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Handling New Class in Online Label Shift
Yu-Yang Qian , Yong Bai, Zhen-Yu Zhang , Peng Zhao , Member, IEEE, and Zhi-Hua Zhou , Fellow, IEEE

Abstract—In many real-world applications, data are continu-
ously accumulated in open environments, and new classes may
emerge over time. For instance, in disease diagnosis, the prevalence
of a certain disease may vary seasonally, and new diseases can
also emerge. This paper investigates the problem of learning from
unlabeled data stream where the label distribution evolves over
time, and meanwhile, previously unseen new classes may appear. To
handle the emerging new classes in online label shift, we first design
a novel risk estimator by unbiased risk rewriting and mixture
proportion estimation, which enables the identification of new class
data. Subsequently, we employ the online ensemble paradigm for
model updating to handle unknown distribution shifts. Moreover,
we introduce the sketching and ensemble pruning mechanisms to
improve the efficiency of the algorithm, making it more lightweight
and practical. The proposed approach enjoys a theoretical guaran-
tee of dynamic regret, ensuring its effectiveness in adapting to the
unknown distribution shifts and the emergence of new classes in
streaming data. Experiments on diverse benchmark datasets and
two real-world applications demonstrate the effectiveness of the
algorithm.

Index Terms—Data stream, distribution shift, new class, online
label shift, weakly supervised learning.

I. INTRODUCTION

MACHINE learning algorithms have made significant suc-
cesses across various applications [1], typically relying

on the assumption that the training and testing data are generated
from an identical distribution. However, in many real-world
tasks, the testing data are continuously collected from open
environments, resulting in a distribution mismatch between the
training and testing data, and the distribution of testing data
can even change over time [2], [3]. Furthermore, owing to the
streaming nature of data, new class data could appear, present-
ing instances that were not encountered previously. Therefore, it
is essential to adaptively learn from unlabeled data streams with
changing distributions, particularly with the emergence of new
classes.
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In this paper, we investigate the problem of handling new
classes in online label shift. Specifically, the learner can have
some offline labeled data for model training. However, during
online testing phase, unlabeled data continuously arrives with
its label distribution changing over time [4]; simultaneously,
new class data could appear in online unlabeled data stream, as
shown in Fig. 1. The learner is required to continuously adapt
to the changing distribution and accommodate the arrival of
new classes. This problem is crucial because it encompasses
various real-world tasks. For instance, considering disease diag-
nosis tasks, the prevalence of a certain disease may vary across
seasons [5], which induces continuous label shifts. Moreover,
the emergence of new diseases that were not encountered in
the initial labeled data [6] can pose a significant challenge in
handling these emerging new classes.

Existing approaches primarily focused on either handling
online label shifts within a fixed label space, or dealing with new
classes while employing a fixed classifier for known classes. As a
typical kind of distribution change, online label shift, character-
ized by continuous changes in the label distribution of unlabeled
data stream, has garnered substantial interest in the literature [4],
[7], [8], [9], [10], [11]. This line of research first estimates the
underlying loss of online unlabeled data in an unbiased manner,
followed by formulating the problem as an online convex opti-
mization problem. However, these studies do not consider the
appearance of new classes in the open environments, which is
a common occurrence in many real-world tasks. Another line
of research on handling the new classes focuses on handling
only new classes within unlabeled data stream [12], [13]. This
line of research uses various anomaly detectors to detect new
classes and updates models accordingly. However, these studies
mainly concentrate on detecting new classes while disregarding
distribution changes within the known class data, which may
cause a degradation in the overall performance. Additionally,
heuristic mechanisms for identifying new class data possess
limited fitting capabilities and lack theoretical guarantees. It is
noteworthy that in numerous real-world scenarios, the issue of
label shifts and the new class can occur simultaneously, posing
potential challenges to the existing algorithms.

In this paper, we initiate and investigate the problem of
handling New class in Online Label Shift (N-OLS), which
encompasses a wide range of real-world tasks. In particular in
this scenario, more and more unseen new classes are allowed
to successively emerge in the data stream as time evolves. Al-
though previous works have studied the new class and label shift
problems separately, the conjunction of online label shift and
new classes presents new challenges, especially for unlabeled
data streams. On one hand, the emergence of new classes can
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Fig. 1. Illustration of the N-OLS problem protocol. During the offline initialization stage, the learner observes a substantial amount of labeled data from known
classes; in the online adaptation stage, the learner receives only a limited amount of unlabeled data, where new classes emerge. Additionally, the data distribution
changes over time.

introduce bias to the estimator that is solely trained on known
classes. On the other hand, label shifts in known classes data can
worsen the identification of new classes. Therefore, it is crucial
to adaptively learn the model in the online label shift setting with
the emerging new classes.

To handle this problem, we explore the unlabeled data and
develop a novel risk estimator that employs risk rewriting and
mixture proportion estimation techniques, enabling updates of
the model under unknown levels of distribution shift. To adapt
to the continuous label shift in data streams, we employ the
paradigm of online ensemble [14], which maintains a group of
base learners and adaptively combines their outputs to track the
changing distribution. Besides, we also introduce the sketching
and ensemble pruning mechanisms to improve the computa-
tional efficiency of the algorithm, making it more practical for
real-world applications. We propose HAndling New class in
Online Label shift (HANOL) algorithm, which enjoys a theo-
retical guarantee of dynamic regret, ensuring its effectiveness
in adapting to the evolving data distribution and new classes.
Empirical experiments are conducted to evaluate the proposed
method, including five benchmark datasets, and two real-world
applications SHL [15] and fMoW [16]. Our method enhances
average accuracy by 10% on SHL and 4% on fMoW datasets,
thereby showing its effectiveness for tackling the emerging new
classes in online label shift data streams.

Organization: Section II discusses related works. Section III
formulates N-OLS problem. Section IV presents our approach.
Section V provided theoretical justifications. Section VI reports
the experiments. Section VII concludes the paper.

II. RELATED WORK

In the following, we discuss the related topics.

A. Learning Data Streams With Changing Distribution

Supervised Stream with Changing Distributions: The chal-
lenge of distribution change is a widely studied topic in the
field of streaming data learning [17], [18], [19], [20], [21],
[22], [23]. To adapt to the changing distributions, learning
approaches can generally be divided into single model-based
and ensemble-based approaches. For single model-based ap-
proaches, a common practice involves reducing the importance
of long-term historical data using techniques such as forget-
ting mechanisms [24] or windowing mechanisms [25]. Another
group of single model-based algorithms enables adaptation to

the distribution changes through the detection of such changes.
These detectors identify the distribution changing points and
subsequently trigger the model to rebuild or update [26]. Recent
theoretical advances in online learning show that models can au-
tomatically adapt to distribution changes through proper restart
mechanisms [27], [28].

Another important category is the ensemble-based model,
which has received significant attention in handling distribution
change in data streams, which maintains multiple diverse base
learners and combines them to get the final prediction. By
continuously updating and assigning different weights to base
models based on their prediction performances, the ensemble
methods can adapt to continuous distribution changes [29],
[30]. With a well-designed updating process, ensemble-based
algorithms can benefit from solid theoretical guarantees [14],
[31]. However, this line of research primarily focuses on the
supervised or semi-supervised setting, requiring labeled data
to provide timely feedback for the model. As a result, these
methods face challenges when handling the unsupervised data
stream with distribution changes.

Unsupervised Stream with Online Label Shift: Label shift, as a
common type of distribution change, has been extensively stud-
ied in the context of “one-step” adaptation [32], [33], where one
aims to adapt the model from the source to the target distribution.
More recently, the focus has shifted towards scenarios involving
streaming data setting where label shifts continuously occur over
time [4], [7]. Wu et al. [4] constructed an unbiased risk estimator
for the online unlabeled data and employed online gradient de-
scent for model updating. While this preliminary study performs
well in scenarios where the label shift in the stream remains
unchanged, it faces challenges in non-stationary environments
where the class prior can change over time. To tackle this chal-
lenge, Bai et al. [7] pioneer the use of the online ensemble frame-
work [14] developed in the modern online learning community
to effectively address continuous label shifts with provable guar-
antees. Nevertheless, these methods do not take into account the
challenge of the new class data in the open environments.

B. Classification With New Class Data

New Class Identification: Identification of new class data, or
named as open set recognition, is a prominent area of research in
computer vision and pattern recognition, focusing on the iden-
tification of new classes within a fixed unlabeled dataset [34],
[35]. Several methods have been deployed to handle this issue,
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including nearest neighbor approach [36], adversarial sample
generation [37], etc. However, we note that many works in open
set recognition implicitly use the feature semantic information
to help identify unknown classes. By contrast, we focus on a
general setting without such domain knowledge of the semantic
information.

Data Stream with New Classes: Learning data streams with
new classes requires the learning system to identify the new
classes in the unlabeled data stream and adapt the model ac-
cordingly [12], [13], [38]. Mu et al. [12] propose an innovative
method that leverages an isolation forest [39] to detect emerging
new classes and subsequently update the models. Cai et al. [13]
propose an ensemble-based nearest neighbor approach to handle
scenarios where emerging new classes are not geometrically
distant from the known classes. Similarly, Zhang et al. [38]
propose a k-nearest neighbor ensemble-based method that ex-
plores the neighborhood information to assist in handling new
classes. Nevertheless, conventional approaches often overlook
the distribution change problem, which can significantly impact
both the identification of new class data and the performance of
the fixed classifier on known classes.

C. Discussion With Previous Works

Although previous works have studied the data streams with
new class and the online label shift problems separately, how-
ever, to the best of our knowledge, our work is the first to study
the joint problem of the new class with label shift problems
especially for the streaming data scenario, and extending the
preliminary conference version [40] by considering emerging
new classes. The conjunction of label shift and emerging new
classes is a more challenging problem compared to the two
individual problems: the emerging of new class may cause the
estimator built on the known classes to be biased, and the label
shift problem may cause the new class to be further misclassified.
Besides, the learner can only receive unlabeled streams. Conse-
quently, updating the model in the presence of both emerging
new class and label shift becomes particularly challenging, and
therefore leading to a severe performance drop. In this work, we
carefully design a novel risk estimator to handle the emerging
new class in online label by exploring the unlabeled data shift
via unbiased risk rewriting and mixture proportion estimation
techniques, and employ an online ensemble-based paradigm to
handle the unknown distribution changes.

III. PROBLEM FORMULATION

In this section, we formulate the learning problem. We con-
sider a multi-class classification setting. The feature space is
denoted by X ⊆ R

d, where d represents the feature dimen-
sion. The label space consists of K + nc classes in total. Here,
within the total label spaceY = {1, . . . ,K + nc}, classes [K] �
{1, . . . ,K} represent the known classes in the initial offline
labeled data, and Ync � {K + 1, . . . ,K + nc} represents the
set of new classes which does not appear in the offline data but
emerging in the online unlabeled data streams.

In addition to the presence of the emerging new classes,
we consider the occurrence of online label shift. Specifically,
throughout the entire time horizon of the unlabeled data stream,

conditional distribution remains unchanged, i.e., Dt(x | y) =
D0(x | y) for all x ∈ X , y ∈ [K] and t ∈ [T ]; Dt(x | y) =
Dt−1(x | y) for all x ∈ X , y ∈ Ync and t ≥ 2. The label distri-
bution can change dynamically, i.e., Dt(y = j) �= Dt−1(y = j)
for j ∈ [K + nc]. Additionally, for every j ∈ [K], we have
D0(y = j) > 0.

In this paper, we formulate the new class in online label shift
problem into two phases: the offline supervised initialization and
the online unsupervised adaptation, detailed as follows.
� Offline Supervised Initialization: In the offline initializa-

tion stage, the learner collects a set of labeled data S0 =
{(xi, yi)}n0

i=1 from the offline distributionD0(x, y) defined
over the known classes X × [K], i.e.,

D0(x) =

K∑
j=1

[
μy0

]
j
· Dj

0(x), (1)

where [μy0
]j = D0(y = j) is the label prior for the jth

class, Dj
0(x) = D0(x | y = j) is the marginal distribution

of the feature x over the known class j ∈ [K]. The goal
of initialization is to obtain a well-performed initial model
f0 : X �→ Y that generalizes over the initial distribution
D0, thus acting as a reliable classifier for known classes.

� Online Unsupervised Adaptation: After obtaining the ini-
tial model f0, the learner deploys it to a fully unsupervised
changing environment. At round t ∈ [T ], the learner can
receive a small number of unlabeled data St = {xi}nt

i=1

drawn from the current distribution Dt(x). It is important
to note that the label distribution in the online adaptation
phase comprises not only the known classes y ∈ [K], but
also new classes y ∈ Ync, absent in the offline data, and is
changing over time. In our N-OLS, more and more unseen
new classes successively emerge in the data stream as time
evolves, i.e., the new class y = K + κ coming after y =
K + κ− 1 for κ ∈ [nc]. The learner aims to sequentially
explore the unlabeled data stream to adaptively update the
model wt and make accurate predictions for each St.

IV. PROPOSED APPROACH

In this section, we present our approach. To deal with the
challenging issue of the conjunction of the continuous label shift
and the arrival of the new classes in the N-OLS problem, we
develop a risk estimator by risk rewriting and mixture propor-
tion estimation techniques. Then, we proceed to estimate the
changing label prior for known classes and the proportion of
the new classes in the risk estimator. Finally, we employ the
online ensemble structure which aims to deal with the unknown
distribution shift in the data stream. The overall protocol of the
approach is illustrated in Fig. 2.

A. Risk Estimator for N-OLS Problem

In this part, we propose a novel risk estimator designed for the
N-OLS problem, employed to update the model by leveraging
both the unlabeled and offline data. In the initialization stage,
the model f0 can be obtained to deal with the known classes.
However, during the online adaptation phase, new classes not
included in offline data can appear. Besides, the learner can
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Fig. 2. Overall protocol of our proposed approach. We first build an isolation
forest to detect the emergence of a new class based on the current unlabeled
data. Next, we develop a novel risk estimator by exploiting the unlabeled data
stream. Subsequently, we employ the online ensemble paradigm to adapt to the
continuous label shift. When the number of the encountered new class is large
enough, we add this class into the known class pool. This process can be iterated
to accommodate the emergence of new classes in the N-OLS data stream, as
both the tree-based detector and the classification model can be updated in an
online manner.

only obtain a few unsupervised data each round. Consequently,
the online riskRt(w) � E(x,y)∼Dt

[�(f(w,x), y)] is not directly
observable as the distribution Dt is unknown to the learner,
where f(·, ·) is the prediction function and w is the model
parameter.

We propose a novel risk estimator by exploiting unlabeled
data stream via risk rewriting technique. We denote Rk

t (w) �
Ex∼Dt(x | y=k)[�(f(w,x), k)] as the risk of the model over
the kth class at round t, where t ∈ {0} ∪ [T ]. Suppose there
are K known classes, and the newly emerged class is de-
noted as y = K + 1. Then we have Rk

t (w) = Rk
0(w) for the

known classes k ∈ [K] due to the online label shift assumption
Dt(x | y) = D0(x | y). However, since new classes can emerge
in the online unlabeled data stream, label distribution of the
new class is unavailable, making the new class risk RK+1

0 (w)
unknown. To tackle this issue, we propose a novel risk estimator
for the expected online riskRt. We first notice that the marginal
distribution Dt(x) can be decomposed as

(1− θt)DK+1
t (x) = Dt(x)− θtDkc

t (x)

= Dt(x)− θt

⎛⎝ K∑
j=1

[μyt
]jDt(x | j)

⎞⎠
= Dt(x)− θt

⎛⎝ K∑
j=1

[μyt
]jD0(x | j)

⎞⎠ ,

(2)

where DK+1
t is the distribution of the new class data in Dt, Dkc

t

is the distribution of known classes in Dt, μyt
∈ ΔK is the label

distribution vector of known classes, and (1− θt) ∈ [0, 1] is the
proportion of the new class at round t. The first two equations in
(2) are derived using the law of total probability, while the final
equation is obtained with the label shift assumption. By (2), we
focus on the new class risk where y = K + 1 and rewrite the
new class risk RK+1

t (w) as

(1−θt)RK+1
t (w)�(1− θt)Ex∼DK+1

t (x) [� (f (w,x) ,K+1)]

= Ex∼Dt(x) [� (f (w,x) ,K+1)]

− θtEx∼Dkc
t (x) [� (f (w,x) ,K+1)]

= E
x∼Dt(x)

[� (f (w,x) ,K+1)]

− θt

K∑
j=1

[
μyt

]
j

E
x∼Dj

0(x)
[� (f (w,x) ,K+1)] .

The expected risk over distribution Dt(x) can be approximated
by the empirical risk over the unlabeled data St, given by
1/nt

∑
x∈St

�(f(w,x),K + 1), while the risk over Dj
0(x) �

D0(x | y = j) can be approximated by empirical risk over of-
fline data S0. Hence, we can build an estimator R̂t(w) for the
expected risk Rt(w) as follows:

R̂t(w) =
1

nt

∑
(xi,yi)∈St

�(f(w,xi), yi)

= θ̂tR̂
kc
t (w) + (1− θ̂t)R̂

K+1
t (w)

= θ̂t

K∑
j=1

[
μ̂yt

]
j
Rj

0(w) +
∑
x∈St

[� (f (w,x) ,K + 1)]

− θ̂t

K∑
j=1

[
μ̂yt

]
j

∑
x∈Sj

0

[� (f (w,x) ,K + 1)] . (3)

Overall, we build a risk estimator R̂t(w) by leveraging online
unlabeled data and offline labeled data. The remaining question
is how to estimate the parameters θ̂t and μ̂yt

. In the following,
we use black box shift estimator (BBSE) [33] to estimate the
label distribution μyt

, and employ mixture proportion estima-
tion (MPE) methods [41], [42] to estimate θt given that we can
empirically observe D0(x | y = j) and Dt(x).

B. Label Distribution Estimation With Unlabeled Data

In this part, we introduce the details of how to estimate
the changing label distribution μyt

for known classes, and the
proportion of the new class θt. In addition to the simple case
of handling a single new class y = K + 1, we further illustrate
how we handle emerging new classes by employing a tree-based
new class detector.

Estimate Proportion for Known Classes: We use BBSE to
estimate the class prior of the known classes μyt

via solving

μ̂yt
= C−1

0 · μ̂ŷt
, (4)
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where μ̂ŷt
∈ ΔK with [μ̂ŷt

]j = 1/nt ·
∑

x∈St
[f0(x)]j is the

estimated class prior of the prediction f0(x), and C0 ∈
R

K×K is the classifier’s confusion matrix with [C0]i,j �
Ex∼D0(x | y=j)[�(f0(x) = i)] being the classification rate that
the initial modelf0 predicts samples from class i as class j. Bene-
fit from the benign properties of BBSE, we can guarantee that the
estimation μ̂yt

satisfies E[μ̂yt
] = μyt

, where the ground-truth
label distribution is μyt

� C−1
0 μŷt

= Dkc
t (y). We assume the

offline data to be sufficient and of high quality, ensuring that the
estimated known class distribution remains accurate and stable,
even when encountering new classes.

Estimate Proportion for New Class: Notice that the construc-
tion of the risk estimator R̂t requires estimating the proportion
θt, which corresponds to the problem of MPE, where one aims
to estimate the proportion of a certain class within the overall
distribution based on empirical observations.

If the sample size is sufficiently large in each round, the
proportion of the new class can be estimated using the existing
MPE technique. However, in online scenarios, the amount of
data obtained in each round is minimal, and direct estimation
can lead to high variance. To address this issue, we propose a
sliding window-based MPE algorithm. Specifically, we maintain
a window queue of length L. At time t, following the first-in-
first-out principle, the current round sample St is added to the
queue, and a certain number of samples are removed from the
queue’s front. At each time step, we utilize the samples in the
sliding window to estimate the proportion of known classes.
Specifically, inspired by the recently proposed Best Bin Estima-
tion (BBE) technique [43], we utilize resampled offline labeled
data and the unlabeled data in the sliding window to estimate
the proportion of the new class. We first train a well-performed
classifier h(·) : X �→ [0, 1], where 0 means the data is sampled
from the online unlabeled data and 1 means the data is sampled
from labeled data, then we get

qp(z)=

∑
xi∈S0

I [h(xi)�z]
|S0| , qu(z)=

∑
xi∈Swin

I [h(xi)�z]
|Swin| ,

where S0 is the offline dataset, and Swin is the online unlabeled
data in the sliding window. By solving the equation

ĉ = arg minc∈[0,1]

×
⎧⎨⎩qu(c)

qp(c)
+

1 + γ

qp(c)

⎛⎝√
log(4/δ)

2Swin
+

√
log(4/δ)

2S0

⎞⎠⎫⎬⎭ ,

where 0 < δ, γ < 1 are the hyperparameters, then, we can esti-
mate the proportion of the new class by

θ̂t = qu(ĉ)/qp(ĉ).

The estimation of the new class proportion by the
sliding-window MPE method enjoys a convergence rate of
O(min(|S0|, |Swin|)−1/2) [43], therefore can obtain the propor-
tion of new class with a small variance.

Detect the Emerging New Classes: Note that our method is
applicable to handle the emerging new classes [3], where more
and more unseen new classes successively arise one after the
other as time evolves. A key component is the new class detector,

for which we utilize a tree-based detection approach [12], which
detects the new class based on the isolation forest [39]. Specifi-
cally, this detector recognizes a new (previously unseen) class by
measuring the isolation depth of the samples within the forest.
Typically, the distribution of the newly emerged class samples
differs significantly from that of known classes, resulting in a
higher isolation depth for new class samples, thereby enabling
effective detection. We maintain a buffer to store the sketched
new class samples in the data stream and detect whether another
new class has emerged. Then, we update the model parameterwt

using previously seen classes and the new class by our proposed
risk estimator R̂t(w). As a result, the previously detected new
class transits to a known class, and we add it into the known class
pool. This process can be iterated to accommodate emerging new
classes, regardless of the number of new classes, and the model
wt can be updated in an online manner. Note that this detection
method aims to identify new classes that emerge sequentially,
and the more challenging problem of detecting multiple new
classes simultaneously is left for future work.

C. Adaptation via Online Ensemble

Based on the risk estimator R̂t(w) constructed in Sec-
tion IV-A and the parameter estimating approach in Sec-
tion IV-B, we then design an online algorithm to adapt the
model wt to the changing distribution Dt. A natural choice is to
minimize the risk estimator R̂t(w) from scratch, which means
wt ∈ arg minwR̂t(w). Whereas, R̂t(w) can suffer from high
variance due to the very small online sample size nt, which may
lead to poor generalization performance. To this end, we turn to
reuse historical information via online gradient descent (OGD).
However, OGD with a fixed step size may not be able to adapt
to the changing distribution. To handle this issue, we propose an
adaptive online ensemble algorithm with a two-layer structure,
which can adaptively track the suitable step size, as shown in
Algorithm 1.

In order to adapt to the changing distributions, we employ the
paradigm of online ensemble learning [14]. More specifically,
as demonstrated in Fig. 2, we maintain a set of base learners that
are updated with different step sizes, corresponding to varying
intensity of label distribution variations. Simultaneously, we
maintain an meta learner that integrates outputs of these base
learners, enabling adaptive tracking of the optimal base learner
and therefore handling the challenge of online distribution
changes.
� Construct base learners with multiple step sizes: At round
t, with risk estimator R̂t(w) in (3), we can obtain the
estimated gradient ∇R̂t(w) and update the model wt by
gradient descent, given by the following update schedule

wt+1 = ΠW
[
wt − η∇R̂t(wt)

]
,

where ΠW [·] denotes the projection onto the parameter
domain W and η is the step size. This OGD algorithm
benefits from the risk estimator R̂t(w) that can evaluate
the model properly for all classes, including the emerging
new classes in online streams, which enables continuous
updates of the model in the correct direction.
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Algorithm 1: HANOL: HAndling New Class in OLS.
Require: step size pool H; learning rate ε; step size ηi ∈ H
1: initialization: get wi

1 ∈ W by offline supervised
initialization; ∀i ∈ [N ], pi1 = 1/N

2: for t = 2 to T do
3: for i = 1 to N do
4: construct risk estimator R̂t(w

i
t) as (3)

5: update the ith base model wi
t by (5)

6: update the weight pit according to (6)
7: end for
8: output final model wt =

∑N
i=1 p

i
t ·wi

t

9: end for

However, the OGD algorithm with a single step size may
have difficulty in adapting to the changing distributionDt –
ideally, the step size η should be small when the distribution
changes slowly and large when it changes rapidly. The
key challenge is to adaptively track the appropriate step
size ηt without prior knowledge of the distribution shifts.
Therefore, inspired by ensemble learning, we propose an
online ensemble algorithm to adaptively track the suitable
step size ηt to the distributionDt. Specifically, we maintain
a set of base learners with different step sizesH = {ηi}Ni=1.
At round t, we update the ith base learner wi

t by

wi
t+1 = ΠW

[
wi

t − ηi∇R̂t

(
wi

t

)]
. (5)

Thus, we can obtain a set of base models {wi
t}Ni=1, where

different base models excel in handling the online label
shift of different intensities.

� Combine the outputs by meta learner: We maintain a meta
learner that combines the outputs of multiple base learners
through weighted averaging to obtain the final model,
given by wt =

∑N
i=1 p

i
t ·wi

t. The weights pit ∈ [0, 1] de-
notes the extent of utilization for the ith base learner, and
statistically satisfies

∑N
i=1 p

i
t = 1. Since the environment

changes dynamically as time evolves, the weightspit should
be adaptively updated according to the current performance
of each base learner, that is,

pit ∝ exp

(
−ε

t−1∑
s=1

R̂s(w
i
s)

)
, (6)

where ε > 0 is a hyperparameter that controls the sensitiv-
ity of the meta learner to the performance of base learners.
Intuitively, the meta learner assigns higher weights to base
learners that exhibit better cumulative performance, i.e.,
smaller cumulative risks, thereby enabling adaptive track-
ing of the optimal base learner.

In Section V, we will theoretically demonstrate that the pro-
posed online ensemble algorithm can track the optimal base
learner adaptively by only maintaining about log T learners.

D. Efficiency Consideration

In this section, we discuss how to improve the computational
and storage efficiency of the proposed algorithm. Specifically,

we introduce a sketching technique named balanced kernel
herding to store the offline dataset more efficiently, and propose
an ensemble pruning mechanism for reducing the number of base
learners in our HANOL to improve the computational efficiency.

Sketching the Offline Dataset: As we mentioned in Sec-
tions IV-A and IV-B, we have built a novel risk estimator for
the N-OLS problem, and estimate the hyperparameter using
BBSE and our sliding window-based MPE algorithm. However,
we note that these methods need to store and re-calculate the
entire offline dataS0 at each time step, which is computationally
expensive and memory-consuming. To address this issue, we use
a subset of samples to “sketch” the offline data, which efficiently
approximates the distribution of the offline dataS0. Specifically,
we propose the balanced kernel herding mechanism to extract
sketches of the offline dataset, which is inspired by Chen et
al. [44] and Wu et al. [45]. Our balanced kernel herding is
a deterministic, iterative algorithm that samples informative
points in the dataset. For each known class k ∈ [K], we run
the following two steps to sketch the offline data Sk

0 in the kth
class:

ski = argmax
s∈X

〈
ψk
i , φ(s)

〉
,

ψk
i+1 = ψk

i + μ
(
Sk
0

)− φ
(
ski
)
; (7)

where μ is the kernel mean embedding function, i.e., μ(Sk
0 ) :=

1
|Sk

0 |
∑|Sk

0 |
i=1 φ(xi) and φ is a feature mapping associated with the

positive definite symmetric kernel. Here we choose the Gaussian

kernel, i.e., 〈φ(x), φ(x′)〉 = e−
‖x−x′‖2

2
2σ2 , where σ is a user-specific

hyperparameter to control the kernel width. The initial ψ1 is set
as μ(S0). To sketch the offline dataset S0, we iterate through (7)
form steps to get a sketched set {sk1 , . . . , skm} for each class k ∈
[K]. The risk estimated by our sketched samples enjoys a good
convergence rate compared with the original offline dataset, as
detailed in Section V. Therefore, it can effectively preserve the
distribution information of the offline data S0 using only mK
samples. When detecting a newly emerged class, we can also
use the same sketching technique to sketch new class samples.

Ensemble Pruning: Our proposed HANOL method employs
the paradigm of online ensemble [14]. However, this typically
needs to update a total of O(log T ) base learners per round,
which may be costly as time grows and some efforts have been
made to improve the projection efficiency [46]. To this end,
inspired by previous ensemble pruning methods [47], [48], we
employ the ordering-based pruning mechanism to reduce the
number of base learners. Specifically, at each round, we only
maintain the most accurate N base learners, i.e., pruning the
base learners according to their order of the cumulative historical
accuracy. We then combine these selected base learners and use a
meta learner to get the final output, thereby reducing the number
of base learners and improving the computational efficiency of
our algorithm.

V. THEORETICAL RESULTS

In this section, we analyze the theoretical properties of our
algorithm. We introduce and employ dynamic regret [49] as
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the theoretical performance measure. Following that, we first
present the theoretical analysis with detailed discussions, then
we provide the corresponding proofs.

A. Theoretical Analysis

We consider the convex flexible domain and loss functions.
Our goal is to obtain a sequence of online model parameters
{wt}Tt=1 that can minimize the cumulative expected risk over
the whole time horizon:

∑T
t=1Rt(wt). The excepted riskRt(w)

at each round is defined as E(x,y)∼Dt
[�(f(w,x), y)], where � :

R
K+nc × Y �→ R is any convex loss function and f(w,x) is

the prediction of the model w ∈ W on the feature x. We adopt
the dynamic regret RegdT as the performance measure [7], [50].
It is defined as the difference between the cumulative expected
risk of the predictive model sequence {wt}Tt=1 and the model
sequence {w�

t }Tt=1:

Regd
T �

T∑
t=1

Rt(wt)−
T∑

t=1

Rt(w
�
t ),

where the model parameter w�
t ∈ arg minw∈WRt(w) we de-

fined in this paper is the best model at each round t. A small
dynamic regret indicates that the proposed algorithm can adapt to
a changing environment and achieve a performance competitive
with the best model sequence.

We denote the upper bound of gradient norm by G �
supX ,Y,W ‖∇�(f(w,x), y)‖2 and the diameter of the convex
parameter space W by Γ � supw1,w2∈W ‖w1 −w2‖2. We use
B � sup(x,y)∈X×Y,w∈W |�(f(w,x), y)| as the upper bound of
loss function value, and σ as the minimum singular value of the
confusion matrix C0. Under the assumption that the confusion
matrix C0 is invertible, i.e., σ > 0, our algorithm enjoys the
following dynamic regret guarantee.

Theorem 1 (Dynamic Regret): Suppose the confusion ma-
trix C0 is invertible. Set the step size pool as H = {ηi =

σΓ

2G
√

(K+1)T
· 2i−1 | i ∈ [N ]}, where N = 1 + � 1

2 log2(1 +

2T )� is the number of the base learners. Our proposed HANOL

ensures that

E
[
Regd

T

] ≤ O
(
max

{
V

1/3
T T 2/3,

√
T
})

,

or simplified as O(V
1/3
T T 2/3) for non-degenerated cases of

VT ≥ Θ(T− 1
2 ), where VT =

∑T
t=2 ‖Dt(y)−Dt−1(y)‖1 mea-

sures the intensity of label distributions variation.
Proof Sketch: To prove Theorem 1, we require the unbiased-

ness of estimating the class priors in the risk estimator given
by (3) for the unlabeled data stream. This unbiasedness enables
us to transform the N-OLS problem back into the non-stationary
online learning problem. We propose efficient approximations
for the unbiased estimator of class priors. To estimate the prior of
new class data, we employ the MPE technique based on offline
data and a sliding window of online data. To estimate the label
distribution for known classes, we handle it by a well-performed
classifier f0 trained on offline data and the confusion matrixC0,
where we assume the offline data to be adequately collected, such
that y ∈ [K], D0(y) > 0 and therefore the obtained confusion

matrix C0 is invertible. The detailed proof of Theorem 1 is
provided in Section V-B.

Remark 1: The non-stationarity inherent in the N-OLS prob-
lem arises from the label space Y , which encompasses the
continuous change in label distribution of known classes and the
arrival of the new class. As shown in Theorem 1, the expected
dynamic regret is impacted by the magnitude of label distribution
variations. It is worth mentioning that the presence of new classes
can be regarded as a specific type of label distribution variation,
where the prior probabilities of the new class transition from
0 to non-zero values. Consequently, the intensity of class-prior
variation VT in Theorem 1 characterizes both the label distri-
bution variations of known classes and the emergence of new
classes, indicating that our proposed algorithm can adapt to the
online changing environment without the prior knowledge of the
distribution shift intensity.

Theorem 2 (Efficiency): By employing the proposed sketch-
ing and ensemble pruning mechanisms, the overall computa-
tional complexity of our algorithm is reduced from O(|S0| ·
log T ) to O(m(K + nc)N) per round, where m(K + nc) �
|S0| is the sample size of the sketched dataset, and N is the
number of the selected base learners. Meanwhile, the proposed
efficiency mechanism also enjoys benign theoretical guarantees,
introducing only an extra error of O(1/m) to estimate the risk
each round under certain assumptions.

B. Proof of Theorem 1

Proof of Theorem 1: To prove Theorem 1, we first show
that the constructed risk estimator enjoys the benign property
of unbiasedness under certain conditions. Then, we analyze the
dynamic regret of our proposed algorithm by decomposing it
into two components: base regret and meta regret. We provide
the detailed proof in the following.

Unbiasedness: We first introduce the following lemma to
show that our designed risk estimator enjoys the benign property
of unbiasedness, providing reliable guidance for model updates.

Lemma 1 (Unbiased Risk Estimator): The proposed risk
estimator R̂t(w) in (3) is unbiased to Rt(w) = E(x,y)∼Dt

[�(f(w,x), y)], i.e., ESt∼Dt
[R̂t(w)] = Rt(w), for any w ∈ W

independent of the dataset St, providedCf0 is invertible and the
offline dataset S0 has sufficient samples such that Ĉf0 = Cf0

and R̂k
0(w) = Rk

0(w), ∀k ∈ [K + nc].
Proof of Lemma 1: First, we show that the BBSE’s estima-

tion μ̃t = C−1
0 μ̃ŷt

is unbiased towards the ground truth label
prior μ̃t if the initial data is sufficient such that we can ob-
tain C0. We rewrite the BBSE’s estimation as μ̃t = C−1

0 μ̃ŷt
=

C−1
0

1
|St|

∑
x∈St

h0(x). Taking the expectations of both sides,

ESt∼Dt
[μ̃t] =ESt∼Dt

[
C−1

0

(
1

|St|
∑
x∈St

h0(x)

)]

=ESt∼Dt

[
C−1

0 Ex∼Dt(x) [h0(x)]
]
=C−1

0 μŷt
=μt,

which shows that the BBSE’s estimation is unbiased towards
the ground truth label prior μt. Besides, for our Sliding-window
MPE, if we have sufficient online unlabeled data and high-
quality offline labeled data, the estimated new class proportion
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θ̂t converges to the true value θt [43]. Therefore, we finish the
proof of Lemma 1. �

Then, by leveraging the unbiased properties of the risk estima-
tor, we analyze the dynamic regret of our method. Specifically,
we convert the overall dynamic regret into two components:
meta regret and base regret.

T∑
t=1

(
Rt(wt)−Rt(w

i
t)

)
︸ ︷︷ ︸

meta regret

+

T∑
t=1

(
Rt(w

i
t)−Rt(w

�
t )

)
︸ ︷︷ ︸

base regret

.

Base Regret: The base regret measures the gap between the base
model and the optimal model sequence. To further examine the
base regret, following Bai et al. [7], we introduce a piecewise
stationary reference sequence that changes every Δ iterations,
and decompose base regret into two parts:

E1:T

[
T∑

t=1

Rt(wt)

]
−

T∑
t=1

Rt(w
�
t )

= E1:T

[
T∑

t=1

Rt(wt)

]
−

M∑
m=1

∑
t∈Im

Rt(w
�
Im)︸ ︷︷ ︸

term (a)

+

M∑
m=1

∑
t∈Im

Rt(w
�
Im)−

T∑
t=1

Rt(w
�
t )︸ ︷︷ ︸

term (b)

,

where E1:T [·] denotes the expectation taken over the random
draw of dataset {St}Tt=1, and M =

⌈
T
Δ

⌉ ≤ T/Δ+ 1 is the
number of the intervals. The first part means the gap between
the base model sequence and the reference sequence, and the
second part means the gap between the reference sequence and
the optimal model sequence. Then, we turn to analyze the term
(a) and the term (b), respectively.

We first show that the expected riskRt(·) can be related to the
empirical risk estimator R̂t(·) due to its unbiasedness property
as stated in Lemma 1.

term (a) ≤ E1:T

[
T∑

t=1

〈∇Rt(wt),wt −w�
I〉
]

= E1:T

[
T∑

t=1

〈∇Rt(wt)−∇R̂t(wt),wt −w�
I〉
]

︸ ︷︷ ︸
term (a1)

+ E1:T

[
T∑

t=1

〈∇R̂t(wt),wt −w�
I〉
]

︸ ︷︷ ︸
term (a2)

,

where the first inequality is due to the convexity of the risk
function Rt(·). Further, for term (a1), we have

term (a1) = E1:T

[
〈∇Rt(wt)−∇R̂t(wt),wt −w�

I〉
]

=E1:t−1
[
〈∇Rt(wt)−Et[∇R̂t(wt)|1 : t−1],wt−w�

I〉
]
=0,

where the last equality is due to the unbiasedness of the risk
estimator R̂t as stated in Lemma 1, such that ∇Rt(wt) =

Et[∇R̂t(wt) | 1 : t− 1]. Thus, it is sufficient to analyze
term (a2) to provide an upper bound for term (a). To bound
term (a2), we give the following useful lemma.

Lemma 2 (Lemma 6 in Bai et al. [7]): For an unbiased risk
estimator R̂t(w), under same assumptions of Theorem 1, the
base regret of one base learner updated by (5) satisfies

T∑
t=1

〈
∇R̂t(wt),wt − ut

〉
≤ 2ηKG2T

σ2
+

2ΓPT + Γ2

2η

for any comparator sequence {ut}Tt=1 with ut ∈ W , where
PT =

∑T
t=2 ‖ut − ut−1‖2 measures the variation of the com-

parator sequence.
Since the comparator sequence in term (a) only changes

M − 1 times, its variation is bounded by PT ≤ Γ(M − 1) ≤
(ΓT )/Δ. By Lemma 2 and taking the expectation, we have

term (a2) ≤ 2ηKG2T

σ2
+
2Γ2T/Δ+ Γ2

2η
.

Combining upper bounds of term (a1) and term (a2) yields

term (a) ≤ term (a1) + term (a2)

≤ 2ηKG2T

σ2
+

2Γ2T/Δ+Γ2

2η
.

Meta Regret: For the meta regret, we have

E1:T

[
T∑

t=1

Rt (wt)−
T∑

t=1

Rt

(
wi

t

)]

≤ E1:T

⎡⎣ T∑
t=1

N∑
j=1

pt,jRt (wt,j)−
T∑

t=1

Rt

(
wi

t

)⎤⎦
= E1:T

⎡⎣ T∑
t=1

N∑
j=1

pt,jR̂t (wt,j)−
T∑

t=1

R̂t

(
wi

t

)⎤⎦
+ E1:T

[ T∑
t=1

N∑
j=1

pt,j

(
Rt (wt,j)− R̂t (wt,j)

)

+

T∑
t=1

(
Rt

(
wi

t

)− R̂t

(
wi

t

)) ]

= E1:T

⎡⎣ T∑
t=1

N∑
j=1

pt,jR̂t (wt,j)−
T∑

t=1

R̂t

(
wi

t

)⎤⎦ ,
where the first inequality is due to Jensen’s inequality and the last
equality is due to unbiasedness of our estimator R̂t(w). Then,
we can upper bound the meta regret as follows.

Lemma 3 (Meta Regret): By setting the learning rate ε =
σ
B

√
lnN+2

(K+nc)T , the meta regret of HANOL satisfies

T∑
t=1

N∑
j=1

pt,jR̂t (wt,j)−
T∑

t=1

R̂t

(
wi

t

)
≤ 2B

σ

√
(lnN+2)(K+nc)T
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for any i ∈ [N ], whereB is the upper bound of the loss function
defined as B � sup(x,y)∈X×Y,w∈W |�(f(w,x), y)|.

Proof of Lemma 3: Since our HANOL takes the Hedge
algorithm as the meta algorithm, we can exploit the standard
analysis of Hedge to upper bound the meta regret. We first give
the following regret guarantee of the vanilla Hedge algorithm,

Lemma 4 (Theorem 19 of Syrgkanis et al. [51]): Let �t ∈ R
N

be the loss vector and take �it ∈ R as its ith entry, the Hedge
algorithm updating with pit ∝ exp(−ε(∑t−1

s=1 �
i
s)) satisfies

T∑
t=1

N∑
j=1

pt,j�
j
t −

T∑
t=1

�it ≤
lnN + 2

ε
+ ε

T∑
t=1

‖�t‖2∞

for any i ∈ [N ], where ε > 0 is the step size.
By Lemma 4, we bound the meta regret by

T∑
t=1

N∑
j=1

pt,jR̂t (wt,j)−
T∑

t=1

R̂t

(
wi

t

)

≤ lnN + 2

ε
+ ε

T∑
t=1

∣∣∣∣max
i∈[N ]

{
R̂
(
wi

t

)}∣∣∣∣2 , (8)

where the last term can be further bounded by∣∣∣R̂t

(
wi

t

)∣∣∣ =

∣∣∣∣∣
K+nc∑
k=1

[
C−1

f0
μ̂ŷt

]
k
·Rk

0

(
wi

t

)∣∣∣∣∣
≤ B

∥∥∥C−1
f0

μ̂ŷt

∥∥∥
1
≤ B

√
K + nc

∥∥∥C−1
f0

μ̂ŷt

∥∥∥
2

≤ B
√
K+nc

∥∥∥C−1
f0

∥∥∥
2

∥∥μ̂ŷt

∥∥
2
≤ B

√
K+nc

σ
. (9)

In above equations, the third inequality is due to the Cauchy-
Schwarz inequality. The last inequality comes from ‖C−1

f0
‖2 ≤

σ−1 and ‖μ̂ŷt
‖2 ≤ 1. Plugging (9) into (8), we have

T∑
t=1

N∑
j=1

pt,jR̂t (wt,j)−
T∑

t=1

R̂t

(
wi

t

)

≤ lnN + 2

ε
+ ε

T∑
t=1

B2(K + nc)T

σ2
.

Setting ε= σ
B

√
(lnN+2)
(K+nc)T , we finish the proof of Lemma 3. �

Therefore, by combining the upper bound of the base regret
with that of the meta regret, we finish the proof of the overall
dynamic regret bound as stated in Theorem 1. �

C. Proof of Theorem 2

Proof of Theorem 2. We first show that the proposed sketch-
ing and ensemble pruning mechanisms can reduce the com-
putational complexity of the algorithm. Note that we build an
unbiased estimator in (3) by leveraging the offline dataset S0

and current unlabeled dataset St. Besides, the online ensemble
mechanism in HANOL needs a total of O(log T ) base learners
to construct the ensemble model. Therefore, the computational
complexity of the algorithm is O(|S0| · log T ) per round, which
is costly for large-scale datasets. To address this, we propose

the balanced kernel herding mechanism to sketch the offline
dataset, store onlymK samples, and also introduce the ordering-
based ensemble pruning mechanism to update only N base
learners. Therefore, the computational complexity is reduced
to O(mKN) per round.

Then, we analyze the error introduced by the sketching and
ensemble pruning mechanisms. Suppose the Reduced Kernel
Hilbert Space Hk norm of the loss function is upper bounded
by L, i.e., L � sup(x,y)∈X×Y,w∈W ‖�(f(w,x), y)‖Hk

. We have

‖R̂t(w)−Rt(w)‖ = O(L/m) by the convergence rate of the
kernel herding method [44], which finishes the proof. �

VI. EXPERIMENTS

In this section, we present the empirical evaluations, which
encompass experiments on five benchmark datasets and two
real-world tasks related to the N-OLS problem. Our evaluation
aims to answer the following questions:
� Q1: Does HANOL outperform other contenders in N-OLS

when confronted with various types of shifts?
� Q2: Does HANOL show effectiveness in real-world tasks

with the arrival of new classes and continuous label shift?
� Q3: Does each component of HANOL individually improve

the performance? Does it correctly detect shifts and esti-
mate the proportion of the new class? Is HANOL efficient?

A. Benchmark Datasets

This section seeks to answer Q1. We compare our proposed
algorithm HANOL with seven competing methods using five
benchmark datasets in the N-OLS scenario. Due to the nov-
elty of the problem we are considering, there are currently no
online algorithms specifically designed to address this problem.
Therefore, the competing methods comprise a baseline approach
(FIX), two for managing distribution shifts (FTFWH [4] and
ASL [52]), two for handling the new classes in data streams
(SENC-F [12] and KNNENS [38]), and two originally de-
signed methods to tackle the offline N-OLS problem (Self-N
and PULSE [53]). For the offline N-OLS methods, we made
necessary modifications to adapt them to our specific setting.
The details of all the competing methods are presented below.
� FIX is a baseline method that predicts with the initial clas-

sifier trained with offline data without online adaptation.
� FTFWH [4] is short for Follow The Fixed Window History,

which averages across previously estimated priors within
a sliding window. We set the window length as 100.

� ASL [52] is short for Augmented Self-Labeling method,
which ensembles pseudo labels of different data
augmentation-based models to handle distribution shifts.

� SENC-F [12] is short for SENC-Forest, a tree-based
method to detect and classify the new class data.

� KNNENS [38] explores the local neighborhood informa-
tion to handle the new class by employing an ensemble-
based nearest neighbor technique.

� Self-N is a simple solution for the N-OLS problem where
we directly combine the self-labeling and the new class
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TABLE I
AVERAGE ERROR (%) OF DIFFERENT ALGORITHMS ON BENCHMARK DATASETS WITH DIFFERENT TYPES OF ENVIRONMENTAL SHIFTS, WHERE HANOL

REPRESENTS OUR METHOD

detector. Self-N first initializes a model, then repeatedly
minimizes empirical risks based on pseudo labels gener-
ated by the last classifier to handle distribution shifts. And
it detects new classes by the tree-based method [12].

� PULSE [53] is a two-stage method that first estimates the
fraction of the new class, then guides the classification of
the target data. At each round, it retrains the model with the
offline labeled data and the current unlabeled data, without
reusing historical information.

For the benchmark datasets, we generate a changing environ-
ment where the label distributions shift over time, and the new
class data emerge in the online adaptation stage, which is not
contained in the offline training data. In online adaptation stage,
the learner can only observe unlabeled data streams. Specifically,
we randomly choose two classes as the new classes for each
benchmark dataset. The label distribution at round t is a mixture
of two different constant distributions μ,μ′ ∈ ΔK+1 with a
time-varying coefficient αt, i.e., Dt(y) = (1− αt)μ+ αtμ

′,
where μyt

denotes the distribution at round t and αt controls
the intensity of distribution changes. We only observe the label
distribution μ0 ∈ ΔK for known classes in the offline training
data. We simulate three typical types of distribution shifts in
real-world tasks, specifically,
� Gradual Shift: the αt =

t
T , which represents the

gradual environmental change following a linear pattern.
� Periodical Shift:αt = sin iπ

L periodically changes
following a sinusoidal pattern, where i = t mod L and L
is a given periodic length. By default, we set L = Θ(

√
T ).

� Sudden Shift: At every iteration, we keep αt = αt−1

with a probability p ∈ [0, 1], otherwise set αt = 1− αt−1.
In the experiments, the parameter is set as p = 1/

√
T .

We evaluate all the contenders by average error over T =
10, 000 rounds, with the following five benchmark datasets:
CIFAR10, CINIC10, EuroSAT, Fashion, and MNIST.

Implementation Details: For the aforementioned five bench-
mark datasets, we employ a fine-tuned ResNet34 network for
feature extraction. Images used to train the ResNet do not overlap
with either the offline or online datasets. We sample 30, 000
data for offline initialization. We repeat all experiments for five
times and evaluate the average error and standard deviation. The
learning rates of the algorithms are set according to theoretical
guidelines. The hyperparameter ε for the meta learner is set as√

(lnN)/T . δ and γ in MPE are set as the default values follow-
ing [43], i.e., 0.1 and 0.01, respectively, without modification.
The window size in the sliding-window MPE is set to L = 20
by default, without deliberate selection. Enhanced performance
could be potentially achieved by selecting the window size using
techniques such as cross-validation. In all experiments, we set
the sketch size in our balanced kernel herding mechanism to 1,
000, and the number of base experts to 3 in our ordering-based
pruning mechanism without careful tuning. All experiments are
executed on a computer equipped with 2 Intel Xeon 8358 CPUs,
each having 32 cores.

Results on Benchmark Datasets: The comparison results with
the seven contenders on benchmark datasets are reported in
Table I. These results demonstrate that our proposed algorithm
effectively handles the new classes in the online label shift
problem, outperforming other approaches. The baseline FIX
is inferior to the online algorithms, highlighting the necessity
of sequentially updated algorithms with online unlabeled data.
Our method surpasses both FTFWH and ASL, indicating that
handling the new class is crucial in the N-OLS setting. Besides,



QIAN et al.: HANDLING NEW CLASS IN ONLINE LABEL SHIFT 5267

Fig. 3. (a) & (b) Comparison of overall performances on the real-world tasks. (c) Accuracy of the estimated new class proportion of our sliding-window MPE
module. (d) Evaluation of efficiency and accuracy (defined as 100% - average error) of different algorithms. We report the mean and standard deviation over five
runs. An algorithm closer to the top-right corner indicates superior efficiency and performance. HANOL is our approach. Full-HANOL is a variant of HANOL that
is not equipped with the sketching and ensemble pruning mechanisms.

TABLE II
AVERAGE ERROR (%) OF DIFFERENT ALGORITHMS ON THE REAL-WORLD

APPLICATIONS OF SHL [15] AND FMOW [16] DATASETS

compared with SENC-F and KNNENS, which primarily focus on
managing new classes, our method achieves better performance.
This indicates that label shifts can lead to the misclassification
of the new classes, and our black box shift estimator effectively
tackles this issue. Our HANOL algorithm consistently outper-
forms both PULSE and Self-N, showing the effectiveness of our
online updating scheme with sliding window-based MPE and
online ensemble. These results show the success of our approach
in tackling the N-OLS problem.

B. Real-World Applications

In this part, we aim to answer Q2. We compare the proposed
approach with other contenders on two real-world applications:
(i) the SHL locomotion recognition dataset [15], and (ii) the
Functional Map of the World (fMoW) dataset [16], a sequential
satellite image recognition task. The details of these applications
are presented as below.
� SHL: This dataset is designed for human locomotion recog-

nition using multi-modal sensor data (acceleration, gyro-
scope, gravity, pressure, etc.) collected from a body-worn
camera and four smartphones at different body locations.
We sample 30,000 offline and 77,000 online data points
over an 11-day period, with six classes: still, walking,
running, bike, car, and bus. During online updates, samples
are processed chronologically based on timestamps, with
label shifts and new classes emerging over time.

� fMoW: A satellite imagery dataset for building and land
use classification, containing 83,412 images from over 200
countries with 63 building categories. Each image includes
metadata about location, time, and environmental factors.
The data stream is timestamp-ordered, with 10,000 earliest
samples for offline initialization. Label distributions and
building categories evolve between 2002 and 2017.

We report the average error of various algorithms on the
real-world SHL and fMoW datasets in Table II, along with their
respective timely performance depicted in Fig. 3(a) and (b).
As shown in these empirical studies, our proposed method
exhibits superior performance compared to the FTFWH and ASL
methods, highlighting the significance of addressing the arrival
of new classes in real-world tasks. Moreover, our proposed
approach, HANOL, effectively adapts to label shift by the black
box shift estimator and constructs a novel risk estimator for
the N-OLS problem through the exploitation of unlabeled data,
thereby outperforming the SENC-F and KNNENS methods. Our
approach also surpasses the PULSE and Self-N methods, thanks
to the benefits of the online updating scheme and the proposed
sliding-window MPE mechanism, which alleviate the lack of
labeled data problems in the online data streams.

C. Ablation Study

In this part, we aim to answer Q3. We conduct ablation
studies of our proposed algorithm to validate the contribution
of each component to the overall performance improvement.
Additionally, we also report their running efficiency.

Modular Analysis: In order to demonstrate the benefits of the
designed modules in HANOL, we quantitatively evaluate our pro-
posed method and its variants by removing some components,
i.e., (i) a baseline method that employs the risk estimator and
stochastic gradient descent for model updating, but disregards
the online ensemble structure and relies on only a single model;
(ii) a variant of our proposal that does not utilize the sliding
window-based MPE for handling the emergence of the new
classes; and (iii) a method that excludes the black box shift
estimator used to tackle the distribution shifts in the data streams.
All the experiments are under the same hyperparameters for fair
comparisons. The δ and γ in MPE are set as the default values for
all experiments following [43], i.e., 0.1 and 0.01, respectively,
without modification. The window size in the sliding-window
MPE module is set to L = 20 by default, without deliberate
selection. Enhanced performance could be potentially achieved
by adaptively selecting the hyperparameters using techniques
such as cross-validation.

As illustrated in Table III, employing the online ensemble
structure significantly improves the performance in terms of
accuracy, suggesting that an ensemble of multiple base learners
can effectively handle the unknown distribution changes and the
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TABLE III
ABLATION STUDY OF OUR PROPOSED HANOL ALGORITHM

TABLE IV
HYPERPARAMETER SENSITIVITY ANALYSIS OF OUR ENSEMBLE

PRUNING MECHANISM

lack of labeled data problem in the data stream. Removing the
sliding window-based MPE module causes a significant drop
in the performance, thereby validating the effectiveness of the
MPE module in managing the emergence of new classes. The
performance further improves after employing the black box
shift estimator, indicating that addressing the distribution shift
is a critical aspect of the N-OLS problem, where label shift and
the presence of new classes occur simultaneously.

Additionally, as demonstrated in Fig. 3(c), our proposed
sliding-window MPE module is capable of accurately estimating
the proportion of the emerging new classes, thereby managing
the challenge of emerging new classes in the N-OLS problem
effectively.

Efficiency Comparison: We also compare the efficiency of
different algorithms. Specifically, we evaluate and compare the
efficiency (items processed per second) and accuracy (defined as
100% - average error) of various algorithms. An algorithm that
plots closer to the top-right corner indicates superior efficiency
and performance since it achieves a better performance with
higher efficiency. As demonstrated in Fig. 3(d), the moving
average-based FTFWH is the most efficient, but it yields the
poorest performance. Though the ensemble-based methods, ALS
and KNNENS, exhibit slower speed, they accomplish superior
performance. Our method, albeit with a slight compromise on
efficiency, attains the best performance among all algorithms.
Additionally, note that without our sketching and ensemble
pruning mechanisms, although Full-HANOL achieves a slight
performance improvement, it requires nearly twice the com-
putational complexity. This is due to the need to store all
offline labeled data and a much larger ensemble size com-
pared to our HANOL, resulting in significantly slower processing
speed.

Hyperparameter Sensitivity Analysis: We conduct a hyper-
parameter sensitivity analysis of our proposed algorithm to
validate the sensitivity of hyperparameters. Specifically, we vary
the number of base learners N to examine its effect on both
performance and efficiency. As shown in Table IV, setting N to

3 achieves a good balance between performance and efficiency.
Therefore, we set N = 3 as the default number of learners in
our experiments.

VII. CONCLUSION

In this paper, we investigate the problem of handling emerging
new classes in online label shift. We proposed a novel method,
called HANOL, to tackle both online label shift and the emergence
of the new classes in unlabeled data stream. Specifically, we
first build a risk estimator for unlabeled data stream via risk
rewriting and mixture proportion estimation to handle both
the presence of emerging new class and the distribution shift.
Then, we employ the paradigm of online ensemble to adapt
to the unknown continuous label shift. Additionally, we also
introduce the sketching and ensemble pruning mechanisms to
improve the computational efficiency of the algorithm, making it
more practical for real-world applications. The proposed method
enjoys a theoretical guarantee of dynamic regret, affirming its
effectiveness in adapting to changing distributions. We conduct
experiments on five benchmark datasets and two real-world
applications to validate the effectiveness of our HANOL. No-
tably, our proposed method exhibits significant improvements,
achieving an average accuracy gain of 10% for the SHL dataset
and 4% for the fMoW dataset compared to state-of-the-art
contenders.
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