ra
cy

Rand-MLE
Active-MLE

Rand-OMD
Ours

(b) evaluation accuracy

Method ACC (%) Time (s)

Rand-MLE 69.51±0.5 4876±47
Active-MLE 69.82±0.4 4982±52
Rand-OMD 68.97±0.6 1456±31

Ours 70.43±0.3 1489±36

(c) evaluation accuracy and training time

Figure 3: For online RLHF with active data collection, we report the comparison of different methods
about (a) training loss, (b) evaluation accuracy and (c) final evaluation accuracy and training time.

norm induced by the inverse Hessian matrix offers strong theoretical guarantees, it is computationally
prohibitive in practice. To address this challenge, we adopt a rejection sampling-based approximation,
a technique commonly employed for exploration in the RLHF literature [Nakano et al., 2021, Gulcehre
et al., 2023, Dong et al., 2023, 2024]. Specifically, given a prompt, we sample n independent responses
by the current model, then use the trained reward function to rank the responses. Then, we use
different strategies to select the response for different settings. Specifically, In active data collection,
the key insight is to identify and query samples that exhibit the greatest diversity in prompt action
features. To this end, we select the response with the highest predicted reward and the one with the
lowest predicted reward. In deployment-time adaptation, the core idea is to select the first arm to
maximize the estimated reward, while the second is chosen to balance high reward with sufficient
divergence from the first. Concretely, we select the response with the highest predicted reward and
another from the top-1/q percentile of the reward to ensure diversity, where q is a hyperparameter.

7 Experiments

In this section, we empirically evaluate the performance of our proposed method. 1 We first describe
the experimental setup, and then present the empirical results.

7.1 Experiment setup

In our experiments, we employ the Llama-3-8B-Instruct and Qwen2.5-7B-Instruct as the
base model for reward model. We extract features ϕ(x, a) using the last layer of the model, and the
dimension is d = 4096. We use two datasets for evaluation. The first one is Ultrafeedback-binarized
dataset, a pre-processed version of the original Ultrafeedback dataset [Cui et al., 2024], a widely used
benchmark for RLHF. It collects about 64, 000 prompts from diverse resources, including question
answering, summarization, and dialogue generation. Each data consists of a context x, two responses
a and a′, and a preference label y. We also employ a mixed dataset, Mixture2 dataset [Dong et al.,
2024], which combines a variety of preference datasets, including HH-RLHF, SHP, UltraFeedback,
Capybara, etc. The dataset follows the same format as the UltraFeedback-binarized dataset.

7.2 Experimental results

We present the experimental results for Llama-3-8B-Instruct on the Ultrafeedback dataset. Due
to page limits, more detailed results including comparisons with Adam, DPO, full model updates,
additional models of Qwen2.5-7B-Instruct, and Mixture2 dataset are deferred to appendix.

1The code is available at https://github.com/ZinYY/Online_RLHF

9

https://github.com/ZinYY/Online_RLHF

0 5 10 15 20
Iterations

0.18

0.17

0.16

0.15

0.14

0.13

0.12

Av
er

ag
e

Cu
m

ul
at

iv
e

Re
w

ar
d

Rand-MLE
Best-Sec-MLE

Best-Worst-MLE
Ours (MLE)

(a) Rewards of MLE methods

0 5 10 15 20
Iterations

0.15

0.14

0.13

0.12

0.11

0.10

Av
er

ag
e

Cu
m

ul
at

iv
e

Re
w

ar
d

Random-OMD
Best-Sec-OMD

Best-Worst-OMD
Ours (OMD)

(b) Rewards of OMD methods
Random Best-Worst Best-Sec Ours

10

15

20

25

30

35

40

45

50

55

W
in

 R
at

e

MLE
OMD

(c) Win rates, all methods

Figure 4: For online RLHF with deployment-time adaptation, we report (a) cumulative rewards of
MLE-based methods, (b) cumulative rewards of OMD-based methods, and (c) win rates.

Passive data collection. We evaluate the performance of our proposed method in terms of the
loss and accuracy of the reward model. We compare our OMD-based method with the MLE-based
method. We randomly sample T = 30, 000 data points from the Ultrafeedback dataset for training.
Figure 2 shows the loss and accuracy vs. the number of training samples. We observe that our method
converges faster to a lower loss and achieves a higher evaluation accuracy compared to baselines.
The improvement is particularly pronounced in the small-sample regime (T < 10, 000), where our
method achieves a higher evaluation accuracy with the same amount of samples compared to MLE
which employs conventional stochastic gradient descent (SGD) updates. This shows the superior
statistical efficiency of our approach, achieving a better performance with fewer training samples.

Active data collection. In this setting, we only allow the algorithm to select 6, 400 samples out
of the whole training datasets for training according to different selection strategies. To evaluate
the effectiveness of the data selection strategy, we compare our method with the random selection
strategy. We evaluate the performance of the MLE-based method and our proposed OMD-based
method. Figure 3 demonstrates that our OMD-based method achieves comparable performance with
the MLE-based method for both data collection strategies, while improving the training time by
approximately three times. Moreover, our data selection strategy outperforms the random selection
strategy, showing that our method can effectively select informative data to improve the performance.

Deployment-time adaptation. We divide the dataset into 20 chunks and process them sequentially
to simulate the deployment scenario. We compare our action selection strategy with (i): random
selection, (ii): select the best and second best actions, and (iii): select the best and worst actions. We
combine the above strategies with MLE-based and OMD-based methods. We report both the average
cumulative rewards and win rates of each method, where the win rate is defined as the proportion of
pairwise comparisons in which a method outperforms all others. As shown in Figure 4, our action
selection strategy outperforms the baselines for both MLE-based and OMD-based methods. This
validates the effectiveness of our selection strategy that balances the exploitation of high-reward
responses with sufficient exploration to facilitate model improvement. Besides, the win rates show
that our OMD-based method achieves competitive performance with the MLE-based method.

8 Conclusion

In this work, we address a key challenge in online RLHF, where the computational complexity
typically grows linearly with the number of iterations. To overcome this limitation, we propose a
novel one-pass algorithm that eliminates the need to store historical data and achieves constant-time
complexity per iteration. Our approach is built upon the online mirror descent framework with a
carefully designed local norm. We apply our method to three online RLHF settings and design tailored
algorithms for each scenario. We provide both theoretical guarantees and efficient implementations,
demonstrating that our approach improves statistical and computational efficiency over existing
methods. Finally, we validate the effectiveness of our method through extensive experiments.

While our work advances both the statistical and computational understanding of online RLHF,
several important directions remain for future exploration. First, we assume a fixed feature mapping
for the reward model; however, in practice, this mapping may evolve throughout the training process.
Analyzing the impact of such dynamically changing feature representations presents a compelling
direction for future research. Second, although our analysis is based on the Bradley-Terry model,
extending the framework to other preference models, such as the Plackett-Luce model [Luce, 1959,
Plackett, 1975], is another promising avenue that may broaden the applicability of our results.

10

Acknowledgments

This research was supported by National Science and Technology Major Project (2022ZD0114800)
and NSFC (U23A20382, 62206125). Peng Zhao was supported in part by the Xiaomi Foundation.

References
Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic

bandits. In Advances in Neural Information Processing Systems 24 (NIPS), pages 2312–2320,
2011.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan
Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei,
Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback. ArXiv
preprint, 2204.05862, 2022.

Viktor Bengs, Aadirupa Saha, and Eyke Hüllermeier. Stochastic contextual dueling bandits under
linear stochastic transitivity models. In Proceedings of the 40th International Conference on
Machine Learning (ICML), pages 1764–1786, 2022.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press, 2004.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Davide Cacciarelli and Murat Kulahci. Active learning for data streams: a survey. Machine Learning,
113(1):185–239, 2024.

Nicolò Campolongo and Francesco Orabona. Temporal variability in implicit online learning. In
Advances in Neural Information Processing Systems 33 (NeurIPS), pages 12377–12387, 2020.

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale
Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified
approach to online and offline RLHF. In Proceedings of the 13th International Conference on
Learning Representations (ICLR), 2025.

Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient
prediction. In Proceedings of the 17th Conference on Learning Theory (COLT), pages 77–92,
2004.

Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Worst-case analysis of selective sampling
for linear classification. Journal of Machine Learning Research, 7:1205–1230, 2006.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Ultrafeedback: boosting language
models with scaled ai feedback. In Proceedings of the 41st International Conference on Machine
Learning (ICML), pages 9722–9744, 2024.

Nirjhar Das, Souradip Chakroborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Active preference
optimization for sample efficient rlhf. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML-PKDD), pages 96–112, 2025.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward ranked finetuning for generative
foundation model alignment. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. RLHF workflow: From reward modeling to online
RLHF. Transactions on Machine Learning Research, 2024.

11

Yihan Du, Anna Winnicki, Gal Dalal, Shie Mannor, and R. Srikant. Exploration-driven policy
optimization in RLHF: theoretical insights on efficient data utilization. In Proceedings of the 41st
International Conference on Machine Learning (ICML), pages 11830–11887, 2024.

Miroslav Dudík, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, and Masrour Zoghi.
Contextual dueling bandits. In Proceedings of The 28th Conference on Learning Theory (COLT),
pages 563–587, 2015.

Louis Faury, Marc Abeille, Kwang-Sung Jun, and Clément Calauzènes. Jointly efficient and optimal
algorithms for logistic bandits. In Proceedings of the 25th International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 546–580, 2022.

Dylan J. Foster, Zakaria Mhammedi, and Dhruv Rohatgi. Is a good foundation necessary for efficient
reinforcement learning? the computational role of the base model in exploration. In Proceedings
of the 38th Conference on Learning Theory (COLT), pages 2026–2142, 2025.

Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling using the query
by committee algorithm. Machine Learning, 28:133–168, 1997.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language modeling.
ArXiv preprint, 2308.08998, 2023.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Ramé, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel. Direct language
model alignment from online AI feedback. ArXiv preprint, 2402.04792, 2024.

Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou. Active learning by querying informative and
representative examples. In Advances in Neural Information Processing Systems 23 (NIPS), pages
892–900, 2010.

Kaixuan Ji, Jiafan He, and Quanquan Gu. Reinforcement learning from human feedback with active
queries. Transactions on Machine Learning Research, 2025. ISSN 2835-8856.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan. Provably efficient reinforcement
learning with linear function approximation. In Proceedings of the 33rd Conference on Learning
Theory (COLT), pages 2137–2143, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
3rd International Conference on Learning Representations (ICLR), 2015.

Joongkyu Lee and Min-hwan Oh. Nearly minimax optimal regret for multinomial logistic bandit. In
Advances in Neural Information Processing Systems 36 (NeurIPS), pages 109003–109065, 2024.

Long-Fei Li, Yu-Jie Zhang, Peng Zhao, and Zhi-Hua Zhou. Provably efficient reinforcement learning
with multinomial logit function approximation. In Advances in Neural Information Processing
Systems 37 (NeurIPS), pages 58539–58573, 2024.

Llama Team. The Llama 3 herd of models. ArXiv preprint, 2407.21783, 2023.

R Duncan Luce. Individual Choice Behavior: A Theoretical Analysis. Wiley, 1959.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. ArXiv preprint, 2112.09332, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems 35
(NeurIPS), pages 27730–27744, 2022.

Junsoo Park, Seungyeon Jwa, Meiying Ren, Daeyoung Kim, and Sanghyuk Choi. Offsetbias:
Leveraging debiased data for tuning evaluators. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 1043–1067, 2024.

12

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193–202, 1975.

Qwen Team. Qwen2.5 technical report. ArXiv preprint, 2412.15115, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Advances
in Neural Information Processing Systems 36 (NeurIPS), pages 53728–53741, 2023.

Aadirupa Saha. Optimal algorithms for stochastic contextual preference bandits. In Advances in
Neural Information Processing Systems 34 (NeurIPS), pages 30050–30062, 2021.

Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling RL: reinforcement learning with trajec-
tory preferences. In Proceedings of the 26th International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 6263–6289, 2023.

Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Contextual bandits and imitation
learning with preference-based active queries. In Advances in Neural Information Processing
Systems 36 (NeurIPS), pages 11261–11295, 2023.

Burr Settles. Active learning literature survey. Technical Report, 2009.

H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Proceedings of
the 5th Annual Conference on Computational Learning Theory, pages 287–294, 1992.

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 1, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. ArXiv preprint, 2307.09288, 2023.

Quoc Tran-Dinh, Yen-Huan Li, and Volkan Cevher. Composite convex minimization involving self-
concordant-like cost functions. In Proceedings of the 3rd International Conference on Modelling,
Computation and Optimization in Information Systems and Management Sciences, pages 155–168,
2015.

Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low. Neural
dueling bandits: Preference-based optimization with human feedback. In Proceedings of the 13th
International Conference on Learning Representations (ICLR), 2025a.

Arun Verma, Xiaoqiang Lin, Zhongxiang Dai, Daniela Rus, and Bryan Kian Hsiang Low. Active
human feedback collection via neural contextual dueling bandits. ArXiv preprint, 2504.12016,
2025b.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. In Proceedings of the 13th International Conference on Learning
Representations (ICLR), 2025.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for RLHF under
KL-constraint. In Proceedings of the 41st International Conference on Machine Learning (ICML),
pages 54715–54754, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason Weston. Self-rewarding language models. In Proceedings of the 41st International
Conference on Machine Learning (ICML), pages 57905–57923, 2024.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The K-armed dueling bandits
problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

13

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Han Zhong, Zhihan Liu, Ziyi Yang, Shuohang Wang,
Hany Hassan Awadalla, and Zhaoran Wang. Self-exploring language models: Active preference
elicitation for online alignment. Transactions on Machine Learning Research, 2025. ISSN
2835-8856.

Yu-Jie Zhang and Masashi Sugiyama. Online (multinomial) logistic bandit: Improved regret and
constant computation cost. In Advances in Neural Information Processing Systems 36 (NeurIPS),
pages 29741–29782, 2023.

Heyang Zhao, Chenlu Ye, Wei Xiong, Quanquan Gu, and Tong Zhang. Logarithmic regret for online
KL-regularized reinforcement learning. In Proceedings of the 41st International Conference on
Machine Learning (ICML), pages 77864–77884, 2025.

Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Adaptivity and non-stationarity: Problem-
dependent dynamic regret for online convex optimization. Journal of Machine Learning Research,
25(98):1 – 52, 2024.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feed-
back from pairwise or K-wise comparisons. In Proceedings of the 40th International Conference
on Machine Learning (ICML), pages 43037–43067, 2023.

14

A Useful Lemmas

Lemma 2. For any t ∈ [T], define the second-order approximation of the loss function ℓt(θ) at the
estimator θ̃t as

ℓ̃t(θ) = ℓt(θ̃t) + ⟨∇ℓt(θ̃t), θ − θ̃t⟩+
1

2
∥θ − θ̃t∥2Ht(θ̃t)

.

Then, for the following update rule

θ̃t+1 = argmin
θ∈Θ

{
ℓ̃t(θ) +

1

2η
∥θ − θ̃t∥2Ht

}
,

it holds that

∥θ̃t+1 − θ∗∥2Ht+1

≤ 2η

(
t∑
i=1

ℓi(θ
∗)−

t∑
i=1

ℓi(θ̃i+1)

)
+ 4λB2 + 12

√
2BL3η

t∑
i=1

∥θ̃i+1 − θ̃i∥22 −
t∑
i=1

∥θ̃i+1 − θ̃i∥2Hi
.

Proof. Based on the analysis of (implicit) OMD update (see Lemma 5), for any i ∈ [T], we have〈
∇ℓ̃i(θ̃i+1), θ̃i+1 − θ∗

〉
⩽

1

2η

(
∥θ̃i − θ∗∥2Hi

− ∥θ̃i+1 − θ∗∥2Hi
− ∥θ̃i+1 − θ̃i∥2Hi

)
According to Lemma 6, we have

ℓi(θ̃i+1)− ℓi (θ
∗) ⩽

〈
∇ℓi(θ̃i+1), θ̃i+1 − θ∗

〉
− 1

ζ

∥∥θ̃i+1 − θ∗
∥∥2
∇2ℓi(θ̃i+1)

,

where ζ = log 2 + 2(LB + 1). Then, by combining the above two inequalities, we have

ℓi(θ̃i+1)− ℓi(θ
∗) ⩽ ⟨∇ℓi(θ̃i+1)−∇ℓ̃i(θ̃i+1), θ̃i+1 − θ∗⟩

+
1

ζ

(
∥θ̃i − θ∗∥2Hi

− ∥θ̃i+1 − θ∗∥2Hi+1
− ∥θ̃i+1 − θ̃i∥2Hi

)
.

We can further bound the first term of the right-hand side as:〈
∇ℓi(θ̃i+1)−∇ℓ̃i(θ̃i+1), θ̃i+1 − θ∗

〉
=
〈
∇ℓi(θ̃i+1)−∇ℓi(θ̃i)−∇2ℓi(θ̃i)(θ̃i+1 − θ̃i), θ̃i+1 − θ∗

〉
=
〈
D3ℓi(ξi+1)θ̃i+1 − θ̃i, θ̃i+1 − θ∗

〉
⩽ 3

√
2L
∥∥θ̃i+1 − θ∗

∥∥
2

∥∥θ̃i+1 − θ̃i
∥∥2
∇2ℓi(ξi+1)

⩽ 6
√
2BL

∥∥θ̃i+1 − θ̃i
∥∥2
∇2ℓi(ξi+1)

⩽ 6
√
2BL3

∥∥θ̃i+1 − θ̃i
∥∥2
2
,

where the second equality holds by the mean value theorem, the first inequality holds by the self-
concordant-like property of ℓi(·) in Lemma 3, and the last inequality holds by θ̃i+1 and θ∗ belong to
Θ = {θ ∈ Rd, ∥θ∥2 ≤ B}, and ∇2ℓi(ξi+1) ⪯ L2Id.

Then, by taking the summation over i and rearranging the terms, we obtain∥∥θ̃t+1 − θ∗
∥∥2
Ht+1

⩽ ζ

t∑
i=1

(
ℓi (θ

∗)− ℓi(θ̃i+1)
)
+ ∥θ̃1 − θ∗∥2H1

+ 6
√
2BL3ζ

t∑
i=1

∥∥θ̃i+1 − θ̃i
∥∥2
2
−

t∑
i=1

∥∥θ̃i+1 − θ̃i
∥∥2
Hi

⩽ ζ

t∑
i=1

(
ℓi (θ

∗)− ℓi
(
θ̃i+1

))
+ 4λB2 + 6

√
2BL3ζ

t∑
i=1

∥∥θ̃i+1 − θ̃i
∥∥2
2
−

t∑
i=1

∥∥θ̃i+1 − θ̃i
∥∥2
Hi
,

where the last inequality is by ∥θ̃1 − θ∗∥2H1
≤ λ∥θ̃1 − θ∗∥22 ≤ 4λB2. Set ζ = 2η ends the proof. ■

15

B Proof of Lemma 1

Proof. Based on Lemma 2, we have

∥θ̃t+1 − θ∗∥2Ht+1

≤ 2η

(
t∑
i=1

ℓi(θ
∗)−

t∑
i=1

ℓi(θ̃i+1)

)
+ 4λB2 + 12

√
2BL3η

t∑
i=1

∥θ̃i+1 − θ̃i∥22 −
t∑
i=1

∥θ̃i+1 − θ̃i∥2Hi
.

It remains to bound the right-hand side of the above inequality in the following. The most challenging
part is to bound the term

∑t
i=1 ℓi(θ

∗) −
∑t
i=1 ℓi(θ̃i+1). This term might seem straightforward to

control, as it can be observed that θ∗ = argminθ∈Rd ℓ̄(θ) ≜ Eyi [ℓi(θ)], where ℓi(θ) serves as an
empirical observation of ℓ̄(θ). Consequently, the loss gap term seemingly can be bounded using
appropriate concentration results. However, a caveat lies in the fact that the update of the estimator
θ̃i+1 depends on ℓi, or more precisely yi, making it difficult to directly apply such concentrations.

To address this issue, following the analysis in Zhang and Sugiyama [2023], we decompose the loss
gap into two components by introducing an intermediate term. Specifically, we define the softmax
function as

[σi(q)]1 =
exp(q)

1 + exp(q)
and [σi(q)]0 =

1

1 + exp(q)
,

where [·]i denotes the i-th element of the vector. Then, the loss function ℓi(θ) can be rewritten as

ℓ(qt, yt) = −1{yt=1} · log ([σ(qt)]1)− 1{yt=0} · log ([σ(qt)]0) .

Then, we define the pseudo-inverse function of σ−1(p) with

[σ−1(p)]1 = log(q/(1− q)) and [σ−1(p)]0 = log((1− p)/p).

Then, we decompose the regret into two terms by introducing an intermediate term.
t∑
i=1

ℓi (θ
∗)−

t∑
i=1

ℓi(θ̃i+1) =

t∑
i=1

ℓi (θ
∗)−

t∑
i=1

ℓi(qi, yi)︸ ︷︷ ︸
term (a)

+

t∑
i=1

ℓi(qi, yi)−
t∑
i=1

ℓi(θ̃i+1)︸ ︷︷ ︸
term (b)

where qi is an aggregating forecaster for logistic loss defined by qi = σ−1(Eθ∼Pi [σ(θ
⊤zi)]) and

Pi = N (θ̃i, (1 + cH−1
i)) is the Gaussian distribution with mean θ̃i and covariance (1 + cH−1

i),
where c > 0 is a constant to be specified later. It remains to bound the terms term (a) and term (b),
which were initially analyzed in Zhang and Sugiyama [2023] and further refined by Lee and Oh
[2024]. Specifically, using Lemmas F.2 and F.3 in Lee and Oh [2024], we can bound them as follows.

For term (a), let δ ∈ (0, 1) and λ ≥ 1. With probability at least 1− δ, for all t ∈ [T], we have

term (a) ≤ 11 · (3 log(1 + 2t) + 2 + LB) log

(
2
√
1 + 2t

δ

)
+ 2.

For term (b), let λ ≥ max{2, 72cd}. Then, for all t ∈ [T], we have

term (b) ≤ 1

2c

t∑
i=1

∥∥∥θ̃i+1 − θ̃i

∥∥∥2
Hi

+
√
6cd log

(
1 +

2tB2

dλ

)
Combing the above two bounds, we have∥∥θ̃t+1 − θ∗

∥∥2
Ht+1

≤ 12
√
2BL3η

t∑
i=1

∥∥∥θ̃i+1 − θ̃i

∥∥∥2
2
+
(η
c
− 1
) t∑
i=1

∥∥∥θ̃i+1 − θ̃i

∥∥∥2
Hi

+ C.

where C = 22η(3 log(1 + 2t) + 2 + LB) log
(

2
√
1+2t
δ

)
+ 4η + 2η

√
6cd log

(
1 + 2tL2

dλ

)
+ 4λB2.

Setting c = 7η/6 and λ ≥ 84
√
2BL3η, we have

12
√
2BL3η

t∑
i=1

∥∥∥θ̃i+1 − θ̃i

∥∥∥2
2
+
(η
c
− 1
) t∑
i=1

∥∥∥θ̃i+1 − θ̃i

∥∥∥2
Hi

16

≤
(
12
√
2BL3η − λ

7

) t∑
i=1

∥∥∥θ̃i+1 − θ̃i

∥∥∥2
2

≤ 0.

Note that 84
√
2
(
BL3 + dL2

)
η ≥ max

{
2L2, 72cdL2, 84

√
2BL3η

}
, so we set λ ≥ 84

√
2
(
BL3+

dL2
)
η. As we have η = (1/2) log 2 + (BL+ 1), we have∥∥θ̃t+1 − θ∗

∥∥
Ht+1

≤ O
(√

d log(t/δ)
)
.

This finishes the proof. ■

C Proof of Theorem 1

Proof. Define J(π) = Ex∼ρ[r (x, π(x))], we have

SubOpt (πT) =
(
J (π∗)− J̃ (π∗)

)
+
(
J̃ (π∗)− J̃ (πT)

)
+
(
J̃ (πT)− J (πT)

)
.

Since πT is the optimal policy under expected value J̃(π), i.e., J̃(πT) = maxπ∈Π J̃(π), we have

J̃ (π∗)− J̃ (πT) ≤ 0 (8)

For the third term, we have with probability at least 1− δ, it holds that

J̃ (πT)− J (πT) = min
θ∈CT

Ex∼ρ
[
θ⊤ϕ(s, πT (s))

]
− Ex∼ρ

[
θ∗⊤ϕ(s, πT (s))

]
≤ 0, (9)

where the last inequality holds by θ∗ ∈ CT with probability at least 1− δ.

For the first term, we have with probability at least 1− δ, it holds that

J (π∗)− J̃ (π∗)

= Ex∼ρ
[
(θ∗)⊤ϕ(s, π∗(s))

]
− min
θ∈CT

Ex∼ρ
[
θ⊤ϕ(s, π∗(s))

]
= sup

θ∈CT

Ex∼ρ
[(
θ∗ − θ̃T + θ̃T − θ

)⊤
ϕ(x, π∗(x))

]
= Ex∼ρ

[(
θ∗ − θ̃T

)⊤
ϕ(x, π∗(x))

]
+ sup
θ∈CT

Ex∼ρ
[(
θ̃T − θ

)⊤
ϕ(x, π∗(x))

]
≤
(
∥θ∗ − θ̃T ∥HT

+ sup
θ∈CT

∥θ − θ̃T ∥HT

)
·
∥∥Ex∼ρ[ϕ(x, π∗(x))]

∥∥
H−1

T

,

where the first inequality holds by the Cauchy-Schwarz inequality.

Since it holds θ∗ ∈ CT with probability at least 1− δ by Lemma 1, we have ∥θ∗ − θ̃T ∥HT
≤ β̃T and

supθ∈CT
∥θ − θ̃T ∥HT

≤ β̃T . Thus, we obtain

J (π∗)− J̃ (π∗) ≤ 2β̃T ·
∥∥Ex∼ρ[ϕ(x, π∗(x))]

∥∥
H−1

T

. (10)

Combining Eq. (8), Eq. (9), and Eq. (10) and substituting β̃T = O(
√
d(log(T/δ))2), we have with

probability at least 1− δ, it holds that

SubOpt (πT) ≤ 2β̃T ·
∥∥Ex∼ρ[ϕ(x, π∗(x))]

∥∥
H−1

T

≤ O

(
√
d

(
log

T

δ

)2

·
∥∥Ex∼ρ[ϕ(x, π∗(x))]

∥∥
H−1

T

)
.

This completes the proof. ■

17

D Proof of Theorem 2

Proof. Let the sub-optimality gap for a context x ∈ X be denoted as SubOpt(x). Thus, for any
δ ∈ (0, 1), with probability at least 1− δ, we have

SubOpt(x) = (ϕ (x, π∗(x))− ϕ (x, πT (x)))
⊤
θ∗

≤ (ϕ (x, π∗(x))− ϕ (x, πT (x)))
⊤
θ∗ + (ϕ (x, πT (x))− ϕ (x, π∗(x)))

⊤

(
1

T

T∑
t=1

θ̃t

)

= (ϕ (x, π∗(x))− ϕ (x, πT (x)))
⊤

(
θ∗ − 1

T

T∑
t=1

θ̃t

)

=
1

T

T∑
t=1

(ϕ (x, π∗(x))− ϕ (x, πT (x)))
⊤
(
θ∗ − θ̃t

)
≤ 1

T

T∑
t=1

∥ϕ (x, π∗(x))− ϕ (x, πT (x))∥H−1
t

∥∥∥θ∗ − θ̃t

∥∥∥
Ht

≤ β̃T
T

T∑
t=1

∥ϕ (x, π∗(x))− ϕ (x, πT (x))∥H−1
t
,

where the first inequality is due to the fact that (ϕ (x, πT (x))− ϕ (x, π∗(x)))
⊤
(

1
T

∑T
t=1 θ̃t

)
≥ 0

by the design of πT (x), the second is due to the Cauchy-Schwarz inequality, and the last inequality is
due to ∥θ∗ − θ̃t∥Ht ≤ βT with probability at least 1− δ by Lemma 1.

By our algorithm’s choice (xt, at, a
′
t) = argmaxx∈X ,a,a′∈A ∥ϕ(x, a)− ϕ (x, a′)∥H−1

t
, we have

T∑
t=1

∥ϕ (x, π∗(x))− ϕ (x, πT (x))∥H−1
t

≤
T∑
t=1

∥ϕ (xt, at)− ϕ (xt, a
′
t)∥H−1

t
=

T∑
t=1

∥zt∥H−1
t
.

Furthermore, by the definition of Ht, we have

Ht = λId +

t−1∑
s=1

σ̇
(
z⊤s θ̃s+1

)
zsz

⊤
s ≥ λId +

1

κ

t−1∑
s=1

zsz
⊤
s =

1

κ

(
κλId +

t−1∑
s=1

zsz
⊤
s

)
=

1

κ
Vt.

Thus, we have

T∑
t=1

∥zt∥H−1
t

≤
√
κ

T∑
t=1

∥zt∥V −1
t

≤
√
κ

√√√√T

T∑
t=1

∥zt∥2V −1
t

≤

√
2κdT log

(
1 +

4TL2

λκd

)
,

where the first inequality holds by the fact that Ht ⪰ 1
κVt, the second inequality holds by the

Cauchy-Schwarz inequality, and the last inequality holds by the elliptic potential lemma in Lemma 4.
Thus, we have for any context x ∈ X ,

SubOpt(x) ≤ β̃T
T

√
2κdT log

(
1 +

4TL2

λκd

)
.

By the definition of SubOpt(πT), we have with probability at least 1− δ,

SubOpt (πT) = Ex∼ρ [SubOpt(x)] ≤
β̃T
T

√
2κdT log

(
1 +

T

λκd

)
≤ Õ

(
d

√
κ

T

)
.

This finishes the proof. ■

18

E Proof of Theorem 3

Proof. We first analyze the instantaneous regret at round t. For any δ ∈ (0, 1), with probability at
least 1− δ, it holds that(

r(xt, π
∗(xt))− r(xt, at)

)
+
(
r(xt, π

∗(xt))− r(xt, a
′
t)
)

=
(
ϕ(xt, π

∗(xt))− ϕ(xt, at)
)⊤
θ∗ +

(
ϕ(xt, π

∗(xt))− ϕ(xt, a
′
t)
)⊤
θ∗

= 2
(
ϕ(xt, π

∗(xt))− ϕ(xt, at)
)⊤
θ∗ +

(
ϕ(xt, at)− ϕ(xt, a

′
t)
)⊤
θ∗

= 2
(
ϕ(xt, π

∗(xt))− ϕ(xt, at)
)⊤

(θ∗ − θ̃t) + 2
(
ϕ(xt, π

∗(xt))− ϕ(xt, at)
)⊤
θ̃t

+
(
ϕ(xt, at)− ϕ(xt, a

′
t)
)⊤

(θ∗ − θ̃t) +
(
ϕ(xt, at)− ϕ(xt, a

′
t)
)⊤
θ̃t

≤ 2
∥∥ϕ(xt, π∗(xt))− ϕ(xt, at)

∥∥
H−1

t

∥∥θ∗ − θ̃t
∥∥
Ht

+
(
ϕ(xt, π

∗(xt))− ϕ(xt, at)
)⊤
θ̃t

+
∥∥ϕ(xt, at)− ϕ(xt, a

′
t)
∥∥
H−1

t

∥∥θ∗ − θ̃t
∥∥
Ht

+
(
ϕ(xt, at)− ϕ(xt, a

′
t)
)⊤
θ̃t

≤ 2β̃t
∥∥ϕ(xt, π∗(xt))− ϕ(xt, at)

∥∥
H−1

t
+
(
ϕ(xt, π

∗(xt))− ϕ(xt, a
′
t)
)⊤
θ̃t

+ β̃t
∥∥ϕ(xt, at)− ϕ(xt, a

′
t)
∥∥
H−1

t

≤ 2β̃t
∥∥ϕ(xt, a′t)− ϕ(xt, at)

∥∥
H−1

t
+ (ϕ(xt, a

′
t)− ϕ(xt, π

∗(xt)))
⊤θ̃t

+
(
ϕ(xt, π

∗(xt))− ϕ(xt, a
′
t)
)⊤
θ̃t + β̃t

∥∥ϕ(xt, at)− ϕ(xt, a
′
t)
∥∥
H−1

t

= 3β̃t
∥∥ϕ(xt, at)− ϕ(xt, a

′
t)
∥∥
H−1

t
,

where the first inequality holds by the Holder’s inequality and the arm selection strategy of at such
that ϕ(xt, π∗(xt))

⊤θ̃t ≤ ϕ(xt, at)
⊤θ̃t, the second inequality holds by θ̃t ∈ Ct with probability

at least 1 − δ by Lemma 1, the third inequality holds by arm selection strategy of a′t such that
a′t = argmaxa∈A ϕ(xt, a)

⊤θ̃t + 2β̃∥ϕ(xt, a)− ϕ(xt, at)∥H−1
t

. Thus, we have

RegT =
1

2

T∑
t=1

((
r(xt, π

∗(xt))− r(xt, at)
)
+
(
r(xt, π

∗(xt))− r(xt, a
′
t)
))

≤ 3

2
β̃T

T∑
t=1

∥∥ϕ(xt, at)− ϕ(xt, a
′
t)
∥∥
H−1

t
.

By the definition of Ht, we have

Ht = λId +

t−1∑
s=1

σ̇
(
z⊤s θ̃s+1

)
zsz

⊤
s ≥ λId +

1

κ

t−1∑
s=1

zsz
⊤
s =

1

κ

(
κλId +

t−1∑
s=1

zsz
⊤
s

)
=

1

κ
Vt.

Thus, we have

T∑
t=1

∥zt∥H−1
t

≤
√
κ

T∑
t=1

∥zt∥V −1
t

≤
√
κ

√√√√T

T∑
t=1

∥zt∥2V −1
t

≤

√
2κdT log

(
1 +

4TL2

λκd

)
,

where the first inequality holds by the fact that Ht ⪰ 1
κVt, the second inequality holds by the

Cauchy-Schwarz inequality, and the last inequality holds by the elliptic potential lemma in Lemma 4.

Therefore, we have

RegT ≤ 3

2
β̃T

√
2κdT log

(
1 +

4κTL2

λd

)
≤ Õ

(
d
√
κT
)
.

where the This completes the proof. ■

19

F Supporting Lemmas

Definition 3 (Tran-Dinh et al. [2015]). A convex function f ∈ C3 (Rm) is M -self-concordant-like
function if

|ψ′′′(s)| ⩽M∥b∥2ψ′′(s),

for s ∈ R and M > 0, where ψ(s) := f(a+ sb) for any a,b ∈ Rm.

Lemma 3 (Lee and Oh [2024, Proposition C.1]). The loss ℓt(θ) defined in Eq. (1) is 3
√
2L-self-

concordant-like for ∀t ∈ [T].

Lemma 4 (Abbasi-Yadkori et al. [2011, Lemma 11]). Suppose x1, . . . , xt ∈ Rd and for any
1 ≤ s ≤ t, ∥xs∥2 ≤ L. Let Vt = λId +

∑t−1
s=1 xsx

⊤
s for λ ≥ 0. Then, we have

t∑
s=1

∥zs∥2V −1
s

≤ 2d log

(
1 +

tL2

λd

)
.

Lemma 5 (Campolongo and Orabona [2020, Proposition 4.1]). Define wt+1 as the solution of

wt+1 = argmin
w∈V

{
ηℓt(w) +Dψ (w,wt)

}
,

where V ⊆ W ⊆ Rd is a non-empty convex set. Further supposing ψ(w) is 1 -strongly convex w.r.t.
a certain norm ∥ · ∥ in W , then there exists a g′

t ∈ ∂ℓt (wt+1) such that

⟨ηtg′
t,wt+1 − u⟩ ≤ ⟨∇ψ (wt)−∇ψ (wt+1) ,wt+1 − u⟩

for any u ∈ W .

Lemma 6 (Zhang and Sugiyama [2023, Lemma 1]). Let ℓ(z, y) =
∑K
k=0 1{y = k} · log

(
1

[σ(z)]k

)
where σ(z)k = ezk∑K

j=0 e
zj

, a ∈ [−C,C]K , y ∈ {0} ∪ [K] and b ∈ RK where C > 0. Then, we have

ℓ(a, y) ≥ ℓ(b, y) +∇ℓ(b, y)⊤(a− b) +
1

log(K + 1) + 2(C + 1)
(a− b)⊤∇2ℓ(b, y)(a− b).

G Details of Experiments

In this section, we provide the omitted details of the experiment details and additional results.

G.1 Implementation Details

Datasets. We use the UltraFeedback-binarized dataset [Rafailov et al., 2023] for the experiments.
This dataset is derived from the original UltraFeedback dataset, which comprises 64, 000 prompts
sourced from diverse datasets including UltraChat, ShareGPT, Evol-Instruct, TruthfulQA, FalseQA,
and FLAN. For each prompt, four model completions were generated using various open-source
and proprietary language models, with GPT-4 providing comprehensive evaluations across multiple
criteria including helpfulness, honesty, and truthfulness. The binarized version was constructed
by selecting the completion with the highest overall score as the "chosen" response and randomly
selecting one of the remaining completions as the "rejected" response, creating clear preference
pairs suitable for reward modeling and direct preference optimization. This dataset structure aligns
well with our experimental setup, providing a robust foundation for evaluating different preference
learning approaches. The dataset’s diverse prompt sources and evaluation criteria make it particularly
valuable for training and evaluating reward models in a real-world context. To further tailor the
dataset to our experimental setup, we organize the dataset as follows:

• Passive data collection: We randomly choose 30, 000 samples from the UltraFeedback-binarized
dataset’s train_prefs split for training. Each sample consists of a prompt and two responses
with a label indicating the preferred response. We use the test_prefs split for evaluation.

• Active data collection: We allow the method to actively select 6,400 samples from the
train_prefs split according to different selection strategies. The global batch size is set to
8 for training. The selection is performed iteratively, where in each iteration, the method selects the
most informative samples based on its selection criterion.

20

Algorithm 5 Efficient Update using Hessian-Vector Product with Conjugate Gradient

Input: Current parameter θ̃t, gradient gt(θ̃t), learning rate η, max CG steps K, parameter λ0, ϵ
1: Initialize v0 = 0, r0 = gt(θ̃t), p0 = r0
2: Compute damping λt = λ0 ·min{1, f(t/T)}
3: for k = 0, 1, . . . ,K − 1 do
4: Compute HVP: H̃tpk = ∇θ(∇θL(θ)⊤pk)|θ=θ̃t + λtpk

5: αk =
r⊤k rk

p⊤k H̃tpk
, vk+1 = vk + αkpk, rk+1 = rk − αkH̃tpk,

6: βk+1 =
r⊤k+1rk+1

r⊤k rk
, pk+1 = rk+1 + βk+1pk

7: if ∥rk+1∥ ≤ ϵ then
8: break
9: end if

10: end for
11: Update parameter: θ̃t+1 = θ̃t − ηvK
Output: Updated parameter θ̃t+1

• Deployment-time adaption: We use a pre-processed online variant of the UltraFeedback-binarized
dataset from the test_gen split. The dataset is divided into 20 sequential chunks to simulate
an online deployment scenario. For each chunk, we generate responses using the current pol-
icy (the foundation model of policy model is chosen to be meta-llama / Llama-3.2-1B),
evaluate them using both the learned reward model and an oracle reward model. We choose
NCSOFT/Llama-3-OffsetBias-RM-8B [Park et al., 2024] as the oracle reward model. After each
chunk, we use the policy model to randomly generate 64 responses using different seeds. We then
apply various strategies (Random, Best-Two, etc.) to select responses and construct new preference
pairs, which are then used to update the reward model and the policy model.

Update details. As described in Section 6.1, we can implement the OMD update using the HVP with
conjugate gradient descent. The full algorithm is summarized in Algorithm 5. In our experiments, we
set K = 3 and λ0 = 0.8 and choose the linear function f(t/T) = t/T as the damping function.

G.2 Validating the Magnitude of κ

We validate the magnitude of κ by computing its value during the training process. The results show
that κ = 171.62± 85.49 during our training process, which is relatively large.

G.3 Combined with Adam Optimizer

In previous experiments, we used SGD to update model parameters. In this section, we integrate the
methods with the Adam optimizer [Kingma and Ba, 2015], i.e., adding the first and second momentum
terms to the model updates. The results, shown in Figure 5, indicate that the Adam optimizer further
enhances the performance of our method by leveraging the momentum term to accelerate convergence.
With the momentum term, our method remains superior to the MLE-based method; however, the
performance gap is reduced. This may be because the Adam optimizer incorporates second-order
information for optimization, diminishing the advantage of our method compared to the SGD cases.

G.4 Comparison with DPO

We also compare with DPO [Rafailov et al., 2023] in the deployment stage. As a reward-free method,
DPO optimizes the policy directly using preference feedback without explicit reward modeling. To
ensure a fair comparison, we initialize the policy with 400 samples and use the same dataset settings
as PPO to iteratively update the policy model using the DPO algorithm. The results are illustrated in
Figure 6. While DPO outperforms the random baseline (Rand-MLE), it achieves lower cumulative
rewards than the methods using our action selection. This result suggests that DPO’s online learning
capability remains a challenge. In contrast, the reward model learned by our selection strategy
effectively learned streaming data and continuously updates the policy as new data arrive, indicating
that a reward model with PPO may be a more suitable choice for sequentially learning from new data.

21

0 200 400 600 800
Iterations

0.45

0.50

0.55

0.60

0.65

Lo
ss

Passive-MLE
Ours

MLE-Adam
Ours-Adam

(a) training loss

0 200 400 600 800
Iterations

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Passive-MLE
Ours

MLE-Adam
Ours-Adam

(b) training accuracy

100 200 300 400 500 600 700 800 900
Iterations

0.54

0.56

0.58

0.60

0.62

Lo
ss

Passive-MLE
Ours

MLE-Adam
Ours-Adam

(c) evaluation loss

100 200 300 400 500 600 700 800 900
Iterations

0.68

0.69

0.70

0.71

0.72

Ac
cu

ra
cy

Passive-MLE
Ours

MLE-Adam
Ours-Adam

(d) evaluation accuracy

Figure 5: For online RLHF with passive data collection, we compare our proposed method and
MLE [Zhu et al., 2023] in with passive data collection combined with Adam. We report the average
accuracy and loss of the reward model during the training process.

0 5 10 15 20
Iterations

0.18

0.17

0.16

0.15

0.14

0.13

0.12

Av
er

ag
e

Cu
m

ul
at

iv
e

Re
w

ar
d

Rand-MLE
Best-Sec-MLE
Best-Worst-MLE

Ours (MLE)
DPO

Figure 6: Comparison of DPO and our method
in deployment-time adaptation.

0 5 10 15 20
Iterations

0.150

0.145

0.140

0.135

0.130

0.125

0.120

0.115

0.110

0.105

Av
er

ag
e

Cu
m

ul
at

iv
e

Re
w

ar
d

MLE Ours

Figure 7: Comparison of different methods for
full update in deployment-time adaptation.

G.5 Full Update of Reward Model

Figure 7 shows deployment-time adaptation results using the Llama-3.2-1B model, where we update
all parameters of the reward model instead of only the final layer. Both our method and MLE use the
same action selection strategy. Our approach achieves comparable performance with MLE, indicating
that our OMD-based update method is still compatible with full-model updates.

G.6 More Foundation Models and Datasets

In this section, we provide more experimental results about other foundation models and datasets.

Figure 8 shows the training and evaluation curves for reward model learning under passive data
collection using the Qwen2.5-7B-Instruct model. We compare our method with MLE and report
the loss and accuracy over training. Our method consistently shows stable training dynamics and
competitive evaluation performance compared to MLE, suggesting its effectiveness in offline settings.

Figure 9 present results for online RLHF with active data collection using the same Qwen model.
Figure 9(a) shows training loss curves, while Figure 9(b) reports evaluation accuracy over training
iterations. Table 9(c) further compares various methods (Rand-MLE, Active-MLE, Rand-OMD, and
our approach) in terms of final accuracy and training time. While Active-MLE achieves slightly higher
accuracy, our method provides significant speedup in training time with comparable performance,
highlighting the efficiency of our approach.

Figure 10 illustrates the deployment-time performance of various methods on the Ultrafeedback
dataset. We split the dataset into 20 chunks and measure cumulative rewards across these chunks.
Our method demonstrates robust adaptation capabilities, achieving competitive reward accumulation.

Finally, Figure 11 shows results on the Llama-3-8B-Instruct model trained on the Mixture2
dataset in a passive data collection setup. Similar to earlier observations, our method achieves
competitive or superior performance compared to MLE, both in terms of training and evaluation
loss/accuracy, demonstrating its generality across different model and dataset combinations.

22

0 200 400 600 800
Iterations

0.50

0.55

0.60

0.65

Lo
ss

Passive-MLE Ours

(a) training loss

0 200 400 600 800
Iterations

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Ac
cu

ra
cy

Passive-MLE Ours

(b) training accuracy

100 200 300 400 500 600 700 800 900
Iterations

0.56

0.57

0.58

0.59

0.60

0.61

Lo
ss

Passive-MLE Ours

(c) evaluation loss

100 200 300 400 500 600 700 800 900
Iterations

0.665

0.670

0.675

0.680

0.685

0.690

0.695

Ac
cu

ra
cy

Passive-MLE Ours

(d) evaluation accuracy

Figure 8: For Qwen2.5-7B-Instruct model with passive data collection, we compare our method
with MLE. We report average accuracy and loss curve of the reward model.

0 100 200 300 400 500 600 700 800
Iterations

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Lo
ss

Rand-MLE
Active-MLE

Rand-OMD
Ours

(a) training loss

0 100 200 300 400 500 600 700 800
Iterations

0.650

0.655

0.660

0.665

0.670

0.675

0.680
Ac

cu
ra

cy

Rand-MLE
Active-MLE

Rand-OMD
Ours

(b) evaluation accuracy

Method ACC (%) Time (s)

Rand-MLE 67.36 ± 0.5 4653 ± 121

Active-MLE 67.25 ± 0.4 4701 ± 103

Rand-OMD 66.80 ± 0.5 1312 ± 470

Ours 67.11 ± 0.5 1325 ± 540

(c) training time

Figure 9: For Qwen2.5-7B-Instruct with active data collection,
we report the comparison of different methods about (a) training loss,
(b) evaluation accuracy and (c) evaluation accuracy and training time.

0 5 10 15 20
Iterations

0.15

0.14

0.13

0.12

0.11

0.10

Av
er

ag
e

Cu
m

ul
at

iv
e

Re
w

ar
d

Random-OMD
Best-Sec-OMD

Best-Worst-OMD
Ours (OMD)

Figure 10: Results of
deployment-time adaptation
for Qwen2.5-7B-Instruct.

0 200 400 600 800
Iterations

0.50

0.55

0.60

0.65

Lo
ss

MLE Ours

(a) training loss

0 200 400 600 800
Iterations

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Ac
cu

ra
cy

MLE Ours

(b) training accuracy

100 200 300 400 500 600 700 800 900
Iterations

0.56

0.58

0.60

0.62

Lo
ss

MLE Ours

(c) evaluation loss

100 200 300 400 500 600 700 800 900
Iterations

0.65

0.66

0.67

0.68

0.69

0.70

Ac
cu

ra
cy

MLE Ours

(d) evaluation accuracy

Figure 11: For online RLHF with passive data collection on the Llama-3-8B-Instruct model on
the Mixture2 dataset, we compare our method with MLE. We report average accuracy and loss curve
of the reward model.

H Broader Impact

Our work advances the efficiency of RLHF, a central technique in aligning large language models
with human values and preferences. By proposing a new one-pass reward modeling method that
eliminates the need to store historical data and re-train from scratch, we reduce the computational
and environmental costs commonly associated with online RLHF pipelines. This could enable the
development and deployment of aligned language models by institutions with limited resources.

However, the broader deployment of RLHF, particularly in an online and adaptive setting, raises
important ethical and societal considerations. On the positive side, it can enable more responsive and
value-aligned AI systems, with potential applications in education, healthcare, and accessibility. Yet,
the ability to iteratively adapt to user feedback in deployment may also increase the risk of reinforcing
harmful biases or being gamed by adversarial users, especially in high-stakes or open-ended domains.

23

	Introduction
	Related Work
	Problem Setup
	Our Framework
	General framework for online RLHF
	One-pass reward modeling
	Theoretical guarantee

	Applications in Three Online RLHF Scenarios
	Online RLHF with passive data collection
	Online RLHF with active data collection
	Online RLHF with deployment-time adaptation

	Practical Implementation
	Computation of inverse Hessian
	Computation of model uncertainty

	Experiments
	Experiment setup
	Experimental results

	Conclusion
	Useful Lemmas
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Supporting Lemmas
	Details of Experiments
	Implementation Details
	Validating the Magnitude of
	Combined with Adam Optimizer
	Comparison with DPO
	Full Update of Reward Model
	More Foundation Models and Datasets

	Broader Impact

