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Abstract

This paper investigates group distributionally robust optimization (GDRO) with the goal
of learning a model that performs well over m different distributions. First, we formu-
late GDRO as a stochastic convex-concave saddle-point problem, which is then solved by
stochastic mirror descent (SMD) with m samples in each iteration, and attain a nearly
optimal sample complexity. To reduce the number of samples required in each round from
m to 1, we cast GDRO as a two-player game, where one player conducts SMD and the
other executes an online algorithm for non-oblivious multi-armed bandits, maintaining the
same sample complexity. Next, we extend GDRO to address scenarios involving imbalanced
data and heterogeneous distributions. In the first scenario, we introduce a weighted variant
of GDRO, enabling distribution-dependent convergence rates that rely on the number of
samples from each distribution. We design two strategies to meet the sample budget: one
integrates non-uniform sampling into SMD, and the other employs the stochastic mirror-
prox algorithm with mini-batches, both of which deliver faster rates for distributions with
more samples. In the second scenario, we propose to optimize the average top-k risk in-
stead of the maximum risk, thereby mitigating the impact of outlier distributions. Similar
to the case of vanilla GDRO, we develop two stochastic approaches: one uses m samples
per iteration via SMD, and the other consumes k samples per iteration through an online
algorithm for non-oblivious combinatorial semi-bandits.

Keywords: Group distributionally robust optimization (GDRO), Stochastic convex-
concave saddle-point problem, Non-oblivious online learning, Bandits, Average top-k risk

1 Introduction

In the classical statistical machine learning, our goal is to minimize the risk with respect to
a fixed distribution P0 (Vapnik, 2000), i.e.,

min
w∈W

{
R0(w) = Ez∼P0

[
ℓ(w; z)

]}
, (1)

where z ∈ Z is a sample drawn from P0, W denotes a hypothesis class, and ℓ(w; z) is a loss
measuring the prediction error of model w on z. During the past decades, various algorithms
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have been developed to optimize (1), and can be grouped in two categories: sample average
approximation (SAA) and stochastic approximation (SA) (Kushner and Yin, 2003). In
SAA, we minimize an empirical risk defined as the average loss over a set of samples drawn
from P0, and in SA, we directly solve the original problem by using stochastic observations
of the objective R0(·).

However, a model trained on a single distribution may lack robustness in the sense that
(i) it could suffer high error on minority subpopulations, though the average loss is small;
(ii) its performance could degenerate dramatically when tested on a different distribution.
Distributionally robust optimization (DRO) provides a principled way to address those
limitations by minimizing the worst-case risk in a neighborhood of P0 (Ben-Tal et al., 2013).
Recently, it has attracted great interest in optimization (Shapiro, 2017), statistics (Duchi
and Namkoong, 2021), operations research (Duchi et al., 2021), and machine learning (Hu
et al., 2018; Curi et al., 2020; Jin et al., 2021; Agarwal and Zhang, 2022). In this paper,
we consider an emerging class of DRO problems, named as Group DRO (GDRO) which
optimizes the maximum risk

Lmax(w) = max
i∈[m]

{
Ri(w) = Ez∼Pi

[
ℓ(w; z)

]}
(2)

over a finite number of distributions (Oren et al., 2019; Sagawa et al., 2020). Mathematically,
GDRO can be formulated as a minimax stochastic problem:

min
w∈W

max
i∈[m]

{Ri(w)} (3)

where P1, . . . ,Pm denote m distributions. A motivating example is federated learning,
where a centralized model is deployed at multiple clients, each of which faces a (possibly)
different data distribution (Mohri et al., 2019).

Supposing that samples can be drawn from all distributions freely, we develop efficient
SA approaches for (3), in favor of their light computations over SAA methods. As elaborated
by Nemirovski et al. (2009, § 3.2), we can cast (3) as a stochastic convex-concave saddle-
point problem:

min
w∈W

max
q∈∆m

{
ϕ(w,q) =

m∑
i=1

qiRi(w)

}
(4)

where ∆m = {q ∈ Rm|q ≥ 0,
∑m

i=1 qi = 1} is the (m−1)-dimensional simplex, and then
solve (4) by their mirror descent stochastic approximation method, namely stochastic mirror
descent (SMD). In fact, several recent studies have adopted this (or similar) strategy to
optimize (4). But, unfortunately, we found that existing results are unsatisfactory because
they either deliver a loose sample complexity (Sagawa et al., 2020), suffer subtle dependency
issues in their analysis (Haghtalab et al., 2022; Soma et al., 2022), or hold only in expectation
(Carmon and Hausler, 2022).

As a starting point, we first provide a routine application of SMD to (4), and discuss
the theoretical guarantee. In each iteration, we draw 1 sample from every distribution to
construct unbiased estimators of Ri(·) and its gradient, and then update both w and q by
SMD. The proposed method achieves an O(

√
(logm)/T ) convergence rate in expectation

and with high probability, where T is the total number of iterations. As a result, we
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obtain an O(m(logm)/ϵ2) sample complexity for finding an ϵ-optimal solution of (4), which
matches the Ω(m/ϵ2) lower bound (Soma et al., 2022, Theorem 5) up to a logarithmic
factor, and tighter than the O(m2(logm)/ϵ2) bound of Sagawa et al. (2020) by an m factor.
While being straightforward, this result seems new for GDRO. Additionally, we note that
the aforementioned method requires setting the number of iterations T in advance, which
could be inconvenient in practice. To avoid this limitation, we further propose an anytime
algorithm by using time-varying step sizes, and obtain an Õ(

√
(logm)/t) 1 convergence rate

at each iteration t.

Then, we proceed to reduce the number of samples used in each iteration from m to 1.
We remark that a naive uniform sampling over m distributions does not work well, and yields
a higher sample complexity (Sagawa et al., 2020). As an alternative, we borrow techniques
from online learning with stochastic observations, and explicitly tackle the non-oblivious
nature of the online process, which distinguishes our method from that of Soma et al.
(2022). Specifically, we use SMD to update w, and Exp3-IX, a powerful algorithm for non-
oblivious multi-armed bandits (MAB) (Neu, 2015), with stochastic rewards to update q. In
this way, our algorithm only needs 1 sample in each round and attains an O(

√
m(logm)/T )

convergence rate, implying the same O(m(logm)/ϵ2) sample complexity. Similarly, we also
put forward an anytime variant, achieving an Õ(

√
m(logm)/t) convergence rate.

Subsequently, we extend GDRO to address two specific scenarios, as illustrated below.

1.1 Extension to Imbalanced Data

In the first extention, we investigate a more practical and challenging scenario in which
there are different budgets of samples that can be drawn from each distribution, a natural
phenomenon encountered in learning with imbalanced data (Amodei et al., 2016). Let ni be
the sample budget of the i-th distribution, and without loss of generality, we assume that
n1 ≥ n2 ≥ · · · ≥ nm. Now, the goal is not to attain the optimal sample complexity, but to
reduce the risk on all distributions as much as possible, under the budget constraint. To
achieve this goal, we propose a novel formulation of weighted GDRO, which weights each
risk Ri(·) in (4) by a scale factor pi. For GDRO with different budgets, we develop two SA
approaches based on non-uniform sampling and mini-batches, respectively.

In each iteration of the first approach, we draw 1 sample from every Pi with probability
ni/n1, and then construct stochastic gradients to perform mirror descent. Consequently, the
budget will be satisfied in expectation after n1 rounds, and our algorithm can be regarded as
SMD for an instance of weighted GDRO. With the help of scale factors, we demonstrate the
proposed algorithm enjoys distribution-dependent convergence in the sense that it converges
faster for distributions with more samples. In particular, the excess risk on distribution Pi

reduces at an O(
√
n1 logm/ni) rate, and for P1, it becomes O(

√
(logm)/n1), which almost

matches the optimal O(
√

1/n1) rate of learning from a single distribution with n1 samples.

On the other hand, for distribution Pi with budget ni < n1, the above O(
√
n1 logm/ni)

rate is worse than the O(
√

1/ni) rate obtained by learning from Pi alone. In shape contrast
with this limitation, our second approach yields nearly optimal convergence rates for multi-
ple distributions across a large range of budgets. To meet the budget constraint, it runs for
n̄ ≤ nm rounds, and in each iteration, draws a mini-batch of ni/n̄ samples from every dis-

1. We use the Õ notation to hide constant factors as well as polylogarithmic factors in t.
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tribution Pi. As a result, (i) the budget constraint is satisfied exactly ; (ii) for distributions
with a larger budget, the associated risk function can be estimated more accurately, mak-
ing the variance of the stochastic gradient smaller. To benefit from the small variance, we
leverage stochastic mirror-prox algorithm (Juditsky et al., 2011), instead of SMD, to update
solutions, and again make use of the weighted GDRO formulation to obtain distribution-
wise convergence rates. Theoretical analysis shows that the excess risk converges at an
O(( 1

nm
+ 1√

ni
) logm) rate for each Pi. Thus, we obtain a nearly optimal O((logm)/

√
ni)

rate for distributions Pi with ni ≤ n2
m, and an O((logm)/nm) rate otherwise. Note that

the latter rate is as expected since the algorithm only updates O(nm) times.

1.2 Extension to Heterogeneous Distributions

In the second extension, we delve into another scenario where distributions exhibit hetero-
geneity, indicating significant variations in their risks (Li et al., 2019). The widely acknowl-
edged sensitivity of the max operation to outliers implies that GDRO could be dominated
by a single outlier distribution, while neglecting others (Shalev-Shwartz and Wexler, 2016).
Inspired by the average top-k loss for supervised learning (Fan et al., 2017), we modify our
objective from the maximum risk Lmax(w) in GDRO to the average top-k risk:

Lk(w) = max
I∈Bm,k

{
1

k

∑
i∈I

Ri(w)

}
(5)

where Bm,k is the set of subsets of [m] with size k, i.e., Bm,k = {I ⊆ [m]||I| = k}. This
modification aims to reduce the impact of outliers in heterogeneous distributions while still
including GDRO as a special case.

We refer to the minimization of Lk(w) as average top-k risk optimization (ATkRO),
and develop two stochastic algorithms. Similar to GDRO, ATkRO can be formulated as a
stochastic convex-concave saddle-point problem, akin to (4), with the only difference being
that the domain of q is the capped simplex instead of the standard simplex. Therefore,
we can employ SMD to update w and q, which uses m samples in each round. Theoreti-
cal analysis demonstrates that this approach achieves an O(

√
(log(m/k))/T ) convergence

rate, implying an O((m log(m/k))/ϵ2) sample complexity. Furthermore, to circumvent the
limitation of predefining the total number of iterations T , we introduce an anytime version
that attains an Õ(

√
(log(m/k))/t) convergence rate.

Following the second approach for GDRO, we reduce the number of samples required in
each round from m to k by casting ATkRO as a two-player game. In each round, we use the
Dependent Rounding (DepRound) algorithm (Gandhi et al., 2006) to select k distributions
based on the current value of q, and then draw 1 sample from each selected distribution.
Then, we construct unbiased stochastic gradients for w, and apply SMD for updates. Since
the domain of q is the capped simplex, we model the online problem for q as an instance of
non-oblivious combinatorial semi-bandits, and extend Exp3-IX to develop its update rule.
We prove that our algorithm achieves an O(

√
m(logm)/(kT )) convergence rate, yielding an

O(m(logm)/ϵ2) sample complexity. Similarly, we have also designed an anytime approach,
which uses 1 sample per round and achieves an Õ(

√
m(logm)/t) rate.
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This paper extends our previous conference version (Zhang et al., 2023) by developing
anytime algorithms, investigating a new scenario, and conducting more experiments, as
detailed below.

• First, we adapt the two SA algorithms for GDRO to operate in an anytime manner.
In the conference paper, our algorithms for GDRO required predefining the total
number of iterations T to set step sizes. By adopting time-varying step sizes, we
design anytime algorithms and provide the corresponding theoretical analysis.

• Second, we explore the scenario of heterogeneous distributions, which involves outlier
distributions with significantly high risks. To mitigate the impact of these outliers, we
propose to solve the ATkRO problem and develop two algorithms: one employs SMD
with m samples per round, achieving a sample complexity of O((m log(m/k))/ϵ2);
the other combines SMD with an algorithm for non-oblivious combinatorial semi-
bandits, achieving a sample complexity of O(m(logm)/ϵ2) and using k samples in
each iteration. Furthermore, we have also extended these two algorithms into anytime
versions.

• Last, we construct a heterogeneous data set and perform experiments to verify the
advantages of ATkRO. Additionally, we compare the performance of the anytime
algorithms with their non-anytime counterparts, demonstrating the benefits of the
anytime capability.

2 Related Work

Distributionally robust optimization (DRO) stems from the pioneering work of Scarf (1958),
and has gained a lot of interest with the advancement of robust optimization (Ben-Tal
et al., 2009, 2015). It has been successfully applied to a variety of machine learning tasks,
including adversarial training (Sinha et al., 2018), algorithmic fairness (Hashimoto et al.,
2018), class imbalance (Xu et al., 2020), long-tail learning (Samuel and Chechik, 2021),
label shift (Zhang et al., 2021), etc.

In general, DRO is formulated to reflect our uncertainty about the target distribu-
tion. To ensure good performance under distribution perturbations, it minimizes the risk
w.r.t. the worst distribution in an uncertainty set, i.e.,

min
w∈W

sup
P∈S(P0)

{
Ez∼P

[
ℓ(w; z)

]}
(6)

where S(P0) denotes a set of probability distributions around P0. In the literature, there
mainly exist three ways to construct S(P0): (i) enforcing moment constraints (Delage and
Ye, 2010), (ii) defining a neighborhood around P0 by a distance function such as the f -
divergence (Ben-Tal et al., 2013), the Wasserstein distance (Kuhn et al., 2019), and the
Sinkhorn distance (Wang et al., 2021), and (iii) hypothesis testing of goodness-of-fit (Bert-
simas et al., 2018).

By drawing a set of samples from P0, we can also define an empirical DRO problem,
which can be regarded as an SAA approach for solving (6). When the uncertainty set is
defined in terms of the Cressie–Read family of f -divergences, Duchi and Namkoong (2021)
have studied finite sample and asymptotic properties of the empirical solution. Besides,
it has been proved that empirical DRO can also benefit the risk minimization problem in
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(1). Namkoong and Duchi (2017) show that empirical DRO with the χ2-divergence has
the effect of variance regularization, leading to better generalization w.r.t. distribution P0.
Later, Duchi et al. (2021) demonstrate similar behaviors for the f -divergence constrained
neighborhood, and provide one- and two-sided confidence intervals for the minimum risk
in (1). Based on the Wasserstein distance, Esfahani and Kuhn (2018) establish an upper
confidence bound on the risk of the empirical solution.

Since (6) is more complex than (1), considerable research efforts were devoted to develop
efficient algorithms for DRO and its empirical version. For P0 with finite support, Ben-Tal
et al. (2013, Corollary 3) have demonstrated that (6) with f -divergences is equivalent to
a convex optimization problem, provided that the loss ℓ(w; z) is convex in w. Actually,
this conclusion is true even when P0 is continuous (Shapiro, 2017, § 3.2). Under mild
assumptions, Esfahani and Kuhn (2018) show that DRO problems over Wasserstein balls
can be reformulated as finite convex programs—in some cases even as linear programs.
Besides the constrained formulation in (6), there also exists a penalized (or regularized)
form of DRO (Sinha et al., 2018), which makes the optimization problem more tractable.
In the past years, a series of SA methods have been proposed for empirical DRO with
convex losses (Namkoong and Duchi, 2016), and DRO with convex loss (Levy et al., 2020)
and non-convex losses (Jin et al., 2021; Qi et al., 2021; Rafique et al., 2022).

The main focus of this paper is the GDRO problem in (3)/(4), instead of the traditional
DRO in (6). Sagawa et al. (2020) have applied SMD (Nemirovski et al., 2009) to (4),
but only obtain a sub-optimal sample complexity of O(m2(logm)/ϵ2), because of the large
variance in their gradients. In the sequel, Haghtalab et al. (2022) and Soma et al. (2022)
have tried to improve the sample complexity by reusing samples and applying techniques
from MAB respectively, but their analysis suffers dependency issues. Carmon and Hausler
(2022, Proposition 2) successfully established an O(m(logm)/ϵ2) sample complexity by
combining SMD and gradient clipping, but their result holds only in expectation. To deal
with heterogeneous noise in different distributions, Agarwal and Zhang (2022) propose a
variant of GDRO named as minimax regret optimization (MRO), which replaces the risk
Ri(w) with “excess risk” Ri(w)−minw∈W Ri(w). More generally, calibration terms can be
introduced to prevent any single distribution from dominating the maximum (S lowik and
Bottou, 2022). Efficient optimization of MRO has been investigated by Zhang et al. (2024).

In the context of federated learning, Mohri et al. (2019) have analyzed the generalization
error of empricial GDRO when the number of samples from different distributions could be
different. However, their convergence rate is unsatisfactory as it depends on the smallest
number of samples and is distribution-independent. Finally, we note that GDRO has a
similar spirit with collaborative PAC learning (Blum et al., 2017; Nguyen and Zakynthinou,
2018; Rothblum and Yona, 2021) in the sense that both aim to find a single model that
performs well on multiple distributions.

3 SA Approaches to GDRO

In this section, we present two efficient SA approaches for GDRO, which achieve the same
sample complexity but use a different number of samples in each round (m versus 1).

6
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3.1 Preliminaries

First, we state the general setup of mirror descent (Nemirovski et al., 2009). We equip
the domain W with a distance-generating function νw(·), which is 1-strongly convex with
respect to certain norm ∥ · ∥w. We define the Bregman distance associated with νw(·) as

Bw(u,v) = νw(u) −
[
νw(v) + ⟨∇νw(v),u− v⟩

]
.

For the simplex ∆m, we choose the negative entropy (neg-entropy) function νq(q) =
∑m

i=1

qi ln qi, which is 1-strongly convex with respect to the vector ℓ1-norm ∥ · ∥1, as the distance-
generating function. Similarly, Bq(·, ·) is the Bregman distance associated with νq(·).

Then, we introduce the standard assumptions about the domain, and the loss function.

Assumption 1 The domain W is convex and its diameter measured by νw(·) is bounded
by D, i.e.,

max
w∈W

νw(w) − min
w∈W

νw(w) ≤ D2. (7)

For ∆m, it is easy to verify that its diameter measured by the neg-entropy function is
bounded by

√
lnm.

Assumption 2 For all i ∈ [m], the risk function Ri(w) = Ez∼Pi [ℓ(w; z)] is convex.

To simplify presentations, we assume the loss belongs to [0, 1], and its gradient is also
bounded.

Assumption 3 For all i ∈ [m], we have

0 ≤ ℓ(w; z) ≤ 1, ∀w ∈ W, z ∼ Pi. (8)

Assumption 4 For all i ∈ [m], we have

∥∇ℓ(w; z)∥w,∗ ≤ G, ∀w ∈ W, z ∼ Pi (9)

where ∥ · ∥w,∗ is the dual norm of ∥ · ∥w.

Note that it is possible to relax the bounded assumptions in (8) and (9) to light tail condi-
tions such as the sub-Gaussian Property (Vershynin, 2018).

Last, we discuss the performance measure. To analyze the convergence property, we
measure the quality of an approximate solution (w̄, q̄) to (4) by the error

ϵϕ(w̄, q̄) = max
q∈∆m

ϕ(w̄,q) − min
w∈W

ϕ(w, q̄) (10)

which directly controls the optimality of w̄ to the original problem (3), since

max
i∈[m]

Ri(w̄) − min
w∈W

max
i∈[m]

Ri(w) = max
q∈∆m

m∑
i=1

qiRi(w̄) − min
w∈W

max
q∈∆m

m∑
i=1

qiRi(w)

≤ max
q∈∆m

m∑
i=1

qiRi(w̄) − min
w∈W

m∑
i=1

q̄iRi(w) = ϵϕ(w̄, q̄).

(11)
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3.2 Stochastic Mirror Descent for GDRO

To apply SMD, the key is to construct stochastic gradients of the function ϕ(w,q) in (4).
We first present its true gradients with respect to w and q:

∇wϕ(w,q) =
m∑
i=1

qi∇Ri(w), and ∇qϕ(w,q) = [R1(w), . . . , Rm(w)]⊤.

In each round t, denote by wt and qt the current solutions. We draw one sample z
(i)
t from

every distribution Pi, and define stochastic gradients as

gw(wt,qt) =
m∑
i=1

qt,i∇ℓ(wt; z
(i)
t ), and gq(wt,qt) = [ℓ(wt; z

(1)
t ), . . . , ℓ(wt; z

(m)
t )]⊤. (12)

Obviously, they are unbiased estimators of the true gradients:

Et−1[gw(wt,qt)] = ∇wϕ(wt,qt), and Et−1[gq(wt,qt)] = ∇qϕ(wt,qt)

where Et−1[·] represents the expectation conditioned on the randomness until round t− 1.
It is worth mentioning that the construction of gw(wt,qt) can be further simplified to

g̃w(wt,qt) = ∇ℓ(wt; z
(it)
t ) (13)

where it ∈ [m] is drawn randomly according to the probability qt.
Then, we use SMD to update wt and qt:

wt+1 = argmin
w∈W

{
ηw⟨gw(wt,qt),w −wt⟩ + Bw(w,wt)

}
, (14)

qt+1 = argmin
q∈∆m

{
ηq⟨−gq(wt,qt),q− qt⟩ + Bq(q,qt)

}
(15)

where ηw > 0 and ηq > 0 are two step sizes that will be determined later. The updating
rule of wt depends on the choice of the distance-generating function νw(·). For example, if
νw(w) = 1

2∥w∥22, (14) becomes stochastic gradient descent (SGD), i.e.,

wt+1 = ΠW
[
wt − ηwgw(wt,qt)

]
where ΠW [·] denotes the Euclidean projection onto the nearest point in W. Since Bq(q,qt)
is defined in terms of the neg-entropy, (15) is equivalent to

qt+1,i =
qt,i exp

(
ηqℓ(wt; z

(i)
t )
)∑m

j=1 qt,j exp
(
ηqℓ(wt; z

(j)
t )
) , ∀i ∈ [m] (16)

which is the Hedge algorithm (Freund and Schapire, 1997) applied to a maximization prob-
lem. In the beginning, we set w1 = argminw∈W νw(w), and q1 = 1

m1m, where 1m is the
m-dimensional vector consisting of 1’s. In the last step, we return the averaged iterates
w̄ = 1

T

∑T
t=1wt and q̄ = 1

T

∑T
t=1 qt as final solutions. The complete procedure is summa-

rized in Algorithm 1.
Based on the theoretical guarantee of SMD for stochastic convex-concave optimization

(Nemirovski et al., 2009, § 3.1), we have the following theorem for Algorithm 1.

8
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Algorithm 1 Stochastic Mirror Descent for GDRO

Input: step size ηw and ηq

1: Initialize w1 = argminw∈W νw(w), and q1 = [1/m, . . . , 1/m]⊤ ∈ Rm

2: for t = 1 to T do
3: For each i ∈ [m], draw a sample z

(i)
t from distribution Pi

4: Construct the stochastic gradients defined in (12)
5: Update wt and qt according to (14) and (15), respectively
6: end for
7: return w̄ = 1

T

∑T
t=1wt and q̄ = 1

T

∑T
t=1 qt

Theorem 1 Under Assumptions 1, 2, 3 and 4, and setting ηw = D2
√

8
5T (D2G2+lnm)

and

ηq = (lnm)
√

8
5T (D2G2+lnm)

in Algorithm 1, we have

E
[
ϵϕ(w̄, q̄)

]
≤ 2

√
10(D2G2 + lnm)

T

and with probability at least 1 − δ,

ϵϕ(w̄, q̄) ≤
(

8 + 2 ln
2

δ

)√
10(D2G2 + lnm)

T
.

Remark 1 Theorem 1 shows that Algorithm 1 achieves an O(
√

(logm)/T ) convergence
rate. Since it consumes m samples per iteration, the sample complexity is O(m(logm)/ϵ2),
which nearly matches the Ω(m/ϵ2) lower bound (Soma et al., 2022, Theorem 5).

Comparisons with Sagawa et al. (2020) Given the fact that the number of samples
used in each round of Algorithm 1 is m, it is natural to ask whether it can be reduced to
a small constant. Indeed, the stochastic algorithm of Sagawa et al. (2020) only requires
1 sample per iteration, but suffers a large sample complexity. In each round t, they first

generate a random index it ∈ [m] uniformly, and draw 1 sample z
(it)
t from Pit . The stochastic

gradients are constructed as follows:

ĝw(wt,qt) = qt,itm∇ℓ(wt; z
(it)
t ), and ĝq(wt,qt) = [0, . . . ,mℓ(wt; z

(it)
t ), . . . , 0]⊤ (17)

where ĝq(wt,qt) is a vector with mℓ(wt; z
(it)
t ) in position it and 0 elsewhere. Then, the

two stochastic gradients are used to update wt and qt, in the same way as (14) and
(15). However, it only attains a slow convergence rate: O(m

√
(logm)/T ), leading to an

O(m2(logm)/ϵ2) sample complexity, which is higher than that of Algorithm 1 by a factor
of m. The slow convergence is due to the fact that the optimization error depends on the
dual norm of the stochastic gradients in (17), which blows up by a factor of m, compared
with the gradients in (12).

Comparisons with Haghtalab et al. (2022) To reduce the number of samples required
in each round, Haghtalab et al. (2022) propose to reuse samples for multiple iterations. To
approximate ∇wϕ(wt,qt), they construct the stochastic gradient g̃w(wt,qt) in the same
way as (13), which needs 1 sample. To approximate ∇qϕ(wt,qt), they draw m samples

9
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z
(1)
τ , . . . , z

(m)
τ , one from each distribution, at round τ = mk + 1, k ∈ Z, and reuse them for

m iterations to construct the following gradient:

g′
q(wt,qt) = [ℓ(wt; z

(1)
τ ), . . . , ℓ(wt; z

(m)
τ )]⊤, t = τ, . . . , τ + m− 1. (18)

Then, they treat g̃w(wt,qt) and g′
q(wt,qt) as stochastic gradients, and update wt and qt

by SMD. In this way, their algorithm uses 2 samples on average in each iteration. However,
the gradient in (18) is no longer an unbiased estimator of the true gradient ∇qϕ(wt,qt) at
rounds t = τ + 2, . . . , τ + m − 1, making their analysis ungrounded. To see this, from the
updating rule of SMD, we know that wτ+2 depends on qτ+1, which in turn depends on the
m samples drawn at round τ , and thus

E
[
ℓ(wτ+2; z

(i)
τ )
]
̸= Ri(wτ+2), i = 1, . . . ,m.

3.2.1 Anytime Extensions

The step sizes ηw and ηq in Theorem 1 depend on the total number of iterations T , which
complicates practical implementation as it requires setting T beforehand. Additionally, the
theorem only offers theoretical guarantees for the final solution. To avoid these limitations,
we propose an anytime extension of Algorithm 1 by employing time-varying step sizes. We
note that there is a long-standing history of designing anytime algorithms in optimization
and related areas (Zilberstein, 1996; Horsch and Poole, 1998; Cutkosky, 2019).

Specifically, we replace the fixed step sizes ηw and ηq in (14) and (15) with time-varying
step sizes (Nemirovski et al., 2009)

ηwt = D2

√
2

t(D2G2 + lnm)
, and ηqt = (lnm)

√
2

t(D2G2 + lnm)
, (19)

respectively. To enable anytime capability, we maintain the weighted averages of the iter-
ates:

w̄t =
t∑

j=1

ηwj wj∑t
k=1 η

w
k

=
(
∑t−1

j=1 η
w
j )w̄t−1 + ηwt wt∑t

k=1 η
w
k

,

q̄t =

t∑
j=1

ηqjqj∑t
k=1 η

q
k

=
(
∑t−1

j=1 η
q
j )q̄t−1 + ηqtqt∑t
k=1 η

q
k

(20)

which can be returned as solutions whenever required, and provide the following theoretical
guarantee for the solution (w̄t, q̄t) at each round t.

Theorem 2 Under Assumptions 1, 2, 3 and 4, and setting step sizes as (19) in Algo-
rithm 1, we have

E
[
ϵϕ(w̄t, q̄t)

]
≤

√
D2G2 + lnm√

2
(√

t + 1 − 1
) (5 + 3 ln t) = O

(√
logm log t√

t

)
, ∀t ∈ Z+. (21)

Furthermore, with probability at least 1 − δ, we have

ϵϕ(w̄t, q̄t) ≤
√
D2G2 + lnm√

2
(√

t + 1 − 1
) (9 + 11 ln

2

δ
+ 7 ln t + 3 ln

2

δ
ln t

)
= O

(√
logm log t√

t

)
for each t ∈ Z+.

10
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Remark 2 The convergence rate of the anytime extension is slower by a factor of O(log t)
compared to Algorithm 1 with fixed step sizes. However, the modified algorithm possesses
the anytime characteristic, indicating it is capable of returning a solution at any round.

3.3 Non-oblivious Online Learning for GDRO

In this section, we explore methods to reduce the number of samples used in each iteration
from m to 1. As shown in (13), we can use 1 sample to construct a stochastic gradient for
wt with small norm, since ∥g̃w(wt,qt)∥w,∗ ≤ G under Assumption 4. Thus, it is relatively
easy to control the error related to wt. However, we do not have such guarantees for the
stochastic gradient of qt. Recall that the infinity norm of ĝq(wt,qt) in (17) is upper bounded
by m. The reason is that we insist on the unbiasedness of the stochastic gradient, which
leads to a large variance. To control the variance, Carmon and Hausler (2022) have applied
gradient clipping to ĝq(wt,qt), and established an O(m(logm)/ϵ2) sample complexity that
holds in expectation. Different from their approach, we borrow techniques from online
learning to balance the bias and the variance.

In the studies of convex-concave saddle-point problems, it is now well-known that they
can be solved by playing two online learning algorithms against each other (Freund and
Schapire, 1999; Rakhlin and Sridharan, 2013; Syrgkanis et al., 2015; Roux et al., 2021).
This transformation allows us to exploit no-regret algorithms developed in online learning
to bound the optimization error. To solve problem (4), we ask the 1st player to minimize
a sequence of convex functions

ϕ(w,q1) =
m∑
i=1

q1,iRi(w), ϕ(w,q2) =
m∑
i=1

q2,iRi(w), · · · , ϕ(w,qT ) =
m∑
i=1

qT,iRi(w) (22)

under the constraint w ∈ W, and the 2nd player to maximize a sequence of linear functions

ϕ(w1,q) =

m∑
i=1

qiRi(w1), ϕ(w2,q) =

m∑
i=1

qiRi(w2), · · · , ϕ(wT ,q) =

m∑
i=1

qiRi(wT ) (23)

subject to the constraint q ∈ ∆m. We highlight that there exists an important difference
between our stochastic convex-concave problem and its deterministic counterpart. Here, the
two players cannot directly observe the loss function, and can only approximate Ri(w) =
Ez∼Pi

[
ℓ(w; z)

]
by drawing samples from Pi. The stochastic setting makes the problem

more challenging, and in particular, we need to take care of the non-oblivious nature of the
learning process. Here, “non-oblivious” refers to the fact that the online functions depend
on the past decisions of the players.

Next, we discuss the online algorithms that will be used by the two players. As shown in
Section 3.2, the 1st player can easily obtain a stochastic gradient with small norm by using
1 sample. So, we model the problem faced by the 1st player as “non-oblivious online convex
optimization (OCO) with stochastic gradients”, and still use SMD to update its solution. In
each round t, with 1 sample drawn from Pi, the 2nd player can estimate the value of Ri(wt)
which is the coefficient of qi. Since the 2nd player is maximizing a linear function over
the simplex, the problem can be modeled as “non-oblivious multi-armed bandits (MAB)
with stochastic rewards”. And fortunately, we have powerful online algorithms for non-
oblivious MAB (Auer et al., 2002; Lattimore and Szepesvári, 2020), whose regret has a

11
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Algorithm 2 Non-oblivious Online Learning for GDRO

Input: step size ηw and ηq, and IX coefficient γ

1: Initialize w1 = argminw∈W νw(w), and q1 = [1/m, . . . , 1/m]⊤ ∈ Rm

2: for t = 1 to T do
2: Generate it ∈ [m] according to qt, and draw a sample z

(it)
t from distribution Pit

3: Construct the stochastic gradient in (13) and the IX loss estimator in (25)
4: Update wt and qt according to (24) and (26), respectively
5: end for
6: return w̄ = 1

T

∑T
t=1wt and q̄ = 1

T

∑T
t=1 qt

sublinear dependence on m. In this paper, we choose the Exp3-IX algorithm (Neu, 2015),
and generalize its theoretical guarantee to stochastic rewards. In contrast, if we apply SMD
with ĝq(wt,qt) in (17), the regret scales at least linearly with m.

The complete procedure is presented in Algorithm 2, and we explain key steps below.
In each round t, we generate an index it ∈ [m] from the probability distribution qt, and

then draw a sample z
(it)
t from the distribution Pit . With the stochastic gradient in (13), we

use SMD to update wt:

wt+1 = argmin
w∈W

{
ηw⟨g̃w(wt,qt),w −wt⟩ + Bw(w,wt)

}
. (24)

Then, we reuse the sample z
(it)
t to update qt according to Exp3-IX, which first constructs

the Implicit-eXploration (IX) loss estimator (Kocák et al., 2014):

s̃t,i =
1 − ℓ(wt, z

(it)
t )

qt,i + γ
· I[it = i], ∀i ∈ [m] (25)

where γ > 0 is the IX coefficient and I[A] equals to 1 when the event A is true and 0
otherwise, and then performs a mirror descent update:

qt+1 = argmin
q∈∆m

{
ηq⟨s̃t,q− qt⟩ + Bq(q,qt)

}
. (26)

Compared with (15), the only difference is that the stochastic gradient −gq(wt,qt) is now
replaced with the IX loss estimator s̃t. However, it is not an instance of SMD, because s̃t
is no longer an unbiased stochastic gradient. The main advantage of s̃t is that it reduces
the variance of the gradient estimator by sacrificing a little bit of unbiasedness, which turns
out to be crucial for a high probability guarantee, and thus can deal with non-oblivious
adversaries. Since we still use the entropy regularizer in (26), it also enjoys an explicit form
that is similar to (16).

We present the theoretical guarantee of Algorithm 2. To this end, we first bound the
regret of the 1st player. In the analysis, we address the non-obliviousness by the “ghost
iterate” technique of Nemirovski et al. (2009).

Theorem 3 Under Assumptions 1, 2 and 4, and setting ηw = 2D
G
√
5T

, we have

E

[
T∑
t=1

ϕ(wt,qt) − min
w∈W

T∑
t=1

ϕ(w,qt)

]
≤ 2DG

√
5T

12
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and with probability at least 1 − δ,

T∑
t=1

ϕ(wt,qt) − min
w∈W

T∑
t=1

ϕ(w,qt) ≤ DG
√
T

(
2
√

5 + 8

√
ln

1

δ

)
.

By extending Exp3-IX to stochastic rewards, we have the following bound for the 2nd
player.

Theorem 4 Under Assumption 3, and setting ηq =
√

lnm
mT and the IX coefficient γ =

ηq
2 ,

we have

E

[
max
q∈∆m

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

]
≤ 3

√
mT lnm +

√
T

2
+ 3

(√
mT

lnm
+

√
T

2
+ 1

)

and with probability at least 1 − δ,

max
q∈∆m

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt) ≤ 3
√
mT lnm +

√
T

2
+

(√
mT

lnm
+

√
T

2
+ 1

)
ln

3

δ
.

Combining the above two theorems directly leads to the following optimization error
bound.

Theorem 5 Under Assumptions 1, 2, 3 and 4, and setting ηw = 2D
G
√
5T

, ηq =
√

lnm
mT and

γ =
ηq
2 in Algorithm 2, we have

E
[
ϵϕ(w̄, q̄)

]
≤ 2DG

√
5

T
+ 3

√
m lnm

T
+

√
1

2T
+ 3

(√
m

T lnm
+

√
1

2T
+

1

T

)
(27)

and with probability at least 1 − δ,

ϵϕ(w̄, q̄)

≤DG

√
1

T

(
2
√

5 + 8

√
ln

2

δ

)
+ 3

√
m lnm

T
+

√
1

2T
+

(√
m

T lnm
+

√
1

2T
+

1

T

)
ln

6

δ
.

(28)

Remark 3 The above theorem shows that with 1 sample per iteration, Algorithm 2 is able
to achieve an O(

√
m(logm)/T ) convergence rate, thus maintaining the O(m(logm)/ϵ2)

sample complexity. It is worth mentioning that one may attempt to reduce the logm factor
by employing mirror descent with the Tsallis entropy (νq(q) = 1 −

∑m
i=1

√
qi) for the 2nd

player (Audibert and Bubeck, 2010, Theorem 13). However, even in the standard MAB
problem, such an improvement only happens in the oblivious setting, and is conjectured to
be impossible in the non-oblivious case (Audibert and Bubeck, 2010, Remark 14).
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Comparisons with Soma et al. (2022) In a recent work, Soma et al. (2022) have
deployed online algorithms to optimize w and q, but did not consider the non-oblivious
property. As a result, their theoretical guarantees, which build upon the analysis for obliv-
ious online learning (Orabona, 2019), cannot justify the optimality of their algorithm for
(4). Specifically, their results imply that for any fixed w and q that are independent from
w̄ and q̄ (Soma et al., 2022, Theorem 3),

E [ϕ(w̄,q) − ϕ(w, q̄)] = O

(√
m

T

)
. (29)

However, (29) cannot be used to bound ϵϕ(w̄, q̄) in (10), because of the dependency issue.
To be more clear, we have

ϵϕ(w̄, q̄) = max
q∈∆m

ϕ(w̄,q) − min
w∈W

ϕ(w, q̄) = ϕ(w̄, q̂) − ϕ(ŵ, q̄),

where ŵ = argminw∈W ϕ(w, q̄) and q̂ = argmaxq∈∆m
ϕ(w̄,q) depend on q̄ and w̄, respec-

tively.

Remark 4 After we pointed out the dependence issue of reusing samples, Haghtalab et al.
(2023) modified their method by incorporating bandit algorithms to optimize q. From our
understanding, the idea of applying bandits to GDRO was firstly proposed by Soma et al.
(2022), and subsequently refined by us.

3.3.1 Anytime Extensions

Similar to Algorithm 1, Algorithm 2 also requires the prior specification of the total number
of iterations T , as the values of ηw in SMD, as well as ηq and γ in Exp3-IX, are dependent
on T . Following the extension in Section 3.2.1, we can also adapt Algorithm 2 to be anytime
by employing time-varying parameters in SMD and Exp3-IX. Specifically, in the t-th round,
we replace ηw in (24), ηq in (26), and γ in (25) with

ηwt =
D

G
√
t
, ηqt =

√
lnm

mt
, and γt =

ηqt
2

(30)

respectively, and output w̄t and q̄t in (20) as the current solution.
Compared to the original Algorithm 2, our modifications are relatively minor. However,

the theoretical analysis differs significantly. The reason is because the optimization error
of (w̄t, q̄t) is governed by the weighted average regret of the two players, rather than the
standard regret. That is,

ϵϕ(w̄t, q̄t) = max
q∈∆m

ϕ(w̄t,q) − min
w∈W

ϕ(w, q̄t)

≤

 t∑
j=1

ηwj

−1max
w∈W

t∑
j=1

ηwj [ϕ(wj ,qj) − ϕ(w,qj)]


︸ ︷︷ ︸

:=O1

+

 t∑
j=1

ηqj

−1max
q∈∆m

t∑
j=1

ηqj [ϕ(wj ,q) − ϕ(wj ,qj)]


︸ ︷︷ ︸

:=O2

.

(31)
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For the 1st player, we extend the analysis of SMD in Theorem 3, and obtain the results
below for bounding O1.

Theorem 6 Under Assumptions 1, 2 and 4, and using ηwt in (30) for the 1st player, we
have

E
[
O1

]
≤ DG(√

t + 1 − 1
) (9

4
+

5

4
ln t

)
, ∀t ∈ Z+.

Furthermore, with probability at least 1 − δ, we have

O1 ≤
DG√

t + 1 − 1

(
17

4
+

13

4
ln t + 2 ln

1

δ

)
for each t ∈ Z+.

While Neu (2015) have analyzed the regret of Exp3-IX with time-varying step sizes, our
focus is on the weighted average regret O2. To achieve this, we conduct a different analysis
to bound O2, and establish the following theoretical guarantee.

Theorem 7 Under Assumption 3, and using ηqt and γt in (30) for the 2nd player, we have

E
[
O2

]
≤ 1

2
(√

t + 1 − 1
) ((3 + ln t)

√
m lnm + 6

√
m

lnm
+ 4

√
1 + ln t

2

)
, ∀t ∈ Z+.

Furthermore, with probability at least 1 − δ, we have

O2 ≤
1

2
(√

t + 1 − 1
) ((3 + ln t)

√
m lnm +

(
2

√
m

lnm
+

√
1 + ln t

2

)
ln

3

δ
+

√
1 + ln t

2

)
for each t ∈ Z+.

By directly integrating the above two theorems, we derive the following theorem for the
optimization error at each round.

Theorem 8 Under Assumptions 1, 2, 3 and 4, and setting parameters as (30) in Algo-
rithm 2, we have

E
[
ϵϕ(w̄t, q̄t)

]
≤

(3 + ln t)
√
m lnm + 6

√
m/ lnm + 4

√
(1 + ln t)/2 + DG (5 + 3 ln t)

2
(√

t + 1 − 1
)

=O

(√
m logm log t√

t

)
, ∀t ∈ Z+.

(32)

Furthermore, with probability at least 1 − δ, we have

ϵϕ(w̄t, q̄t)

≤
(3 + ln t)

√
m lnm +

(
2
√

m
lnm +

√
1+ln t

2

)
ln 6

δ +
√

1+ln t
2 + DG

(
9 + 7 ln t + 4 ln 2

δ

)
2
(√

t + 1 − 1
)

=O

(√
m logm log t√

t

) (33)

for each t ∈ Z+.

Remark 5 Similar to the conclusion in Section 3.2.1, the convergence rate in the above
theorem is O(log t) times slower than that in Theorem 5.
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4 Weighted GDRO for Imbalanced Data

When designing SA approaches for GDRO, it is common to assume that the algorithms
are free to draw samples from every distribution (Sagawa et al., 2020), as we do in Sec-
tion 3. However, this assumption may not hold in practice. For example, data collection
costs can vary widely among distributions (Radivojac et al., 2004), and data collected from
various channels can have different throughputs (Zhou, 2024). In this section, we investi-
gate the scenario where the number of samples can be drawn from each distribution could
be different. Denote by ni the number of samples that can be drawn from Pi. Without
loss of generality, we assume that n1 ≥ n2 ≥ · · · ≥ nm. Note that we have a straightfor-
ward Baseline which just runs Algorithm 1 for nm iterations, and the optimization error
ϵϕ(w̄, q̄) = O(

√
(logm)/nm).

4.1 Stochastic Mirror Descent with Non-uniform Sampling

To meet the budget, we propose to incorporate non-uniform sampling into SMD. Before
getting into technical details, we first explain the main idea of using non-uniform sampling.
One way is to draw 1 sample from every distribution Pi with probability pi = ni/n1 in each
iteration. Then, after n1 iterations, the expected number of samples drawn from Pi will be
n1pi = ni, and thus the budget is satisfied in expectation.

Specifically, in each round t, we first generate a set of Bernoulli random variables

{b(1)t , . . . , b
(m)
t } with Pr[b

(i)
t = 1] = pi to determine whether to sample from each distri-

bution. If b
(i)
t = 1, we draw a sample z

(i)
t from Pi. The question then becomes how to

construct stochastic gradients from these samples. Let Ct = {i|b(i)t = 1} be the indices of se-
lected distributions. If we stick to the original problem in (4), then the stochastic gradients
should be constructed in the following way

gw(wt,qt) =
∑
i∈Ct

qt,i
pi

∇ℓ(wt; z
(i)
t ), and [gq(wt,qt)]i =

{
ℓ(wt; z

(i)
t )/pi, i ∈ Ct

0, otherwise
(34)

to ensure unbiasedness. Then, they can be used by SMD to update wt and qt. To analyze
the optimization error, we need to bound the norm of stochastic gradients in (34). To
this end, we have ∥gw(wt,qt)∥w,∗ ≤ Gn1/nm and ∥gq(wt,qt)i∥∞ ≤ n1/nm. Following the
arguments of Theorem 1, we can prove that the error ϵϕ(w̄, q̄) = O(

√
(logm)/n1 ·n1/nm) =

O(
√
n1 logm/nm), which is even larger than the O(

√
(logm)/nm) error of the Baseline.

In the following, we demonstrate that a simple twist of the above procedure can still
yield meaningful results that are complementary to the Baseline. We observe that the large
norm of the stochastic gradients in (34) is caused by the inverse probability 1/pi. A natural
idea is to ignore 1/pi, and define the following stochastic gradients:

gw(wt,qt) =
∑
i∈Ct

qt,i∇ℓ(wt; z
(i)
t ), and [gq(wt,qt)]i =

{
ℓ(wt; z

(i)
t ), i ∈ Ct

0, otherwise.
(35)
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Algorithm 3 Stochastic Mirror Descent for Weighted GDRO

Input: step size ηw and ηq

1: Initialize w1 = argminw∈W νw(w), and q1 = [1/m, . . . , 1/m]⊤ ∈ Rm

2: for t = 1 to n1 do
3: For each i ∈ [m], generate a Bernoulli random variable b

(i)
t with Pr[b

(i)
t = 1] = pi, and

if b
(i)
t = 1, draw a sample z

(i)
t from distribution Pi

4: Construct the stochastic gradients defined in (35)
5: Update wt and qt according to (14) and (15), respectively
6: end for
7: return w̄ = 1

n1

∑n1
t=1wt and q̄ = 1

n1

∑n1
t=1 qt

In this way, they are no longer stochastic gradients of (4), but can be treated as stochastic
gradients of a weighted GDRO problem:

min
w∈W

max
q∈∆m

{
φ(w,q) =

m∑
i=1

qipiRi(w)

}
(36)

where each risk Ri(·) is scaled by a factor pi. Based on the gradients in (35), we still use
(14) and (15) to update wt and qt. We summarize the complete procedure in Algorithm 3.

We omit the optimization error of Algorithm 3 for (36), since it has exactly the same
form as Theorem 1. What we are really interested in is the theoretical guarantee of its
solution on multiple distributions. To this end, we have the following theorem.

Theorem 9 Under Assumptions 1, 2, 3 and 4, and setting ηw = D2
√

8
5n1(D2G2+lnm)

and

ηq = (lnm)
√

8
5n1(D2G2+lnm)

in Algorithm 3, with probability at least 1 − δ, we have

Ri(w̄) − n1

ni
p∗φ ≤ 1

pi
µ(δ)

√
10(D2G2 + lnm)

n1
= µ(δ)

√
10(D2G2 + lnm)n1

ni
, ∀i ∈ [m]

where p∗φ is the optimal value of (36) and µ(δ) = 8 + 2 ln 2
δ .

Remark 6 While the value of p∗φ is generally unknown, it can be regard as a small constant
when there exists one model that attains small risks on all distributions. We see that
Algorithm 3 exhibits a distribution-dependent convergence behavior: the larger the number
of samples ni, the smaller the target risk n1p

∗
φ/ni, and the faster the convergence rate

O(
√
n1 logm/ni). Note that its rate is always better than the O(

√
n1 logm/nm) rate of

SMD with (34) as gradients. Furthermore, it converges faster than the Baseline when ni ≥√
n1nm. In particular, for distribution P1, Algorithm 3 attains an O(

√
(logm)/n1) rate,

which almost matches the optimal O(
√

1/n1) rate of learning from a single distribution.
Finally, we would like to emphasize that a similar idea of introducing “scale factors” has
been used by Juditsky et al. (2011, § 4.3.1) for stochastic semidefinite feasibility problems
and Agarwal and Zhang (2022) for empirical MRO.

17



Zhang, Bai, Zhao, Yang, and Zhou

4.2 Stochastic Mirror-Prox Algorithm with Mini-batches

In Algorithm 3, distributions with more samples take their advantage by appearing more
frequently in the stochastic gradients. In this section, we propose a different way, which
lets them reduce the variance in the elements of stochastic gradients by mini-batches (Roux
et al., 2008).

The basic idea is as follows. We run our algorithm for a small number of iterations n̄
that is no larger than nm. Then, in each iteration, we draw a mini-batch of ni/n̄ samples
from every distribution Pi. For Pi with more samples, we can estimate the associated risk
Ri(·) and its gradient more accurately, i.e., with a smaller variance. However, to make
this idea work, we need to tackle two obstacles: (i) the performance of the SA algorithm
should depend on the variance of gradients instead of the norm, and for this reason SMD is
unsuitable; (ii) even some elements of the stochastic gradient have small variances, the entire
gradient may still have a large variance. To address the first challenge, we resort to a more
advanced SA approach—stochastic mirror-prox algorithm (SMPA), whose convergence rate
depends on the variance (Juditsky et al., 2011). To overcome the second challenge, we again
introduce scale factors into the optimization problem and the stochastic gradients. And in
this way, we can ensure faster convergence rates for distributions with more samples.

In SMPA, we need to maintain two sets of solutions: (wt,qt) and (w′
t,q

′
t). In each

round t, we first draw ni/nm samples from every distribution Pi, denoted by z
(i,j)
t , j =

1, . . . , ni/nm. Then, we use them to construct stochastic gradients at (w′
t,q

′
t) of a weighted

GDRO problem (36), where the value of pi will be determined later. Specifically, we define

gw(w′
t,q

′
t) =

m∑
i=1

q′t,ipi

nm

ni

ni/nm∑
j=1

∇ℓ(w′
t; z

(i,j)
t )

 ,

gq(w
′
t,q

′
t) =

p1nm

n1

n1/nm∑
j=1

ℓ(w′
t; z

(1,j)
t ), p2

nm

n2

n2/nm∑
j=1

ℓ(w′
t; z

(2,j)
t ), . . . , pmℓ(w′

t; z
(m)
t )

⊤

.

(37)

Let’s take the stochastic gradient gq(w
′
t,q

′
t), whose variance will be measured in terms of ∥·

∥∞, as an example to explain the intuition of inserting pi. Define ui = nm
ni

∑ni/nm

j=1 ℓ(w′
t; z

(i,j)
t ).

With a larger mini-batch size ni/nm, ui will approximate Ri(w
′
t) more accurately, and thus

have a smaller variance. Then, it allows us to insert a larger value of pi, without affecting the
variance of ∥gq(w′

t,q
′
t)∥∞, since ∥·∥∞ is insensitive to perturbations of small elements. Sim-

ilar to the case in Theorem 9, the convergence rate of Ri(·) depends on 1/pi, and becomes
faster if pi is larger.

Based on (37), we use SMD to update (w′
t,q

′
t), and denote the solution by (wt+1,qt+1):

wt+1 = argmin
w∈W

{
ηw⟨gw(w′

t,q
′
t),w −w′

t⟩ + Bw(w,w′
t)
}
, (38)

qt+1 = argmin
q∈∆m

{
ηq⟨−gq(w

′
t,q

′
t),q− q′

t⟩ + Bq(q,q
′
t)
}
. (39)
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Algorithm 4 Stochastic Mirror-Prox Algorithm for Weighted GDRO

Input: step size ηw and ηq

1: Initialize w′
1 = argminw∈W νw(w), and q′

1 = [1/m, . . . , 1/m]⊤ ∈ Rm

2: for t = 1 to nm/2 do

3: For each i ∈ [m], draw ni/nm samples {z(i,j)t |j = 1, . . . , ni/nm} from distribution Pi

4: Construct the stochastic gradients defined in (37)
5: Calculate wt+1 and qt+1 according to (38) and (39), respectively

6: For each i ∈ [m], draw ni/nm samples {ẑ(i,j)t |j = 1, . . . , ni/nm} from distribution Pi

7: Construct the stochastic gradients defined in (40)
8: Calculate w′

t+1 and q′
t+1 according to (41) and (42), respectively

9: end for
10: return w̄ = 2

nm

∑1+nm/2
t=2 wt and q̄ = 2

nm

∑1+nm/2
t=2 qt

Next, we draw another ni/nm samples from each distribution Pi, denoted by ẑ
(i,j)
t , j =

1, . . . , ni/nm, to construct stochastic gradients at (wt+1,qt+1):

gw(wt+1,qt+1) =
m∑
i=1

qt+1,ipi

nm

ni

ni/nm∑
j=1

∇ℓ(wt+1; ẑ
(i,j)
t )

 ,

gq(wt+1,qt+1) =

p1nm

n1

n1/nm∑
j=1

ℓ(wt+1; ẑ
(1,j)
t ), . . . , pmℓ(wt+1; ẑ

(m)
t )

⊤

.

(40)

Then, we use them to update (w′
t,q

′
t) again, and denote the result by (w′

t+1,q
′
t+1):

w′
t+1 = argmin

w∈W

{
ηw⟨gw(wt+1,qt+1),w −w′

t⟩ + Bw(w,w′
t)
}
, (41)

q′
t+1 = argmin

q∈∆m

{
ηq⟨−gq(wt+1,qt+1),q− q′

t⟩ + Bq(q,q
′
t)
}
. (42)

To meet the budget constraints, we repeat the above process for nm/2 iterations. Finally, we

return w̄ = 2
nm

∑1+nm/2
t=2 wt and q̄ = 2

nm

∑1+nm/2
t=2 qt as solutions. The complete procedure

is summarized in Algorithm 4.
To analysis the performance of Algorithm 4, we further assume the risk function Ri(·)

is smooth, and the dual norm ∥ · ∥w,∗ satisfies a regularity condition.

Assumption 5 All the risk functions are L-smooth, i.e.,

∥∇Ri(w) −∇Ri(w
′)∥w,∗ ≤ L∥w −w′∥w, ∀w,w′ ∈ W, i ∈ [m]. (43)

Note that even in the studies of stochastic convex optimization (SCO), smoothness is nec-
essary to obtain a variance-based convergence rate (Lan, 2012).

Assumption 6 The dual norm ∥ · ∥w,∗ is κ-regular for some small constant κ ≥ 1.

The regularity condition is used when analyzing the effect of mini-batches on stochastic
gradients. For a formal definition, please refer to Juditsky and Nemirovski (2008). As-
sumption 6 is satisfied by most of papular norms considered in the literature, such as the
vector ℓp-norm and the infinity norm.

Then, we have the following theorem for Algorithm 4.
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Theorem 10 Define

pmax = max
i∈[m]

pi, ωmax = max
i∈[m]

p2inm

ni
,

L̃ = 2
√

2pmax(D2L + D2G
√

lnm), and σ2 = 2cωmax(κD2G2 + ln2m)

(44)

where c > 0 is an absolute constant. Under Assumptions 1, 2, 3, 4, 5 and 6, and setting

ηw = 2D2 min

(
1

√
3L̃

,
2√

7σ2nm

)
, and ηq = 2 min

(
1

√
3L̃

,
2√

7σ2nm

)
lnm

in Algorithm 4, with probability at least 1 − δ, we have

Ri(w̄) − 1

pi
p∗φ =

1

pi

 7L̃

nm
+

√
σ2

nm

(
14

√
2

3
+ 7

√
3 log

2

δ
+

14

nm
log

2

δ

)
where p∗φ is the optimal value of (36).
Furthermore, by setting pi as

pi =
1/
√
nm + 1

1/
√
nm +

√
nm/ni

, (45)

with high probability, we have

Ri(w̄) − 1

pi
p∗φ = O

((
1

nm
+

1
√
ni

)√
κ + ln2m

)
.

Remark 7 Compared with Algorithm 3, Algorithm 4 has two advantages: (i) the budget
constraint is satisfied exactly; (ii) we obtain a faster O((logm)/

√
ni) rate for all distributions

Pi such that ni ≤ n2
m, which is much better than the O(

√
n1 lnm/ni) rate of Algorithm 3,

and the O(
√

(logm)/nm) rate of the Baseline. For distributions with a larger budget, i.e.,
ni > n2

m, it maintains a fast O((logm)/nm) rate. Since it only updates nm times, and the
best we can expect is the O(1/nm) rate of deterministic settings (Nemirovski, 2004). So,
there is a performance limit for mini-batch based methods, and after that increasing the
batch-size cannot reduce the rate, which consists with the usage of mini-batches in SCO
(Cotter et al., 2011; Zhang et al., 2013).

Remark 8 To further improve the convergence rate, we can design a hybrid algorithm
that combines non-uniform sampling and mini-batches. Specifically, we run our algorithm
for n̄ ∈ [nm, n1] rounds, and for distributions with ni ≥ n̄, we use mini-batches to reduce
the variance, and for distributions with ni < n̄, we use random sampling to satisfy the
budget constraint.

5 ATkRO for Heterogeneous Distributions

GDRO is effective in dealing with homogeneous distributions, where the risks of all distribu-
tions are roughly of the same order. However, its effectiveness diminishes when confronted
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Figure 1: Graphical illustrations of Example 1.

with heterogeneous distributions. This stems from the sensitivity of the max operator to
outlier distributions with significantly high risks, causing it to focus solely on outliers and
overlook others (Shalev-Shwartz and Wexler, 2016). To address this issue, research in ro-
bust supervised learning has introduced the approach of minimizing the average of the k
largest individual losses (Fan et al., 2017; Curi et al., 2020). Inspired by these studies, we
propose to optimize the average top-k risk Lk(w) in (5), which can mitigate the influence
of outliers.

5.1 Preliminaries

By replacing Lmax(w) in (2) with Lk(w), we obtain the average top-k risk optimization
(ATkRO) problem:

min
w∈W

max
I∈Bm,k

{
1

k

∑
i∈I

Ri(w)

}
(46)

which reduces to GDRO when k = 1. Before introducing specific optimization algorithms,
we present an example to illustrate the difference between GDRO and ATkRO.

Example 1 We define the hypothesis space as W = [0, 1] and the Bernoulli distribution as
Ber(µ, 1), which outputs 1 with probability µ and 0 with probability 1−µ. Then, we consider
16 distributions: Ber(µi, 1) where µi is sequentially set to 0.5, 0.86, 0.87, . . . , 0.99, 1. The loss
function is defined as ℓ(w; z) = (w − z)2 for a random sample z ∈ {0, 1} drawn from these
distributions. We denote the solutions of GDRO and AT5RO by w∗

G and w∗
A, respectively.

It is easy to show that w∗
G = 0.5 and w∗

A = 0.8, as detailed in Appendix B.

To visualize the results, in Fig. 1 we plot a portion of the risk functions, the objectives
of GDRO and AT5RO, as well as their respective solutions. From Fig. 1(a), it is evident
that distribution P1 is significantly different from the other 15 distributions, indicating it
could be an outlier. Fig. 1(b) demonstrates that GDRO primarily focuses on P1, yielding
the solution w∗

G = argminw∈W R1(w) = 0.5. Although its solution performs well on P1, it
underperforms on the other 15 distributions. Note that a slight increase in w∗

G leads to a
noticeable reduction in R2, . . . , R16, with the cost of a minor increase in R1. AT5RO offers
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a relatively balanced solution w∗
A = 0.8 by considering the top-5 high-risk distributions.

Specifically, the average risk of w∗
A on distributions P2, . . . ,P16 is 0.168 lower than that

of w∗
G, with a 0.09 increase in the risk on P1. Therefore, AT5RO effectively mitigates the

influence of the outlier distribution P1, showing superior robustness compared to GDRO.
Similar to the case of GDRO, (46) can be cast as a stochastic convex-concave saddle-

point problem:

min
w∈W

max
q∈Sm,k

{
ϕ(w,q) =

m∑
i=1

qiRi(w)

}
(47)

where

Sm,k =

{
q ∈ Rm | 0 ≤ qi ≤

1

k
,

m∑
i=1

qi = 1

}
is the capped simplex which can be viewed as the slice of the hyper-cube [0, 1/k]m cut by
a hyper-plane q⊤1 = 1. The difference between (4) and (47) lies in the domain of q, which
is ∆m and Sm,k respectively.

Note that a similar convex-concave optimization problem has been studied by Curi et al.
(2020) and Roux et al. (2021). However, their works investigate the deterministic setting,
whereas our paper considers a stochastic problem. Consequently, their algorithms are not
applicable here, necessitating the design of efficient stochastic approaches for (47). By
replacing ∆m in (10) with Sm,k, we obtain the performance measure of an approximate
solution (w̄, q̄) to (47), i.e.,

ϵ′ϕ(w̄, q̄) = max
q∈Sm,k

ϕ(w̄,q) − min
w∈W

ϕ(w, q̄) (48)

which also controls the optimality of w̄ to (46) by replacing ∆m with Sm,k in (11).

5.2 Stochastic Mirror Descent for ATkRO

Following the procedure in Section 3.2, we also use SMD to optimize (47), with the only
difference being the update rule for q.

Since the objectives of (47) and (4) are identical, the stochastic gradients gw(wt,qt)
and gq(wt,qt) in (12) also serve as unbiased estimators of true gradients ∇wϕ(wt,qt) and
∇qϕ(wt,qt), respectively. In the t-th round, we reuse (14) to update wt, and modify the
update of qt as

qt+1 = argmin
q∈Sm,k

{
ηq⟨−gq(wt,qt),q− qt⟩ + Bq(q,qt)

}
. (49)

Because the domain is no longer the simplex ∆m, the explicit form in (16) does not apply
to (49). In the following lemma, we demonstrate that (49) can be reduced to a neg-entropy
Bregman projection problem onto the capped simplex (Si Salem et al., 2023).

Lemma 11 Consider a mirror descent defined as

q = argmin
q∈Sm,k

{
η⟨g,q− q0⟩ + Bq(q,q0)

}
(50)

where g,q0 ∈ Rm and Bq(·, ·) is the Bregman distance defined in terms of the neg-entropy.
Then, (50) is equivalent to q = argminq∈Sm,k

Bq(q, q̂) where q̂i = q0,ie
−ηgi.
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Algorithm 5 Stochastic Mirror Descent for ATkRO

Input: step size ηw and ηq

1: Initialize w1 = argminw∈W νw(w), and q1 = [1/m, . . . , 1/m]⊤ ∈ Rm

2: for t = 1 to T do
3: For each i ∈ [m], draw a sample z

(i)
t from distribution Pi

4: Construct the stochastic gradients defined in (12)
5: Update wt and qt according to (14) and (51), respectively
6: end for
7: return w̄ = 1

T

∑T
t=1wt and q̄ = 1

T

∑T
t=1 qt

By Lemma 11, we can leverage existing algorithms for neg-entropy Bregman projections
onto the capped simplex to compute

qt+1 = argmin
q∈Sm,k

Bq(q, q̂t), where q̂t,i = qt,ie
ηqℓ(wt;z

(i)
t ). (51)

In particular, we choose Algorithm 2 of Si Salem et al. (2023), summarized in Appendix C.1,
whose time complexity is O(m + k ln k).

We present the entire procedure in Algorithm 5, and have the following theorem.

Theorem 12 Under Assumptions 1, 2, 3 and 4, and setting ηw = D2
√

8
5T (D2G2+ln m

k
)
and

ηq = (ln m
k )
√

8
5T (D2G2+ln m

k
)
in Algorithm 5, we have

E
[
ϵ′ϕ(w̄, q̄)

]
≤ 2

√
10(D2G2 + ln m

k )

T

and with probability at least 1 − δ,

ϵ′ϕ(w̄, q̄) ≤
(

8 + 2 ln
2

δ

)√
10(D2G2 + ln m

k )

T
.

Remark 9 The above theorem indicates that Algorithm 5 attains an O(
√

(log(m/k))/T )
convergence rate. Since it requires m samples in each iteration, the sample complexity is
O((m log(m/k))/ϵ2).

5.2.1 Anytime Extensions

As discussed in Section 3.2.1, we can adapt Algorithm 5 for anytime use by employing
time-varying step sizes. In the t-th round, we use step sizes

ηwt = D2

√
2

t(D2G2 + ln m
k )

, and ηqt = (ln
m

k
)

√
2

t(D2G2 + ln m
k )

(52)

in (14) and (49)/(51) to update wt and qt, respectively. When required, we return w̄t and
q̄t in (20) as outputs.

Similar to Theorem 2, we have the following theoretical guarantee for (w̄t, q̄t).
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Theorem 13 Under Assumptions 1, 2, 3 and 4, and setting step sizes as (52) in Algo-
rithm 5, we have

E
[
ϵ′ϕ(w̄t, q̄t)

]
≤
√

D2G2 + ln m
k√

2
(√

t + 1 − 1
) (5 + 3 ln t) = O

(√
log m

k log t
√
t

)
, ∀t ∈ Z+.

Furthermore, with probability at least 1 − δ, we have

ϵ′ϕ(w̄t, q̄t) ≤
√
D2G2 + ln m

k√
2
(√

t + 1 − 1
) (9 + 11 ln

2

δ
+ 7 ln t + 3 ln

2

δ
ln t

)
= O

(√
log m

k log t
√
t

)

for each t ∈ Z+.

Remark 10 Similar to previous cases, the convergence rate of the anytime extension is
slower by a factor of O(log t).

5.3 Non-oblivious Online Learning for ATkRO

Building on the two-player game in Section 3.3, we can leverage online learning techniques
to reduce the number of samples used in each round from m to k.

The 1st player faces the same problem, specifically minimizing the sequence of convex
functions in (22) under the constraint w ∈ W. Therefore, it can still be framed as “non-
oblivious OCO with stochastic gradients” and solved using SMD. In contrast, the 2nd player
tackles a different challenge: maximizing the sequence of linear functions in (23), constrained
by q ∈ Sm,k rather than q ∈ ∆m. Because the domain is the capped simplex, it is natural
to ask the 2nd player to select the k highest-risk options from m distributions, reflecting
the combinatorial nature of the problem. After drawing one sample from each selected
distribution, the 2nd player observes k stochastic rewards, which fits into a semi-bandit
structure. This leads to modeling the 2nd player’s problem as “non-oblivious combinatorial
semi-bandits with stochastic rewards”. For the 2nd player, we can certainly apply existing
algorithms designed for non-oblivious combinatorial semi-bandits (Audibert et al., 2014;
Neu and Bartók, 2016; Vural et al., 2019). Here, to maintain consistency with Algorithm 2,
we will extend the Exp3-IX algorithm to address this scenario.

In the following, we elaborate on the details and modifications compared to Algorithm 2.
To select k distributions from m in each round, we require a sampling algorithm that, given
the value of k and a probability vector p ∈ Sm,k, can generate a set I such that

|I| = k, and Pr[i ∈ I] = kpi, ∀i ∈ [m]. (53)

For this purpose, we can use the DepRound algorithm (Gandhi et al., 2006), which satisfies
the above requirement and has O(m) time and space complexities. A detailed description
of its procedure is provided in Appendix C.2. We note that DepRound has been used by
many combinatorial semi-bandit algorithms (Uchiya et al., 2010; Vural et al., 2019; Roux
et al., 2021). In each round t, we first invoke the DepRound algorithm with (k,qt) as inputs
to generate a set It containing the indices of k selected distributions. For each i ∈ It, we

then draw a sample z
(i)
t from the corresponding distribution Pi.
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Algorithm 6 Non-oblivious Online Learning for ATkRO

Input: step sizes ηw and ηq, and IX coefficient γ

1: Initialize w1 = argminw∈W νw(w), and q1 = [1/m, . . . , 1/m]⊤ ∈ Rm

2: for t = 1 to T do
3: Generate It = DepRound(k,qt)

4: For each i ∈ It, draw a sample z
(i)
t from distribution Pi

5: Construct the stochastic gradient in (54) and the modified IX loss estimator in (55)
6: Update wt and qt according to (24) and (57), respectively
7: end for
8: return w̄ = 1

T

∑T
t=1wt and q̄ = 1

T

∑T
t=1 qt

Next, the 1st player constructs the stochastic gradient as shown below:

g̃w(wt,qt) =
1

k

∑
i∈It

∇ℓ(wt; z
(i)
t ) (54)

which can be easily verified, based on (53), as an unbiased estimator of ∇wϕ(wt,qt). Then,
we update wt by applying the mirror descent (24) with g̃w(wt,qt) in (54). For the 2nd
player, we modify the IX loss estimator for the combinatorial semi-bandit setting:

s̃t,i =
1 − ℓ(wt, z

(i)
t )

kqt,i + γ
· I[i ∈ It], ∀i ∈ [m] (55)

and then update qt by mirror descent

qt+1 = argmin
q∈Sm,k

{ηq⟨s̃t,q− qt⟩ + Bq(q,qt)} . (56)

Compared with (25), (55) incorporates two key changes. First, we replace I[it = i] with I[i ∈
It] to utilize all the k observed losses {ℓ(wt, z

(i)
t )|i ∈ It}. Second, since Pr[i ∈ It] = kqt,i,

the denominator of s̃t,i is adjusted accordingly. By Lemma 11, we can similarly transform
(56) into a neg-entropy Bregman projection problem:

qt+1 = argmin
q∈Sm,k

Bq(q, q̂t), where q̂t,i = qt,ie
−ηq s̃t,i (57)

which can be solved by Algorithm 2 of Si Salem et al. (2023). The complete procedure is
presented in Algorithm 6.

For the 1st player, Theorem 3 remains applicable because the only change in the proof

of Theorem 3 is that ∥g̃w(wt,qt)∥2w,∗ = ∥ 1
k

∑
i∈It ∇ℓ(wt; z

(i)
t )∥2w,∗ ≤ G2, which does not

alter the conclusion. For the 2nd player, we prove the following theorem.

Theorem 14 Under Assumption 3, and setting ηq =
√

k lnm
mT and γ =

ηq
2 , we have

E

[
max

q∈Sm,k

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

]
≤ 3

√
T

2
+

2m

k
+ 2

√
mT

k lnm
+ 3

√
mT lnm

k
+

m lnm

k
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and with probability at least 1 − δ,

max
q∈Sm,k

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

≤
√

T

2
+

(√
T

2
+

m

k
+

√
mT

k lnm

)
ln

2

δ
+ 3

√
mT lnm

k
+

m lnm

k
.

Based on Theorems 3 and 14, we directly obtain the optimization error of Algorithm 6 as
follows.

Theorem 15 Under Assumptions 1, 2, 3 and 4, and setting ηw = 2D
G
√
5T

, ηq =
√

k lnm
mT and

γ =
ηq
2 in Algorithm 6, we have

E
[
ϵ′ϕ(w̄, q̄)

]
≤ 2DG

√
5

T
+ 3

√
1

2T
+ 2

√
m

kT lnm
+ 3

√
m lnm

kT
+

m(2 + lnm)

kT

and with probability at least 1 − δ,

ϵ′ϕ(w̄, q̄) ≤DG

√
1

T

(
2
√

5 + 8

√
ln

2

δ

)
+

√
1

2T
+

(√
1

2T
+

m

kT
+

√
m

kT lnm

)
ln

4

δ

+ 3

√
m lnm

kT
+

m lnm

kT
.

Remark 11 Theorem 15 demonstrates that Algorithm 6 obtains an O(
√

m(logm)/(kT ))
convergence rate. Since it consumes k samples per iteration, the sample complexity is
O(m(logm)/ϵ2), slightly higher than that of Algorithm 5.

5.3.1 Anytime Extensions

Based on the discussion in Section 3.3.1, it is natural to adopt time-varying parameters
to make Algorithm 6 anytime. However, during the theoretical analysis, we encountered
a technical obstacle. In the original paper of Exp3-IX, there are two concentration re-
sults concerning the IX loss estimator (25): one for fixed parameters and the other for
time-varying parameters, i.e., Corollary 1 and Lemma 1 of Neu (2015) respectively. In Sec-
tion 5.3, we successfully extended their Corollary 1 to combinatorial semi-bandits, resulting
in Theorem 14. However, we are unable to extend their Lemma 1 to combinatorial semi-
bandits,2 and therefore cannot provide theoretical guarantees for Algorithm 6 when using
time-varying parameters. Additionally, we have not found any algorithms in the literature
that utilize time-varying parameters in non-oblivious combinatorial semi-bandits.

To circumvent the aforementioned challenge, we present an anytime algorithm for ATkRO
from a different perspective. The key observation is that we are not dealing with a true ban-
dit problem but are instead exploiting bandit techniques to solve (47). During the execution

2. In combinatorial semi-bandits, there are k non-zero {s̃t,i|i ∈ It} in each round t. Consequently, we need
to handle k non-zero {ξ̄t,i|i ∈ It} in (140), which renders the original analysis invalid, and it remains
unclear how to resolve this issue.
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Algorithm 7 Non-oblivious Online Learning for ATkRO with Anytime Capability

1: Initialize w1 = argminw∈W νw(w), and q1 = [1/m, . . . , 1/m]⊤ ∈ Rm

2: for t = 1 to T do
2: Generate it ∈ [m] according to qt, and draw a sample z

(it)
t from distribution Pit

3: Construct the stochastic gradient in (13) and the IX loss estimator in (59)
4: Update wt and qt according to (58) and (60), respectively
5: end for

of our algorithm, the 2nd player is not necessarily required to select k distinct arms. It is
perfectly fine to select just 1 arm, as long as we can bound the regret in terms of the linear
functions in (23), subject to the constraint q ∈ Sm,k. To this end, we propose to modify
the anytime extension of Algorithm 2 described in Section 3.3.1.

In the following, we describe the key steps. Recall the three time-varying parameters
ηwt , ηqt and γt in (30). In each round, we use SMD in (24) with a time-varying step size to
update wt:

wt+1 = argmin
w∈W

{
ηwt ⟨g̃w(wt,qt),w −wt⟩ + Bw(w,wt)

}
(58)

where g̃w(wt,qt) is defined in (13). Similarly, we use a time-varying parameter to define
the IX loss estimator

s̃t,i =
1 − ℓ(wt, z

(it)
t )

qt,i + γt
· I[it = i], ∀i ∈ [m]. (59)

The only change required is to adjust the domain in the mirror descent (26) to Sm,k:

qt+1 = argmin
q∈Sm,k

{
ηqt ⟨s̃t,q− qt⟩ + Bq(q,qt)

}
(60)

which can also be reduced to a neg-entropy Bregman projection problem. If demanded, we
will return (w̄t, q̄t) in (20) as the current solution. We summarize the complete procedure
in Algorithm 7.

Following the proof of Theorem 8, we establish the following theoretical guarantee re-
garding the optimization error.

Theorem 16 Under Assumptions 1, 2, 3 and 4, for Algorithm 7 we have

E
[
ϵ′ϕ(w̄t, q̄t)

]
≤

(3 + ln t)
√
m lnm + 6

√
m/ lnm + 4

√
(1 + ln t)/2 + DG (5 + 3 ln t)

2
(√

t + 1 − 1
)

=O

(√
m logm log t√

t

)
, ∀t ∈ Z+.

Furthermore, with probability at least 1 − δ, we have

ϵ′ϕ(w̄t, q̄t)

≤
(3 + ln t)

√
m lnm +

(
2
√

m
lnm +

√
1+ln t

2

)
ln 6

δ +
√

1+ln t
2 + DG

(
9 + 7 ln t + 4 ln 2

δ

)
2
(√

t + 1 − 1
)

=O

(√
m logm log t√

t

)
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for each t ∈ Z+.

Remark 12 Note that the upper bounds in this theorem are exactly the same as in The-
orem 8. Since Algorithm 7 uses only 1 sample per iteration, it is not surprising that its
convergence rate is slower than Algorithm 6 by a factor of Õ(

√
k).

6 Analysis

In this section, we present proofs of main theorems, and defer the analysis of supporting
lemmas to Appendix A.

6.1 Proof of Theorem 1

The proof is based on Lemma 3.1 and Proposition 3.2 of Nemirovski et al. (2009). To apply
them, we show that their preconditions are satisfied under our assumptions.

Although two instances of SMD are invoked to update w and q separately, they can be
merged as 1 instance by concatenating w and q as a single variable [w;q] ∈ W × ∆m, and
redefine the norm and the distance-generating function (Nemirovski et al., 2009, § 3.1). Let
E be the space that W lies in. We equip the Cartesian product E × Rm with the following
norm and dual norm:∥∥[w;q]

∥∥ =

√
1

2D2
∥w∥2w +

1

2 lnm
∥q∥21, and

∥∥[u;v]
∥∥
∗ =

√
2D2∥u∥2w,∗ + 2∥v∥2∞ lnm. (61)

We use the notation x = [w;q], and equip the set W × ∆m with the distance-generating
function

ν(x) = ν([w;q]) =
1

2D2
νw(w) +

1

2 lnm
νq(q). (62)

It is easy to verify that ν(x) is 1-strongly convex w.r.t. the norm ∥ · ∥. Let B(·, ·) be the
Bregman distance associated with ν(·):

B(x,x′) =ν(x) −
[
ν(x′) + ⟨∇ν(x′),x− x′⟩

]
=

1

2D2

(
νw(w) −

[
νw(w′) + ⟨∇νw(w′),w −w′⟩

])
+

1

2 lnm

(
νq(q) −

[
νq(q

′) + ⟨∇νq(q
′),q− q′⟩

])
=

1

2D2
Bw(w,w′) +

1

2 lnm
Bq(q,q

′)

(63)

where x′ = [w′;q′].
Then, we consider the following version of SMD for updating xt:

xt+1 = argmin
x∈W×∆m

{
η
〈
[gw(wt,qt);−gq(wt,qt)],x− xt

〉
+ B(x,xt)

}
(64)

where η > 0 is the step size. In the beginning, we set x1 = argminx∈W×∆m
ν(x) = [w1;q1].

From the decomposition of the Bregman distance in (63), we observe that (64) is equivalent
to (14) and (15) by setting

ηw = 2ηD2, and ηq = 2η lnm.
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Next, we show that the stochastic gradients are well-bounded. Under our assumptions,
we have

∥gw(wt,qt)∥w,∗ =

∥∥∥∥∥
m∑
i=1

qt,i∇ℓ(wt; z
(i)
t )

∥∥∥∥∥
w,∗

≤
m∑
i=1

qt,i

∥∥∥∇ℓ(wt; z
(i)
t )
∥∥∥
w,∗

(9)

≤
m∑
i=1

qt,iG = G,

∥gq(wt,qt)∥∞ =
∥∥[ℓ(wt; z

(1)
t ), . . . , ℓ(wt; z

(m)
t )]⊤

∥∥
∞

(8)

≤ 1.

As a result, the concatenated gradients used in (64) is also bounded in term of the dual
norm ∥ · ∥∗:∥∥[gw(wt,qt);−gq(wt,qt)]

∥∥
∗ =
√

2D2∥gw(wt,qt)∥2w,∗ + 2∥gq(wt,qt)∥2∞ lnm

≤
√

2D2G2 + 2 lnm︸ ︷︷ ︸
:=M

.
(65)

Now, we are ready to state our theoretical guarantees. By setting

η =
2

M
√

5T
=

√
2

5T (D2G2 + lnm)
,

(3.13) of Nemirovski et al. (2009) implies that

E
[
ϵϕ(w̄, q̄)

]
≤ 2M

√
5

T
= 2

√
10(D2G2 + lnm)

T
.

Furthermore, from Proposition 3.2 of Nemirovski et al. (2009), we have, for any Ω > 1

Pr

[
ϵϕ(w̄, q̄) ≥ (8 + 2Ω)M

√
5

T
= (8 + 2Ω)

√
10(D2G2 + lnm)

T

]
≤ 2 exp(−Ω).

We complete the proof by setting δ = 2 exp(−Ω).

6.2 Proof of Theorem 2

In a manner similar to the proof of Theorem 1 in Section 6.1, we combine the updates for
wt and qt into a unified expression:

xt+1 = argmin
x∈W×∆m

{
ηt
〈
[gw(wt,qt);−gq(wt,qt)],x− xt

〉
+ B(x,xt)

}
where the step size ηt satisfying

ηwt = 2ηtD
2, and ηqt = 2ηt lnm.

Then, from (3.11) of Nemirovski et al. (2009), we have

E
[
ϵϕ(w̄t, q̄t)

]
≤

 t∑
j=1

ηt

−12 +
5

2
M2

t∑
j=1

η2t


=

 t∑
j=1

1√
j

−12M +
5M

2

t∑
j=1

1

j


(66)
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where we set ηt = 1
M

√
t
, and M is defined in (65). Combining (66) with the following

inequalities

t∑
j=1

1

j
≤ 1 +

∫ t

1

1

x
dx = 1 + lnx|t1 = 1 + ln t

t∑
j=1

1√
j
≥
∫ t+1

1

1√
x
dx = 2

√
x
∣∣t+1

1
= 2(

√
t + 1 − 1)

(67)

we obtain

E
[
ϵϕ(w̄t, q̄t)

]
≤ M

2
(√

t + 1 − 1
) (5 + 3 ln t) .

Next, we focus on the high-probability bound. Although Proposition 3.2 of Nemirovski
et al. (2009) provides a high-probability bound only for a fixed step size, its proof actually
supports time-varying step sizes. By setting Θ = 2

√
Ω in their analysis, we have

Pr

 t∑
j=1

ηjϵϕ(w̄t, q̄t) > 2 +
5

2
(1 + Ω)M2

t∑
j=1

η2j + 8
√

2ΩM

√√√√ t∑
j=1

η2j

 ≤ 2 exp(−Ω) (68)

for any Ω > 0. Substituting ηt = 1
M

√
t

into (68), we have

2 exp(−Ω)

≥Pr

ϵϕ(w̄t, q̄t) > M

 t∑
j=1

1√
j

−1
2 +

5

2
(1 + Ω)

 t∑
j=1

1√
j

+ 8

√√√√√2Ω

 t∑
j=1

1√
j





(67)

≥ Pr

[
ϵϕ(w̄t, q̄t) >

M

2
(√

t + 1 − 1
) (2 +

5

2
(1 + Ω)(1 + ln t) + 8

√
2Ω(1 + ln t)

)]

≥Pr

[
ϵϕ(w̄t, q̄t) >

M

2
(√

t + 1 − 1
) (2 +

5

2
(1 + Ω)(1 + ln t) + 4 (2Ω + 1 + ln t)

)]

≥Pr

[
ϵϕ(w̄t, q̄t) >

M

2
(√

t + 1 − 1
) (9 + 11Ω + 7 ln t + 3Ω ln t)

]
.

We complete the proof by setting δ = 2 exp(−Ω).

6.3 Proof of Theorem 3

Our goal is to analyze SMD for non-oblivious OCO with stochastic gradients. In the liter-
ature, we did not find a convenient reference for it. A very close one is the Lemma 3.2 of
Flaxman et al. (2005), which bounds the expected regret of SGD for non-oblivious OCO.
But it is insufficient for our purpose, so we provide our proof by following the analysis of
SMD for stochastic convex-concave optimization (Nemirovski et al., 2009, § 3). Notice that
we cannot use the theoretical guarantee of SMD for SCO (Nemirovski et al., 2009, § 2.3),
because the objective function is fixed in SCO.
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From the standard analysis of mirror descent, e.g., Lemma 2.1 of Nemirovski et al.
(2009), we have

⟨g̃w(wt,qt),wt −w⟩ ≤ Bw(w,wt) −Bw(w,wt+1)

ηw
+

ηw
2
∥g̃w(wt,qt)∥2w,∗. (69)

Summing the above inequality over t = 1, . . . , T , we have

T∑
t=1

⟨g̃w(wt,qt),wt −w⟩ ≤ Bw(w,w1)

ηw
+

ηw
2

T∑
t=1

∥g̃w(wt,qt)∥2w,∗

(9),(13)

≤ Bw(w,w1)

ηw
+

ηwTG
2

2
≤ D2

ηw
+

ηwTG
2

2

(70)

where the last step is due to (Nemirovski et al., 2009, (2.42))

max
w∈W

Bw(w,w1) ≤ max
w∈W

νw(w) − min
w∈W

νw(w)
(7)

≤ D2. (71)

By Jensen’s inequality, we have

T∑
t=1

[ϕ(wt,qt) − ϕ(w,qt)] ≤
T∑
t=1

⟨∇wϕ(wt,qt),wt −w⟩

=
T∑
t=1

⟨g̃w(wt,qt),wt −w⟩ +
T∑
t=1

⟨∇wϕ(wt,qt) − g̃w(wt,qt),wt −w⟩

(70)

≤ D2

ηw
+

ηwTG
2

2
+

T∑
t=1

⟨∇wϕ(wt,qt) − g̃w(wt,qt),wt −w⟩.

Maximizing each side over w ∈ W, we arrive at

max
w∈W

T∑
t=1

[ϕ(wt,qt) − ϕ(w,qt)] =

T∑
t=1

ϕ(wt,qt) − min
w∈W

T∑
t=1

ϕ(w,qt)

≤D2

ηw
+

ηwTG
2

2
+ max

w∈W


T∑
t=1

⟨∇wϕ(wt,qt) − g̃w(wt,qt),wt −w⟩︸ ︷︷ ︸
:=F (w)

 .

(72)

Next, we bound the last term in (72), i.e., maxw∈W F (w). Because Et−1[g̃w(wt,qt)] =
∇wϕ(wt,qt), F (w) is the sum of a martingale difference sequence for any fixed w. How-
ever, it is not true for w̃ = argmaxw∈W F (w), because w̃ depends on the randomness
of the algorithm. Thus, we cannot directly apply techniques for martingales to bounding
maxw∈W F (w). This is the place where the analysis differs from that of SCO.

To handle the above challenge, we introduce a virtual sequence of variables to decouple
the dependency (Nemirovski et al., 2009, proof of Lemma 3.1). Imagine there is an online
algorithm which performs SMD by using ∇wϕ(wt,qt) − g̃w(wt,qt) as the gradient:

vt+1 = argmin
w∈W

{
ηw⟨∇wϕ(wt,qt) − g̃w(wt,qt),w − vt⟩ + Bw(w,vt)

}
(73)
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where v1 = w1. By repeating the derivation of (70), we can show that

T∑
t=1

⟨∇wϕ(wt,qt) − g̃w(wt,qt),vt −w⟩

≤Bw(w,w1)

ηw
+

ηw
2

T∑
t=1

∥∇wϕ(wt,qt) − g̃w(wt,qt)∥2w,∗ ≤
D2

ηw
+ 2ηwTG

2

(74)

where in the last inequality, we make use of (71) and

∥∇wϕ(wt,qt) − g̃w(wt,qt)∥w,∗ ≤ ∥ϕ(wt,qt)∥w,∗ + ∥g̃w(wt,qt)∥w,∗

≤Et−1[∥g̃w(wt,qt)∥w,∗] + ∥g̃w(wt,qt)∥w,∗
(9),(13)

≤ 2G.
(75)

Then, we have

max
w∈W

{
T∑
t=1

⟨∇wϕ(wt,qt) − g̃w(wt,qt),wt −w⟩

}

= max
w∈W

{
T∑
t=1

⟨∇wϕ(wt,qt) − g̃w(wt,qt),vt −w⟩

}

+

T∑
t=1

⟨∇wϕ(wt,qt) − g̃w(wt,qt),wt − vt⟩

(74)

≤ D2

ηw
+ 2ηwTG

2 +

T∑
t=1

⟨∇wϕ(wt,qt) − g̃w(wt,qt),wt − vt⟩︸ ︷︷ ︸
:=Vt

.

(76)

From the updating rule of vt in (73), we know that vt is independent from ∇wϕ(wt,qt) −
g̃w(wt,qt), and thus V1, . . . , VT is a martingale difference sequence.

Substituting (76) into (72), we have

T∑
t=1

ϕ(wt,qt) − min
w∈W

T∑
t=1

ϕ(w,qt) ≤
2D2

ηw
+

5ηwTG
2

2
+

T∑
t=1

Vt. (77)

Taking expectation over both sides, we have

E

[
T∑
t=1

ϕ(wt,qt) − min
w∈W

T∑
t=1

ϕ(w,qt)

]
≤ 2D2

ηw
+

5ηwTG
2

2
= 2DG

√
5T

where we set ηw = 2D
G
√
5T

.

To establish high probability bounds, we make use of the Hoeffding-Azuma inequality
for martingales stated below (Cesa-Bianchi and Lugosi, 2006).

Lemma 17 Let V1, V2, . . . be a martingale difference sequence with respect to some sequence
X1, X2, . . . such that Vi ∈ [Ai, Ai +ci] for some random variable Ai, measurable with respect
to X1, . . . , Xi−1 and a positive constant ci. If Sn =

∑n
i=1 Vi, then for any t > 0,

Pr[Sn > t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.
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To apply the above lemma, we need to show that Vt is bounded. Indeed, we have

|⟨∇wϕ(wt,qt) − g̃w(wt,qt),wt − vt⟩|
≤∥∇wϕ(wt,qt) − g̃w(wt,qt)∥w,∗∥wt − vt∥w

(75)

≤ 2G∥wt − vt∥w ≤ 2G (∥wt −w1∥w + ∥vt −w1∥w)

≤2G
(√

2Bw(wt,w1) +
√

2Bw(vt,w1)
) (71)

≤ 4
√

2DG.

(78)

From Lemma 17, with probability at least 1 − δ, we have

T∑
t=1

Vt ≤ 8DG

√
T ln

1

δ
. (79)

We complete the proof by substituting (79) into (77).

6.4 Proof of Theorem 4

Since we can only observe ℓ(wt, z
(it)
t ) instead of Rit(wt), the theoretical guarantee of Exp3-

IX (Neu, 2015) cannot be directly applied to Algorithm 2. To address this challenge, we
generalize the regret analysis of Exp3-IX to stochastic rewards.

By the definition of ϕ(w,q) in (4) and the property of linear optimization over the
simplex, we have

max
q∈∆m

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt) = max
q∈∆m

m∑
i=1

qi

(
T∑
t=1

Ri(wt)

)
−

T∑
t=1

m∑
i=1

qt,iRi(wt)

=
T∑
t=1

Rj∗(wt) −
T∑
t=1

m∑
i=1

qt,iRi(wt) =
T∑
t=1

Ez∼Pj∗ [ℓ(wt; z)] −
T∑
t=1

m∑
i=1

qt,iEz∼Pi [ℓ(wt; z)]

=
T∑
t=1

m∑
i=1

qt,ist,i −
T∑
t=1

st,j∗ =
T∑
t=1

⟨qt, st⟩ −
T∑
t=1

st,j∗

(80)

where j∗ ∈ argmaxj∈[m]

∑T
t=1Rj(wt) and the vector st ∈ Rm is defined as

st,i = 1 − Ez∼Pi [ℓ(wt; z)]
(8)
∈ [0, 1], ∀i ∈ [m]. (81)

To facilitate the analysis, we introduce a vector ŝt ∈ Rm with

ŝt,i = 1 − ℓ(wt; z
(i)
t )

(8)
∈ [0, 1], ∀i ∈ [m] (82)

where z
(i)
t denotes a random sample drawn from the i-th distribution. Note that ŝt is only

used for analysis, with the purpose of handling the stochastic rewards. In the algorithm,

only ŝt,it = 1 − ℓ(wt; z
(it)
t ) is observed in the t-th iteration.

Following the proof of Theorem 1 of Neu (2015), we have

T∑
t=1

⟨qt, s̃t⟩ −
T∑
t=1

s̃t,j∗ ≤ lnm

ηq
+

ηq
2

T∑
t=1

m∑
i=1

s̃t,i (83)
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which makes use of the property of online mirror descent with local norms (Bubeck and
Cesa-Bianchi, 2012). From (5) of Neu (2015), we have

⟨qt, s̃t⟩ =

m∑
i=1

qt,is̃t,i = ŝt,it − γ

m∑
i=1

s̃t,i. (84)

Combining (83) and (84), we have

T∑
t=1

ŝt,it ≤
T∑
t=1

s̃t,j∗ +
(ηq

2
+ γ
) T∑

t=1

m∑
i=1

s̃t,i +
lnm

ηq
. (85)

From (80), we have

max
q∈∆m

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

=
T∑
t=1

ŝt,it −
T∑
t=1

st,j∗ +
T∑
t=1

⟨qt, st⟩ −
T∑
t=1

ŝt,it

(85)

≤
T∑
t=1

(
s̃t,j∗ − st,j∗

)
︸ ︷︷ ︸

:=A

+
(ηq

2
+ γ
) T∑

t=1

m∑
i=1

s̃t,i︸ ︷︷ ︸
:=B

+
T∑
t=1

(
⟨qt, st⟩ − ŝt,it

)
︸ ︷︷ ︸

:=C

+
lnm

ηq
.

(86)

We proceed to bound the above three terms A, B and C respectively.

To bound term A, we need the following concentration result concerning the IX loss
estimates (Neu, 2015, Lemma 1), which we further generalize to the setting with stochastic
rewards.

Lemma 18 Let ξt,i ∈ [0, 1] for all t ∈ [T ] and i ∈ [m], and ξ̃t,i be its IX-estimator defined

as ξ̃t,i =
ξ̂t,i

pt,i+γt
I[it = i], where ξ̂t,i ∈ [0, 1], E[ξ̂t,i] = ξt,i, and the index it is sampled from [m]

according to the distribution pt ∈ ∆m. Let {γt}Tt=1 be a fixed non-increasing sequence with
γt ≥ 0 and let αt,i be non-negative Ft−1-measurable random variables satisfying αt,i ≤ 2γt
for all t ∈ [T ] and i ∈ [m]. Then, with probability at least 1 − δ,

T∑
t=1

m∑
i=1

αt,i(ξ̃t,i − ξt,i) ≤ ln
1

δ
. (87)

Furthermore, when γt = γ ≥ 0 for all t ∈ [T ], the following holds with probability at least
1 − δ,

T∑
t=1

(ξ̃t,i − ξt,i) ≤
1

2γ
ln

m

δ
(88)

simultaneously for all i ∈ [m].
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Notice that our construction of s̃t in (25) satisfies that s̃t,i =
ŝt,i

qt,i+γ I[it = i] and it is

drawn from [m] according to qt ∈ ∆m as well as E[ŝt,i] = st,i, which meets the conditions
required by Lemma 18. As a result, according to (88), we have

T∑
t=1

(s̃t,j − st,j) ≤
1

2γ
ln

m

δ

for all j ∈ [m] (including j∗) with probability at least 1 − δ.

To bound term B, we can directly use Lemma 1 of Neu (2015), because our setting
ηq
2 = γ satisfies its requirement. Thus, with probability at least 1 − δ, we have

(ηq
2

+ γ
) T∑

t=1

m∑
i=1

s̃t,j ≤
(ηq

2
+ γ
) T∑

t=1

m∑
i=1

ŝt,j + ln
1

δ

(82)

≤
(ηq

2
+ γ
)
mT + ln

1

δ
.

We now consider term C in (86). Let Vt = ⟨qt, st⟩ − ŝt,it . Then, it is easy to verify that
Et−1[Vt] = 0. So, the process {Vt}Tt=1 forms a martingale difference sequence and it also
satisfies |Vt| ≤ 1 for all t. Hence, we can apply Lemma 17 and have

T∑
t=1

(
⟨qt, st⟩ − ŝt,it

)
≤
√

2T ln
1

δ
≤
√

T

2

(
1 + ln

1

δ

)
,

with probability at least 1 − δ.

Combining the three upper bounds for the terms A, B and C, and further taking the
union bound, we have, with probability at least 1 − δ

max
q∈∆m

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

≤ 1

2γ
ln

3m

δ
+
(ηq

2
+ γ
)
mT + ln

3

δ
+

√
T

2

(
1 + ln

3

δ

)
+

lnm

ηq

=2
√
mT lnm +

√
mT

lnm
· ln

3m

δ
+

√
T

2
+

(√
T

2
+ 1

)
ln

3

δ

=3
√
mT lnm +

√
T

2
+

(√
mT

lnm
+

√
T

2
+ 1

)
ln

3

δ
,

where the third line holds because of our parameter settings γ =
ηq
2 and ηq =

√
lnm
mT .

To obtain the expected regret upper bound based on high probability guarantee, we use
the formula as follows (Bubeck and Cesa-Bianchi, 2012, § 3.2).

Lemma 19 For any real-valued random variable X,

E[X] ≤
∫ 1

0

1

δ
Pr

[
X > ln

1

δ

]
dδ.
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By setting

X =

(√
mT

lnm
+

√
T

2
+ 1

)−1

·

(
max
q∈∆m

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt) − 3
√
mT lnm−

√
T

2

)
,

we derive E[X] ≤ 3 by Lemma 19, which implies

E

[
max
q∈∆m

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

]
≤ 3

√
mT lnm +

√
T

2
+ 3

(√
mT

lnm
+

√
T

2
+ 1

)
.

6.5 Proof of Theorem 5

By Jensen’s inequality and the outputs w̄ = 1
T

∑T
t=1wt and q̄ = 1

T

∑T
t=1 qt, we have

ϵϕ(w̄, q̄) = max
q∈∆m

ϕ(w̄,q) − min
w∈W

ϕ(w, q̄)

≤ 1

T

(
max
q∈∆m

T∑
t=1

ϕ(wt,q) − min
w∈W

T∑
t=1

ϕ(w,qt)

)

=
1

T

(
max
q∈∆m

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

)
+

1

T

(
T∑
t=1

ϕ(wt,qt) − min
w∈W

T∑
t=1

ϕ(w,qt)

) (89)

and thus

E
[
ϵϕ(w̄, q̄)

]
≤ 1

T
E

[(
max
q∈∆m

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

)]

+
1

T
E

[(
T∑
t=1

ϕ(wt,qt) − min
w∈W

T∑
t=1

ϕ(w,qt)

)]
.

(90)

We obtain (28) by substituting the high probability bounds in Theorems 3 and 4 into
(89), and taking the union bound. Similarly, we obtain (27) by substituting the expectation
bounds in Theorems 3 and 4 into (90).

6.6 Proof of Theorem 6

The proof of Theorem 6 closely follows that of Theorem 3, with the difference being the use
of a time-varying step size ηwt .

Similar to (69), by Lemma 2.1 of Nemirovski et al. (2009), we have

ηwj ⟨g̃w(wj ,qj),wj −w⟩ ≤ Bw(w,wj) −Bw(w,wj+1) +
(ηwj )2

2
∥g̃w(wj ,qj)∥2w,∗. (91)

Summing (91) over j = 1, · · · , t, we have

t∑
j=1

ηwj ⟨g̃w(wj ,qj),wj −w⟩ ≤ Bw(w,w1) +
t∑

j=1

(ηwj )2

2
∥g̃w(wj ,qj)∥2w,∗

(9),(13),(71)

≤ D2 +
G2

2

t∑
j=1

(ηwj )2.

(92)
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By Jensen’s inequality, we get

t∑
j=1

ηwj [ϕ(wj ,qj) − ϕ(w,qj)] ≤
t∑

j=1

ηwj ⟨∇wϕ(wj ,qj),wj −w⟩

=

t∑
j=1

ηwj ⟨g̃w(wj ,qj),wj −w⟩ +

t∑
j=1

ηwj ⟨∇wϕ(wj ,qj) − g̃w(wj ,qj),wj −w⟩

(92)

≤ D2 +
G2

2

t∑
j=1

(ηwj )2 +
t∑

j=1

ηwj ⟨∇wϕ(wj ,qj) − g̃w(wj ,qj),wj −w⟩.

Maximizing both sides over w ∈ W, we obtain

max
w∈W

t∑
j=1

ηwj [ϕ (wj ,qj) − ϕ (w,qj)]

≤D2 +
G2

2

t∑
j=1

(ηwj )2 + max
w∈W


t∑

j=1

ηwj ⟨∇wϕ(wj ,qj) − g̃w(wj ,qj),wj −w⟩︸ ︷︷ ︸
:=Ft(w)


.

(93)

To handle the last term in (93), we also construct a virtual sequence of variable:

vj+1 = argmin
w∈W

{
ηwj ⟨∇wϕ(wj ,qj) − g̃w(wj ,qj),w − vj⟩ + Bw(w,vj)

}
, (94)

where v1 = w1. The difference between (94) and (73) lies in the use of the time-varying
step size ηwj in (94). By repeating the derivation of (92), we have

t∑
j=1

ηwj ⟨∇wϕ(wj ,qj) − g̃w(wj ,qj),vj −w⟩

≤Bw(w,w1) +

t∑
j=1

(ηwj )2

2
∥∇wϕ(wj ,qj) − g̃w(wj ,qj)∥2w,∗

(71),(75)

≤ D2 + 2G2
t∑

j=1

(ηwj )2

(95)

Then, we have

max
w∈W

Ft(w) = max
w∈W


t∑

j=1

ηwj ⟨∇wϕ(wj ,qj) − g̃w(wj ,qj),vj −w⟩


+

t∑
j=1

ηwj ⟨∇wϕ(wj ,qj) − g̃w(wj ,qj),wj − vj⟩

(95)

≤ D2 + 2G2
t∑

j=1

(ηwj )2 +
t∑

j=1

ηwj ⟨∇wϕ(wj ,qj) − g̃w(wj ,qj),wj − vj⟩︸ ︷︷ ︸
:=Wj

.

(96)
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Combining (93) and (96), we have

max
w∈W

t∑
j=1

ηwj [ϕ (wj ,qj) − ϕ (w,qj)] ≤ 2D2 +
5G2

2

t∑
j=1

(ηwj )2 +
t∑

j=1

Wj . (97)

Following the same arguments in the proof of Theorem 3, we know that {Wj}tj=1 is a
martingale difference sequence. Taking expectation over both sides of (97), we have

E

max
w∈W

t∑
j=1

ηwj [ϕ (wj ,qj) − ϕ (w,qj)]

 ≤ 2D2 +
5G2

2

t∑
j=1

(ηwj )2

which implies

E
[
O1

]
≤

 t∑
j=1

ηwj

−1 2D2 +
5G2

2

t∑
j=1

(ηwj )2


(30)
=

 t∑
j=1

1√
j

−1 2DG +
5DG

2

t∑
j=1

1

j

 (67)

≤ DG(√
t + 1 − 1

) (9

4
+

5

4
ln t

)
.

Then, we proceed to establish the high probability bound. From (78), we have |Wj | ≤
4
√

2ηwj DG for all j ∈ Z+. By Lemma 17, with probability at least 1 − δ, we have

t∑
j=1

Wt ≤ 8DG

√√√√ t∑
j=1

(ηwj )2 ln
1

δ
. (98)

Substituting (98) into (97), with probability at least 1 − δ, we have

max
w∈W

t∑
j=1

ηwj [ϕ (wj ,qj) − ϕ (w,qj)] ≤ 2D2 +
5G2

2

t∑
j=1

(ηwj )2 + 8DG

√√√√ t∑
j=1

(ηwj )2 ln
1

δ
. (99)

Thus,

O1

(99),(30)

≤

 t∑
j=1

1√
j

−1
2DG +

5DG

2

t∑
j=1

1

j
+ 8DG

√√√√√
 t∑

j=1

1

j

 ln
1

δ


(67)

≤ DG

2
(√

t + 1 − 1
) (2 +

5

2
(1 + ln t) + 8

√
(1 + ln t) ln

1

δ

]

≤ DG√
t + 1 − 1

(
17

4
+

13

4
ln t + 2 ln

1

δ

)
where in the last step we use the fact that 2

√
(1 + ln t) ln(1/δ) ≤ 1 + ln t + ln(1/δ).
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6.7 Proof of Theorem 7

We will modify the proof of Theorem 4 to bound the weighted average regret O2.
Similar to (80), we have

max
q∈∆m

t∑
j=1

ηqjϕ (wj ,q) −
t∑

j=1

ηqjϕ (wj ,qj)

= max
q∈∆m

m∑
i=1

qi

 t∑
j=1

ηqjRi(wj)

−
t∑

j=1

ηqj

m∑
i=1

qj,iRi(wj)

=

t∑
j=1

ηqjRk∗t
(wj) −

t∑
j=1

ηqj

m∑
i=1

qj,iRi(wj)

=

t∑
j=1

ηqj

m∑
i=1

qj,isj,i −
t∑

j=1

ηqjsj,k∗t =

t∑
j=1

ηqj ⟨qj , sj⟩ −
t∑

j=1

ηqjsj,k∗t

(100)

where k∗t ∈ argmaxi∈[m]

∑t
j=1 η

q
jRi(wj) and st ∈ Rm is defined in (81).

By using the property of online mirror descent with local norms (Bubeck and Cesa-
Bianchi, 2012, Theorem 5.5; Orabona, 2019, § 6.5 and § 6.6), we have

t∑
j=1

ηqj ⟨qj , s̃j⟩ −
t∑

j=1

ηqj s̃j,k∗t ≤ lnm +
1

2

t∑
j=1

(ηqj )2
m∑
i=1

qj,is̃
2
j,i

≤ lnm +
1

2

t∑
j=1

(ηqj )2
m∑
i=1

s̃j,i

(101)

where the last step follows from the fact that qj,is̃j,i ≤ 1. We rewrite (84) as

⟨qj , s̃j⟩ =
m∑
i=1

qj,is̃j,i = ŝj,it − γj

m∑
i=1

s̃j,i (102)

where ŝj ∈ Rm is defined in (82). Then, we have

t∑
j=1

ηqj ŝj,it
(102)
=

t∑
j=1

ηqj ⟨qj , s̃j⟩ +

t∑
j=1

γjη
q
j

m∑
i=1

s̃j,i

(101)

≤
t∑

j=1

ηqj s̃j,k∗t +

t∑
j=1

(
(ηqj )2

2
+ γjη

q
j

)
m∑
i=1

s̃j,i + lnm.

(103)

Based on (100), we have

max
q∈∆m

t∑
j=1

ηqjϕ (wj ,q) −
t∑

j=1

ηqjϕ (wj ,qj)

=

t∑
j=1

ηqj ⟨qj , sj⟩ −
t∑

j=1

ηqj ŝj,ij +

t∑
j=1

ηqj ŝj,ij −
t∑

j=1

ηqjsj,k∗t
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(103)

≤
t∑

j=1

ηqj
(
s̃j,k∗t − sj,k∗t

)
︸ ︷︷ ︸

:=At

+

t∑
j=1

(
(ηqj )2

2
+ γjη

q
j

)
m∑
i=1

s̃j,i︸ ︷︷ ︸
:=Bt

+

t∑
j=1

ηqj
(
⟨qj , sj⟩ − ŝj,ij

)
︸ ︷︷ ︸

:=Ct

+ lnm.

(104)

Next, we bound three terms At, Bt and Ct, respectively.

For term At, recall that we set ηqt = 2γt in (30). In Section 6.4, we have verified that
our constructions of s̃t and ŝt satisfy the requirement of Lemma 18. Then, by setting
αt,i = ηqt I[i = k] ≤ 2γt in (87), with probability at least 1 − δ, we have

t∑
j=1

ηqj
(
s̃j,k − sj,k

)
≤ ln

1

δ

for each k ∈ [m]. Taking the union bound, we conclude that with probability at least 1 − δ

t∑
j=1

ηqj
(
s̃j,k∗t − sj,k∗t

)
≤ ln

m

δ
. (105)

For term Bt, we apply Lemma 1 of Neu (2015) with αt,i =
(ηqt )

2

2 + γtη
q
t = (ηqt )2. It is

easy to very that ηqt ∈ [0, 1], and thus αt,i ≤ ηqt = 2γt. Then, with probability at least 1− δ,
we have

t∑
j=1

(
(ηqj )2

2
+ γjη

q
j

)
m∑
i=1

s̃j,i ≤
t∑

j=1

(
(ηqj )2

2
+ γjη

q
j

)
m∑
i=1

ŝj,i + ln
1

δ

≤ m

t∑
j=1

(ηqj )2 + ln
1

δ
.

(106)

To bound term Ct, we define a martingale difference sequence Wj = ηqj (⟨qj , sj⟩ − ŝj,ij ),
j ∈ Z+. Then, it can be shown that |Wj | ≤ ηqj for all j. Applying Lemma 17, with
probability at least 1 − δ, we have

t∑
j=1

ηqj
(
⟨qj , sj⟩ − ŝj,ij

)
≤

√√√√2

t∑
j=1

(ηqj )2 ln
1

δ
≤

√√√√1

2

t∑
j=1

(ηqj )2
(

1 + ln
1

δ

)
. (107)

Substituting (105), (106) and (107) into (104), and taking the union bound, with prob-
ability at least 1 − δ, we have

max
q∈∆m

t∑
j=1

ηqjϕ (wj ,q) −
t∑

j=1

ηqjϕ (wj ,qj)

≤2 lnm + m
t∑

j=1

(ηqj )2 + 2 ln
3

δ
+

√√√√1

2

t∑
j=1

(ηqj )2
(

1 + ln
3

δ

)
.

(108)
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Thus,

O2

(108),(30)

≤
√

m

lnm

 t∑
j=1

1√
t

−12 lnm + (lnm)
t∑

j=1

1

j
+ 2 ln

3

δ
+

√√√√ lnm

2m

t∑
j=1

1

t

(
1 + ln

3

δ

)
(67)

≤ 1

2
(√

t + 1 − 1
) ((3 + ln t)

√
m lnm +

(
2

√
m

lnm
+

√
1 + ln t

2

)
ln

3

δ
+

√
1 + ln t

2

)
.

To obtain the expected upper bound of O2, we define

X =

((
2

√
m

lnm
+

√
1 + ln t

2

))−1

·

(
2
(√

t + 1 − 1
)
O2 − (3 + ln t)

√
m lnm−

√
1 + ln t

2

)
.

By Lemma 19, we have E[X] ≤ 3, which implies

E [O2] ≤
1

2
(√

t + 1 − 1
) ((3 + ln t)

√
m lnm + 6

√
m

lnm
+ 4

√
1 + ln t

2

)
.

6.8 Proof of Theorem 8

According to (30), we can rewrite ηwt = cwηt and ηqt = cqηt with cw = D/G, cq =
√

(lnm)/m
and ηt =

√
1/t . Then, we decompose the optimization error in the t-th round using the

convexity-concavity of ϕ (·, ·):

ϵϕ(w̄t, q̄t) = max
q∈∆m

ϕ(w̄t,q) − min
w∈W

ϕ(w, q̄t)

(20)
= max

q∈∆m

ϕ

 t∑
j=1

ηwj wj∑t
k=1 η

w
k

,q

− min
w∈W

ϕ

w,

t∑
j=1

ηqjqj∑t
k=1 η

q
k


= max

q∈∆m

ϕ

 t∑
j=1

ηjwj∑t
k=1 ηk

,q

− min
w∈W

ϕ

w,

t∑
j=1

ηjqj∑t
k=1 ηk


≤ max

q∈∆m

 t∑
j=1

ηj

−1
t∑

j=1

ηjϕ (wj ,q) − min
w∈W

 t∑
j=1

ηj

−1
t∑

j=1

ηjϕ (w,qj)

=

 t∑
j=1

ηj

−1max
q∈∆m

t∑
j=1

ηj [ϕ(wj ,q) − ϕ(wj ,qj)]


+

 t∑
j=1

ηj

−1max
w∈W

t∑
j=1

ηj [ϕ(wj ,qj) − ϕ(w,qj)]


=O1 + O2,

(109)

where O1 and O2 are defined in (31). And thus

E
[
ϵϕ(w̄t, q̄t)

]
≤ E

[
O1

]
+ E

[
O2

]
. (110)
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We derive (33) by substituting the high probability bounds in Theorems 6 and 7 into (131)
and taking the union bound. Moreover, we obtain (32) by substituting the expectation
bounds in Theorems 6 and 7 into (110).

6.9 Proof of Theorem 9

For the stochastic gradients in (35), their norm can be upper bounded in the same way as
(12). That is,

∥gw(wt,qt)∥w,∗ =

∥∥∥∥∥∑
i∈Ct

qt,i∇ℓ(wt; z
(i)
t )

∥∥∥∥∥
w,∗

≤
∑
i∈Ct

qt,i

∥∥∥∇ℓ(wt; z
(i)
t )
∥∥∥
w,∗

(9)

≤
∑
i∈Ct

qt,iG = G,

∥gq(wt,qt)∥∞ = max
i∈Ct

|ℓ(wt; z
(i)
t )|

(8)

≤ 1.

So, with exactly the same analysis as Theorem 1, we have

E
[
ϵφ(w̄, q̄)

]
≤ 2

√
10(D2G2 + lnm)

n1

and with probability at least 1 − δ,

ϵφ(w̄, q̄) ≤
(

8 + 2 ln
2

δ

)√
10(D2G2 + lnm)

n1
. (111)

Next, we discuss how to bound the risk of w̄ on every distribution Pi, i.e., Ri(w̄).
Following the derivation in (11), we know

max
i∈[m]

piRi(w̄) − min
w∈W

max
i∈[m]

piRi(w) ≤ ϵφ(w̄, q̄).

Thus, for every distribution Pi, Ri(w̄) can be bounded in the following way:

Ri(w̄) ≤ 1

pi
min
w∈W

max
i∈[m]

piRi(w) +
1

pi
ϵφ(w̄, q̄).

Taking the high probability bound in (111) as an example, we have with probability at 1−δ

Ri(w̄) ≤ 1

pi
min
w∈W

max
i∈[m]

piRi(w) +
1

pi

(
8 + 2 ln

2

δ

)√
10(D2G2 + lnm)

n1

=
n1

ni
min
w∈W

max
i∈[m]

piRi(w) +

(
8 + 2 ln

2

δ

) √
10(D2G2 + lnm)n1

ni
.

(112)

6.10 Proof of Theorem 10

We first provide some simple facts that will be used later. From Assumption 3, we imme-
diately know that each risk function Ri(·) also belongs to [0, 1]. As a result, the difference
between each risk function and its estimator is well-bounded, i.e., for all i ∈ [m],

−1 ≤ Ri(w) − ℓ(w; z) ≤ 1, ∀w ∈ W, z ∼ Pi. (113)
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From Assumption 4, we can prove that each risk function Ri(·) is G-Lipschitz continuous.
To see this, we have

∥∇Ri(w)∥w,∗ = ∥Ez∼Pi∇ℓ(w; z)∥w,∗ ≤ Ez∼Pi∥∇ℓ(w; z)
∥∥
w,∗

(9)

≤ G, ∀w ∈ W, i ∈ [m]. (114)

As a result, we have

|Ri(w) −Ri(w
′)| ≤ G∥w −w′∥w, ∀w,w′ ∈ W, i ∈ [m]. (115)

Furthermore, the difference between the gradient of Ri(·) and its estimator is also well-
bounded, i.e., for all i ∈ [m],

∥∇Ri(w) −∇ℓ(w; z)∥w,∗ ≤ ∥∇Ri(w)∥w,∗ + ∥∇ℓ(w; z)∥w,∗
(9), (114)

≤ 2G, ∀w ∈ W, z ∼ Pi.
(116)

Recall the definition of the norm ∥ · ∥ and dual norm ∥ · ∥∗ for the space E ×Rm in (61),
and the distance-generating function ν(·) in (62). Following the arguments in Section 6.1,
the two updating rules in (38) and (39) can be merged as

[wt+1;qt+1] = argmin
x∈W×∆m

{
η
〈
[gw(w′

t,q
′
t);−gq(w

′
t,q

′
t)],x− [w′

t;q
′
t]
〉

+ B(x, [w′
t;q

′
t])
}

where ηw = 2ηD2 and ηq = 2η lnm. Similarly, (41) and (42) are equivalent to

[w′
t+1;q

′
t+1] = argmin

x∈W×∆m

{
η
〈
[gw(wt+1,qt+1);−gq(wt+1,qt+1)],x−[w′

t;q
′
t]
〉
+B(x, [w′

t;q
′
t])
}
.

Let F ([w;q]) be the monotone operator associated with the weighted GDRO problem
in (36), i.e.,

F ([w;q]) = [∇wφ(w,q);−∇qφ(w,q)] =

[
m∑
i=1

qipi∇Ri(w);−
[
p1R1(w), . . . , pmRm(w)

]⊤]
.

From our constructions of stochastic gradients in (37) and (40), we clearly have

Et−1

{
[gw(w′

t,q
′
t);−gq(w

′
t,q

′
t)]
}

= F ([w′
t;q

′
t]),

Et−1 {[gw(wt+1,qt+1);−gq(wt+1,qt+1)]} = F ([wt+1;qt+1]).

Thus, Algorithm 4 is indeed an instance of SMPA (Juditsky et al., 2011, Algorithm 1), and
we can use their Theorem 1 and Corollary 1 to bound the optimization error.

Before applying their results, we show that all the preconditions are satisfied. The
parameter Ω defined in (16) of Juditsky et al. (2011) can be upper bounded by

Ω =
√

2 max
x∈W×∆m

B(x, [w′
1;q

′
1])

(63)
=

√
1

D2
max
w∈W

Bw(w1,w′
1) + max

q∈∆m

1

lnm
Bq(q,q′

1)

(71)

≤

√
1

D2

(
max
w∈W

νw(w) − min
w∈W

νw(w)

)
+

1

lnm

(
max
q∈∆m

νq(q) − min
q∈∆m

νq(q)

)
(7)
=

√
2.

(117)

Next, we need to demonstrate that F ([w;q]) is continuous.
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Lemma 20 For the monotone operator F ([w;q]), we have

∥F ([w;q]) − F ([w′;q′])∥∗ ≤ L̃
∥∥[w −w′;q− q′]

∥∥
where L̃ is defined in (44).

We proceed to show the variance of the stochastic gradients satisfies the light tail condition.
To this end, we introduce the stochastic oracle used in Algorithm 4:

g([w;q]) = [gw(w,q);−gq(w,q)]

where

gw(w,q) =
m∑
i=1

qipi

nm

ni

ni/nm∑
j=1

∇ℓ(w; z(i,j))

 ,

gq(w,q) =

p1nm

n1

n1/nm∑
j=1

ℓ(w; z(1,j)), . . . , pmℓ(w; z(m))

⊤

and z(i,j) is the j-th sample drawn from distribution Pi. The following lemma shows that
the variance is indeed sub-Gaussian.

Lemma 21 For the stochastic oracle g([w;q]), we have

E

[
exp

(
∥F ([w;q]) − g([w;q])∥2∗

σ2

)]
≤ 2

where σ2 is defined in (44).

Based on (117), Lemma 20, and Lemma 21, we can apply the theoretical guarantee of
SMPA. Recall that the total number of iterations is nm/2 in Algorithm 4. From Corollary
1 of Juditsky et al. (2011), by setting

η = min

(
1

√
3L̃

,
2√

7σ2nm

)
we have

Pr

ϵφ(w̄, q̄) ≥ 7L̃

nm
+ 14

√
2σ2

3nm
+ 7Λ

√
σ2

nm

 ≤ exp

(
−Λ2

3

)
+ exp

(
−Λnm

2

)

for all Λ > 0. Choosing Λ such that exp(−Λ2/3) ≤ δ/2 and exp(−Λnm/2) ≤ δ/2, we have
with probability at least 1 − δ

ϵφ(w̄, q̄) ≤ 7L̃

nm
+ 14

√
2σ2

3nm
+ 7

(√
3 log

2

δ
+

2

nm
log

2

δ

)√
σ2

nm
.
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Following the derivation of (112), we have

Ri(w̄) − 1

pi
min
w∈W

max
i∈[m]

piRi(w)

≤ 1

pi

 7L̃

nm
+

√
σ2

nm

(
14

√
2

3
+ 7

√
3 log

2

δ
+

14

nm
log

2

δ

) .

(118)

Inspired by Juditsky et al. (2011, § 4.3.1), we use the value of pi in (45) to simplify
(118). It is easy to verify that

pmax

pi
=

1/
√
nm +

√
nm/ni

1/
√
nm +

√
nm/n1

≤
(

1 +
nm√
ni

)
,

1

pi

L̃

nm
= O

(
pmax

pi

√
lnm

nm

)
= O

((
1

nm
+

1
√
ni

)√
lnm

)
, (119)

pi ≤
(

1
√
nm

+ 1

)√
ni

nm
, ωmax = max

i∈[m]

p2inm

ni
≤
(

1
√
nm

+ 1

)2

,

1

pi

√
ωmax =

1/
√
nm +

√
nm/ni

1/
√
nm + 1

√
ωmax ≤ 1

√
nm

+

√
nm

ni
,

1

pi

√
σ2

nm
= O

 1

pi

√
ωmax(κ + ln2m)

nm

 = O

((
1

nm
+

1
√
ni

)√
κ + ln2m

)
. (120)

Substituting (119) and (120) into (118), we have

Ri(w̄) − 1

pi
min
w∈W

max
i∈[m]

piRi(w) = O

((
1

nm
+

1
√
ni

)√
κ + ln2m

)
.

6.11 Proof of Theorem 12

The proof of Theorem 12 is almost identical to that of Theorem 1 in Section 6.1, with the
only difference being the replacement of the simplex ∆m with the capped simplex Sm,k.

To obtain specific convergence rates, we need to analyze the diameter of Sm,k measured
by the neg-entropy function. First, it is easy to verify that 1

m1 = argminq∈Sm,k
νq(q) and

minq∈Sm,k
νq(q) = − lnm. Note that νq(q) is convex in Sm,k, indicating that the maximum

value is attained at the extreme points of Sm,k, i.e., the vectors in Sm,k that cannot be
expressed as a convex combination of other vectors in Sm,k (Roux et al., 2021, Section 4).
Specifically, such vectors comprise k elements equal to 1 and the remaining m− k elements
equal to 0. Thus, maxq∈Sm,k

νq(q) = − ln k. In summary, we have

max
q∈Sm,k

νq(q) − min
q∈Sm,k

νq(q) = − ln k + lnm = ln
m

k
.

Then, we replace the diameter of the domain of q from lnm to ln m
k in Section 6.1, and

obtain Theorem 12.
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6.12 Proof of Theorem 13

In anytime extensions, the difference between Algorithm 1 and Algorithm 5 also lies in
the domain of q. Thus, we can follow the proof of Theorem 2 in Section 6.2, where we
only need to replace the simplex ∆m with the capped simplex Sm,k. From Section 6.11,
we know that the diameter of Sm,k is upper bounded by ln m

k . Therefore, we redefine
M =

√
2D2G2 + 2 ln m

k , which leads to Theorem 13.

6.13 Proof of Theorem 14

Recall the definition of st,i and ŝt,i in (81) and (82) of Section 6.4. Following the analysis
of (80), we have

max
q∈Sm,k

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt) =
T∑
t=1

⟨qt, st⟩ −
1

k

∑
i∈I∗

T∑
t=1

st,i (121)

where I∗ = argmaxI∈Bm,k

∑
i∈I
[∑T

t=1Ri(wt)
]
. From the new construction of the IX loss

estimator (55), we have

qt,is̃t,i ≤
qt,i

kqt,i + γ
≤ 1

k
, ∀i ∈ [m]. (122)

Similar to the derivation of (83) and (101), we make use the property of online mirror
descent with local norms and proceed with the following steps:

T∑
t=1

⟨qt, s̃t⟩ −
T∑
t=1

1

k

∑
i∈I∗

s̃t,i ≤
ln m

k

ηq
+

T∑
t=1

ηq
2

m∑
i=1

qt,is̃
2
t,i

(122)

≤
ln m

k

ηq
+

ηq
2k

T∑
t=1

m∑
i=1

s̃t,i

(123)

where in the first step we make use the fact that the diameter of Sm,k is upper bounded by
ln m

k . Moreover, (84) becomes

⟨qt, s̃t⟩
(55),(82)

=
1

k

m∑
i=1

kqt,i
ŝt,i

kqt,i + γ
· I[i ∈ It] =

1

k

m∑
i=1

(
1 − γ

kqt,i + γ

)
ŝt,i · I[i ∈ It]

=
1

k

∑
i∈It

ŝt,i −
γ

k

m∑
i=1

s̃t,i.

(124)

Combining (123) and (124), we have

1

k

T∑
t=1

∑
i∈It

ŝt,i ≤
1

k

T∑
t=1

∑
i∈I∗

s̃t,i +
ln m

k

ηq
+
( ηq

2k
+

γ

k

) T∑
t=1

m∑
i=1

s̃t,i. (125)
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From (121), we have

max
q∈Sm,k

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

=
T∑
t=1

⟨qt, st⟩ −
1

k

T∑
t=1

∑
i∈It

ŝt,i +
1

k

T∑
t=1

∑
i∈It

ŝt,i −
1

k

∑
i∈I∗

T∑
t=1

st,i

(125)

≤ 1

k

∑
i∈I∗

T∑
t=1

(s̃t,i − st,i)︸ ︷︷ ︸
:=A

+
( ηq

2k
+

γ

k

) T∑
t=1

m∑
i=1

s̃t,i︸ ︷︷ ︸
:=B

+
T∑
t=1

(
⟨qt, st⟩ −

1

k

∑
i∈It

ŝt,i

)
︸ ︷︷ ︸

:=C

+
ln m

k

ηq
.

(126)
Next, we sequentially bound the above three items A, B, and C.

To bound A, we extend Corollary 1 of Neu (2015) to the modified IX loss estimator
(55).

Lemma 22 Let ξt,i ∈ [0, 1] for all t ∈ [T ] and i ∈ [m], and ξ̃t,i be its IX-estimator defined

as ξ̃t,i =
ξ̂t,i

kpt,i+γ I[i ∈ It], where γ ≥ 0, ξ̂t,i ∈ [0, 1], E[ξ̂t,i] = ξt,i, pt ∈ Sm,k, and It is sampled

by DepRound(k,pt). Then, with probability at least 1 − δ,

T∑
t=1

(
ξ̃t,i − ξt,i

)
≤ 1

2γ
ln

m

δ
(127)

simultaneously hold for all i ∈ [m].

Compared to Lemma 18, Lemma 22 only covers the case where a fixed γ is used.
It is easy to verify that the construction of s̃t,i and It satisfy the conditions outlined in

Lemma 22. Therefore, with probability at least 1 − δ, we have

1

k

∑
i∈I∗

T∑
t=1

(s̃t,i − st,i) ≤ max
i∈[m]

T∑
t=1

(s̃t,i − st,i)
(127)

≤ 1

2γ
ln

m

δ
. (128)

At the same time, we can also deliver an upper bound for B. From (127), we have

T∑
t=1

m∑
i=1

s̃t,i ≤
T∑
t=1

m∑
i=1

st,i +
m

2γ
ln

m

δ
≤ mT +

m

2γ
ln

m

δ
.

implying ( ηq
2k

+
γ

k

) T∑
t=1

m∑
i=1

s̃t,i ≤
m

k

(ηq
2

+ γ
)(

T +
1

2γ
ln

m

δ

)
. (129)

As for term C, we denote Vt = ⟨qt, st⟩ − 1
k

∑
i∈It ŝt,i. Since

Et−1

[
1

k

∑
i∈It

ŝt,i

]
=

1

k

m∑
i=1

Pr[i ∈ It]st,i
(53)
=

m∑
i=1

qt,ist,i

47



Zhang, Bai, Zhao, Yang, and Zhou

we know that {Vt}Tt=1 is a martingale difference sequence. Furthermore, under Assumption 3
and q ∈ Sm,k, we have |Vt| ≤ 1 for all t. By Lemma 17, with probability at least 1 − δ, we
have

T∑
t=1

(
⟨qt, st⟩ −

1

k

∑
i∈It

ŝt,i

)
≤
√

2T ln
1

δ
≤
√

T

2

(
1 + ln

1

δ

)
. (130)

Substituting (128), (129) and (130) into (126), and taking the union bound,3 with
probability at least 1 − δ, we have

max
q∈Sm,k

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

≤
√

T

2

(
1 + ln

2

δ

)
+

m

k

(ηq
2

+ γ
)(

T +
1

2γ
ln

2m

δ

)
+

1

2γ
ln

2m

δ
+

ln m
k

ηq

=

√
T

2

(
1 + ln

2

δ

)
+

m

k
ηqT +

m

k
ln

2m

δ
+

1

ηq
lnm +

1

ηq

(
ln

2

δ
+ ln

m

k

)
=

√
T

2

(
1 + ln

2

δ

)
+ 2

√
m

k
T lnm +

m

k
ln

2m

δ
+

√
mT

k lnm
ln

2m

δk

≤
√

T

2
+

(√
T

2
+

m

k
+

√
mT

k lnm

)
ln

2

δ
+ 3

√
m

k
T lnm +

m

k
lnm.

where we set γ =
ηq
2 in the 3rd line and ηq =

√
k lnm
mT in the 4th line.

To get the expected regret bound, we define

X =

(√
T

2
+

m

k
+

√
mT

k lnm

)−1

·(
max

q∈Sm,k

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt) −
√

T

2
− 3

√
m

k
T lnm− m

k
lnm

)
,

and Lemma 19 implies that E[X] ≤ 2. Then, we have

E

[
max

q∈Sm,k

T∑
t=1

ϕ(wt,q) −
T∑
t=1

ϕ(wt,qt)

]
≤ 3

√
T

2
+

2m

k
+ 2

√
mT

k lnm
+ 3

√
mT lnm

k
+

m lnm

k
.

6.14 Proof of Theorem 15

The proof is almost identical to that of Theorem 5. We just need to replace ∆m with Sm,k

in (89) and (90), and then substitute the conclusions of Theorems 3 and 14.

3. Because (128) and (129) depend on the same random event, we can avoid one invocation of the union
bound.
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6.15 Proof of Theorem 16

Similar to the proof of Theorem 8 in Section 6.8, we decompose the optimization error in
the t-th round as

ϵ′ϕ(w̄t, q̄t)
(20)
= max

q∈Sm,k

ϕ

 t∑
j=1

ηwj wj∑t
k=1 η

w
k

,q

− min
w∈W

ϕ

w,
t∑

j=1

ηqjqj∑t
k=1 η

q
k


≤

 t∑
j=1

ηj

−1 max
q∈Sm,k

t∑
j=1

ηj [ϕ(wj ,q) − ϕ(wj ,qj)]


+

 t∑
j=1

ηj

−1max
w∈W

t∑
j=1

ηj [ϕ(wj ,qj) − ϕ(w,qj)]


=O1 + O′

2,

(131)

where O1 is defined in (31) and

O′
2 =

 t∑
j=1

ηqj

−1 max
q∈Sm,k

t∑
j=1

ηqj [ϕ(wj ,q) − ϕ(wj ,qj)]

 .

Note that the 1st player is identical to the one in Section 3.3.1, so we can directly use
Theorem 6 to bound O1. For the 2nd player, due to the difference in the domain, we need
to reanalyze and have proven the same upper bounds for O′

2 as in Theorem 7.

Theorem 23 Under Assumption 3, we have

E
[
O′

2

]
≤ 1

2
(√

t + 1 − 1
) ((3 + ln t)

√
m lnm + 6

√
m

lnm
+ 4

√
1 + ln t

2

)
, ∀t ∈ Z+.

Furthermore, with probability at least 1 − δ, we have

O′
2 ≤

1

2
(√

t + 1 − 1
) ((3 + ln t)

√
m lnm +

(
2

√
m

lnm
+

√
1 + ln t

2

)
ln

3

δ
+

√
1 + ln t

2

)
for each t ∈ Z+.

By combining Theorems 6 and 23, we obtain Theorem 16 and the upper bounds are exactly
the same as those in Theorem 8.

6.16 Proof of Theorem 23

We need to specifically adjust the proof of Theorem 7 in Section 6.7 based on the fact that
the domain is the capped simplex Sm,k.

First, we modify (100) as

max
q∈Sm,k

t∑
j=1

ηqjϕ (wj ,q) −
t∑

j=1

ηqjϕ (wj ,qj) =

t∑
j=1

ηqj ⟨qj , sj⟩ −
1

k

∑
i∈I∗

t

 t∑
j=1

ηqjsj,i

 (132)
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where I∗
t = argmaxI∈Bm,k

∑
i∈I
[∑t

j=1 η
q
jRi(wj)

]
. Based on the property of online mirror

descent with local norms and the fact that the diameter of Sm,k is upper bounded by ln m
k ,

(101) becomes

t∑
j=1

ηqj ⟨qj , s̃j⟩ −
t∑

j=1

ηqj

1

k

∑
i∈I∗

t

s̃j,i

 ≤ ln
m

k
+

1

2

t∑
j=1

(ηqj )2
m∑
i=1

s̃j,i. (133)

By using (133) in the derivation of (103), we obtain

t∑
j=1

ηqj ŝj,it ≤
t∑

j=1

ηqj

1

k

∑
i∈I∗

t

s̃j,i

+
t∑

j=1

(
(ηqj )2

2
+ γjη

q
j

)
m∑
i=1

s̃j,i + ln
m

k
. (134)

From (132), we have

max
q∈Sm,k

t∑
j=1

ηqjϕ (wj ,q) −
t∑

j=1

ηqjϕ (wj ,qj)

=
t∑

j=1

ηqj ⟨qj , sj⟩ −
t∑

j=1

ηqj ŝj,ij +
t∑

j=1

ηqj ŝj,ij −
1

k

∑
i∈I∗

t

 t∑
j=1

ηqjsj,i


(134)

≤ 1

k

∑
i∈I∗

t

t∑
j=1

ηqj
(
s̃j,i − sj,i

)
︸ ︷︷ ︸

:=At

+
t∑

j=1

(
(ηqj )2

2
+ γjη

q
j

)
m∑
i=1

s̃j,i︸ ︷︷ ︸
:=Bt

+
t∑

j=1

ηqj
(
⟨qj , sj⟩ − ŝj,ij

)
︸ ︷︷ ︸

:=Ct

+ ln
m

k
.

(135)

Next, we bound three terms At, Bt and Ct, respectively.
Note that (105) in Section 6.7 holds for any possible value of k∗t ∈ [m]. As a result, with

probability at least 1 − δ, we have

1

k

∑
i∈I∗

t

t∑
j=1

ηqj
(
s̃j,i − sj,i

)
≤ max

i∈[m]

t∑
j=1

ηqj
(
s̃j,i − sj,i

)
≤ ln

m

δ
. (136)

To bound Bt and Ct, we can directly use the inequalities in (106) and (107). Substituting
(136), (106) and (107) into (135), and taking the union bound, with probability at least
1 − δ, we have

max
q∈Sm,k

t∑
j=1

ηqjϕ (wj ,q) −
t∑

j=1

ηqjϕ (wj ,qj)

≤ ln
m

k
+ lnm + m

t∑
j=1

(ηqj )2 + 2 ln
3

δ
+

√√√√1

2

t∑
j=1

(ηqj )2
(

1 + ln
3

δ

)

≤2 lnm + m

t∑
j=1

(ηqj )2 + 2 ln
3

δ
+

√√√√1

2

t∑
j=1

(ηqj )2
(

1 + ln
3

δ

)
.

(137)

Note that the final bound in (137) is exactly the same as that in (108), and therefore we
can reach the same conclusion as Theorem 7.
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7 Experiments

We present experiments to evaluate the effectiveness of the proposed algorithms.

Algorithms Notation Highlights

Alg. 1 of Sagawa et al. (2020) SMD(1) SMD with 1 sample per round

Alg. 1 SMD(m) SMD with m samples per round

Anytime extension of Alg. 1 SMD(m)a SMD(m) with time-varying step sizes

Alg. 2 Online(1)
Online learning method with 1 sample
per round

Anytime extension of Alg. 2 Online(1)a Online(1) with time-varying step sizes

Alg. 3 SMDr SMD with random sampling

Alg. 4 SMPAm SMPA with mini-batches

Alg. 5 ATkRO(m) SMD(m) for ATkRO

Anytime extension of Alg. 5 ATkRO(m)a
SMD(m) with time-varying step sizes
for ATkRO

Alg. 6 ATkRO(k)
Online learning method with k samples
per round for ATkRO

Alg. 7 ATkRO(1)a
Anytime online method with 1 sample
per round for ATkRO

Table 1: Notation for Algorithms.

7.1 Data Sets and Experimental Settings

Following the setup in previous work (Namkoong and Duchi, 2016; Soma et al., 2022), we
use both synthetic and real-world data sets.

First, we create a synthetic data set with m = 20 groups, each associated with a true
classifier w∗

i ∈ R1000. The set {w∗
i }i∈[m] is constructed as follows: we start with an arbitrary

vector w0 on the unit sphere; then, we randomly choose m points on a sphere of radius
d centered at w0; these points are projected onto the unit sphere to form {w∗

i }i∈[m]. For
distribution Pi, the sample (x, y) is generated by sampling x from the standard normal
distribution N (0, I) and setting y = sign(x⊤w∗

i ) with probability 0.9, or to its inverse with
probability 0.1. We set d = 0.5 in this data set.

To simulate heterogeneous distributions, we specifically construct another synthetic data
set, which contains m = 20 distributions. The classifiers w∗

i s are generated in the same way
as described above. For a sample x ∼ N (0, I), the distribution Pi outputs y = sign(x⊤w∗

i )
with probability pi and y = − sign(x⊤w∗

i ) with probability 1 − pi. We choose P1 as the
outlier distribution and set p1 = 0.6, while the remaining pi values are uniformly chosen
from the range 0.85 to 0.95. Additionally, we set d = 0.2 to ensure that {w∗

i }i∈[m] are close,
emphasizing that the heterogeneity is primarily due to noise.
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Figure 2: Balanced settings: maximum risk versus the number of iterations.
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Figure 3: Balanced settings: maximum risk versus the number of samples.

We also use the Adult data set (Becker and Kohavi, 1996), which includes attributes
such as age, gender, race, and educational background of 48, 842 individuals. The objective
is to determine whether an individual’s income exceeds 50, 000 USD or not. We set up
m = 6 groups based on the race and gender attributes, where each group represents a
combination of {black, white, others} with {female, male}.

We set ℓ(·; ·) to be the logistic loss and utilize different methods to train a linear model.
Table 1 lists the notation for the algorithms referenced in this section. When we need to
estimate the risk Ri(·), we draw a substantial number of samples from Pi, and use the
empirical average to approximate the expectation.

7.2 GDRO on Balanced Data

For experiments on the first synthetic data set, we will generate the random sample on
the fly, according to the protocol in Section 7.1. For those on the Adult data set, we will
randomly select samples from each group with replacement. In other words, Pi is defined
as the empirical distribution over the data in the i-th group.

In the experiments, we compare SMD(1) with our algorithms SMD(m) and Online(1).
Fig. 2 plots the maximum risk Lmax(w), with respect to the number of iterations. We
observe that SMD(m) is faster than Online(1), which in turn outperforms SMD(1). This
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Figure 4: Imbalanced settings with the synthetic data set: individual risk versus the number
of iterations.

observation is consistent with our theories, since their convergence rates are O(
√

(logm)/T ),
O(
√
m(logm)/T ), and O(m

√
(logm)/T ), respectively. Next, we plot Lmax(w) against the

number of samples consumed by each algorithm in Fig. 3. As can be seen, the curves of
SMD(m) and Online(1) are very close, indicating that they share the same sample com-
plexity, i.e., O(m(logm)/ϵ2). On the other hand, SMD(1) needs more samples to reach a
target precision, which aligns with its higher sample complexity, i.e., O(m2(logm)/ϵ2).

7.3 Weighted GDRO on Imbalanced Data

For experiments on the first synthetic data set, we set the sample size for each group i as
ni = 1000× (21− i). For those on the Adult data set, we first select 364 samples randomly
from each group, reserving them for later use in estimating the risk of each group. Then, we
visit the remaining samples in each group once to simulate the imbalanced setting, where
the numbers of samples in 6 groups are 26656, 11519, 1780, 1720, 999, and 364. In this
way, Pi corresponds to the (unknown) underlying distribution from which the samples in
the i-th group are drawn.

On imbalanced data, we will compare SMDr and SMPAm with the baseline SMD(m),
and examine how the risk on each individual distribution decreases with respect to the
number of iterations. Recall that the total number of iterations of SMDr, SMPAm and
SMD(m) are n1 nm/2, and nm, respectively. We present the experimental results on the
synthetic and the Adult data sets in Fig. 4 and Fig. 5, respectively. First, we observe that
our SMPAm is faster than both SMDr and SMD(m) across all distributions, and finally
attains the lowest risk in most cases. This behavior aligns with our Theorem 10, which
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Figure 5: Imbalanced settings with the Adult data set: individual risk versus the number
of iterations.

reveals that SMPAm achieves a nearly optimal rate of O((logm)/
√
ni) for all distributions

Pi, after nm/2 iterations. We also note that on distribution P1, the distribution with the
most samples, although SMDr converges slowly, its final risk is the lowest, as illustrated
in Fig. 4(a) and Fig. 5(a). This phenomenon is again in accordance with our Theorem 9,
which shows that the risk of SMDr on P1 reduces at a nearly optimal O(

√
(logm)/n1) rate,

after n1 iterations. From Fig. 4(f) and Fig. 5(f), we can see that the final risk of SMD(m)
on the last distribution Pm matches that of SMPAm. This outcome is anticipated, as they
exhibit similar convergence rates of O(

√
(logm)/nm) and O((logm)/

√
nm), respectively.

7.4 ATkRO on Heterogeneous Distributions

For experiments on heterogeneous distributions, we use the second synthetic data set de-
scribed in Section 7.1. We first compare our two algorithms ATkRO(m) and ATkRO(k),
where k = 3, and plot the changes of the average top-k risk Lk(w) in Fig. 6. From
Theorems 12 and 15, we know that their convergence rates are O(

√
(log(m/k))/T ) and

O(
√
m(logm)/(kT )), respectively, and their sample complexities are O((m log(m/k))/ϵ2)

and O(m(logm)/ϵ2), respectively. Fig. 6(a) indicates that ATkRO(m) indeed converges
faster than ATkRO(k), and Fig. 6(b) shows that ATkRO(m) requires slightly fewer samples
than ATkRO(k).

Additionally, to demonstrate the advantages of ATkRO, we examine the performance
of directly applying the SMD(m) algorithm, which is designed for GDRO, to the synthetic
data set. Fig. 7 presents the changes in risk across a subset of distributions for SMD(m),
ATkRO(m), and ATkRO(k). We observe that SMD(m) concentrates entirely on P1 and
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Figure 6: Heterogeneous settings with the synthetic data set.
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Figure 7: Heterogeneous settings with the synthetic data set: individual risk versus the
number of iterations.

achieves the lowest final risk on the outlier distribution P1, approximately 0.061 lower than
ATkRO(m) and 0.056 lower than ATkRO(k). However, for the remaining 19 distributions
{P2, . . . ,P20}, the risk of SMD(m) is approximately 0.12 higher on average than those of
the other two algorithms. Therefore, we conclude that ATkRO can mitigate the impact of
the outlier distribution and deliver a more balanced model in heterogeneous distributions
compared to GDRO.
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Figure 8: The performance of different methods versus the number of iterations. Blue
dashed lines indicate the predetermined T for non-anytime algorithms.

7.5 Anytime Capability

To demonstrate the benefits of the anytime capability, we compare SMD(m) and Online(1)
with their anytime extensions SMD(m)a and Online(1)a on the Adult data set under bal-
anced settings, and ATkRO(m) and ATkRO(k) with ATkRO(m)a and ATkRO(1)a on the
second synthetic data set, where k = 3.

We assign a preset value of T = 2000 for SMD(m) and Online(1), and T = 50000 for
ATkRO(m) and ATkRO(k). When the actual number of iterations exceeds the preset num-
ber T , we continue running the four algorithms with the initial parameters. As illustrated in
Fig. 8, non-anytime algorithms initially reduce the objective (the maximum risk or the av-
erage top-k risk) more rapidly than anytime algorithms before reaching the predetermined
T , where they achieve minimal values. However, as the number of iterations increases,
their curves plateau or even increase due to sub-optimal parameters. In contrast, the any-
time extensions, with time-varying step sizes, consistently reduce their targets over time,
eventually falling below the risk attained by the corresponding non-anytime algorithms.

8 Conclusion

For the GDRO problem, we develop two SA approaches based on SMD and non-oblivious
MAB, which consume m and 1 sample per round, respectively, and both achieve a nearly
optimal sample complexity of O(m(logm)/ϵ2). Then, we consider two special scenarios:
imbalanced data and heterogeneous distributions. In the first scenario, we formulate a
weighted GDRO problem and propose two methods by incorporating non-uniform sam-
pling into SMD and using mini-batches with SMPA, respectively. These methods yield
distribution-dependent convergence rates, and in particular, the latter one attains nearly
optimal rates for multiple distributions simultaneously. In the second scenario, we formu-
late an ATkRO problem and propose two algorithms: one using SMD with m samples per
round, obtaining an O(m(log(m/k))/ϵ2) sample complexity, and the other combining SMD
with non-oblivious combinatorial semi-bandits, using k samples per round and achieving an
O(m(logm)/ϵ2) sample complexity. For both GDRO and ATkRO, we have also developed
SA algorithms with anytime capabilities.
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Appendix A. Supporting Lemmas

A.1 Proof of Lemma 11

We first define q̂ as
∇νq (q̂) = ∇νq(q0) − ηg. (138)

Then, we have

argmin
q∈Sm,k

Bq(q, q̂) = argmin
q∈Sm,k

{
νq(q) − νq (q̂) − ⟨∇νq (q̂) ,q− q̂⟩

}
= argmin

q∈Sm,k

{
νq(q) − ⟨∇νq (q̂) ,q⟩

} (138)
= argmin

q∈Sm,k

{
νq(q) − ⟨∇νq(q0) − ηg,q⟩

}
= argmin

q∈Sm,k

{
η⟨g,q− q0⟩ + Bc(q,q0)

}
= (50).

Recall that Bq(·, ·) is defined in terms of the neg-entropy, i.e., νq(q) =
∑m

i=1 qi ln qi, we
have [∇νq(q)]i = 1 + ln qi. Therefore, the i-th component of q̂ can be computed as

q̂i = exp
(
[∇νq(q0)]i − ηgi − 1

)
= exp (ln q0,i − ηgi) = q0,ie

−ηgi .

A.2 Proof of Lemma 18

The proof follows the argument of Neu (2015, Proof of Lemma 1), and we generalize it to
the setting with stochastic rewards. First, observe that for any i ∈ [m] and t ∈ [T ],

ξ̃t,i =
ξ̂t,i

pt,i + γt
· I[it = i]

≤ ξ̂t,i

pt,i + γtξ̂t,i
· I[it = i] (ξ̂t,i ∈ [0, 1])

=
1

2γt

2γt · ξ̂t,i/pt,i
1 + γt · ξ̂t,i/pt,i

· I[it = i]

≤ 1

βt
log
(
1 + βtξ̄t,i

)
(139)

where the last step is due to the inequality z
1+z/2 ≤ log(1 + z) for z ≥ 0 and we introduce

the notations βt = 2γt and ξ̄t,i = (ξ̂t,i/pt,i) · I[it = i] to simplify the presentation.
Define the notation λ̃t =

∑m
i=1 αt,iξ̃t,i and λt =

∑m
i=1 αt,iξt,i. Then, we have

Et−1

[
exp(λ̃t)

]
= Et−1

[
exp

( m∑
i=1

αt,iξ̃t,i

)]
(139)

≤ Et−1

[
exp

(
m∑
i=1

αt,i

βt
log
(

1 + βtξ̄t,i

))]

≤ Et−1

[
exp

(
m∑
i=1

log
(

1 + αt,iξ̄t,i

))]
(
αt,i

βt
≤ 1 by assumption)

= Et−1

[
Πm

i=1

(
1 + αt,iξ̄t,i

)]
= Et−1

[
1 +

m∑
i=1

αt,iξ̄t,i

]

57



Zhang, Bai, Zhao, Yang, and Zhou

= 1 +

m∑
i=1

αt,iξt,i ≤ exp

(
m∑
i=1

αt,iξt,i

)
= exp(λt) (140)

where the second inequality is by the inequality x log(1 + y) ≤ log(1 + xy) that holds for
all y ≥ −1 and x ∈ [0, 1], the equality Et−1

[
Πm

i=1

(
1 + αt,iξ̄t,i

)]
= Et−1

[
1 +

∑m
i=1 αt,iξ̄t,i

]
follows from the fact that ξ̄t,i · ξ̄t,j = 0 holds whenever i ̸= j, and the last line is due to

Et−1[ξ̄t,i] = Et−1[(ξ̂t,i/pt,i) · I[it = i]] = ξt,i and the inequality 1 + z ≤ ez for all z ∈ R.
As a result, from (140) we conclude that the process Zt = exp

(∑t
s=1(λ̃s − λs)

)
is a

supermartingale. Indeed, Et−1[Zt] = Et−1

[
exp

(∑t−1
s=1(λ̃s − λs)

)
· exp(λ̃t − λt)

]
≤ Zt−1.

Thus, we have E[ZT ] ≤ E[ZT−1 ≤ . . . ≤ E[Z0] = 1. By Markov’s inequality,

Pr

[
T∑
t=1

(λ̃t − λt) > ϵ

]
≤ E

[
exp

(
T∑
t=1

(λ̃t − λt)

)]
· exp(−ϵ) ≤ exp(−ϵ)

holds for any ϵ > 0. By setting exp(−ϵ) = δ and solving the value, we complete the proof
for (87). And the inequality (88) for the scenario γt = γ can be immediately obtained by
setting αt,i = 2γ · I[i = j] and taking the union bound over all j ∈ [m].

A.3 Proof of Lemma 20

From the definition of norms in (61), we have

∥F ([w;q]) − F ([w′;q′])∥2∗

=

∥∥∥∥∥
[

m∑
i=1

qipi∇Ri(w) −
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q′ipi∇Ri(w
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p1R1(w
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2
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+ 2
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∥∥∥∥∥
2

w,∗︸ ︷︷ ︸
:=A

+ 4D2

∥∥∥∥∥
m∑
i=1

q′ipi∇Ri(w) −
m∑
i=1

q′ipi∇Ri(w
′)

∥∥∥∥∥
2

w,∗︸ ︷︷ ︸
:=B

+ 2 max
i∈[m]

∣∣pi[Ri(w) −Ri(w
′)
]∣∣2 lnm︸ ︷︷ ︸

:=C

.
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To bound term A, we have

4D2

∥∥∥∥∥
m∑
i=1

qipi∇Ri(w) −
m∑
i=1

q′ipi∇Ri(w)

∥∥∥∥∥
2

w,∗

≤4D2

(
m∑
i=1

|qi − q′i|∥pi∇Ri(w)∥w,∗

)2
(114)

≤ 4D2

(
m∑
i=1

|qi − q′i|piG

)2

≤ 4D2G2p2max∥q− q′∥21.

where pmax is defined in (44). To bound B, we have

4D2

∥∥∥∥∥
m∑
i=1

q′ipi∇Ri(w) −
m∑
i=1

q′ipi∇Ri(w
′)

∥∥∥∥∥
2

w,∗

≤4D2

(
m∑
i=1

q′ipi
∥∥∇Ri(w) −∇Ri(w

′)
∥∥
w,∗

)2
(43)

≤ 4D2

(
m∑
i=1

q′ipiL∥w −w′∥w

)2

≤4D2L2p2max∥w −w′∥2w

(
m∑
i=1

q′i

)2

= 4D2L2p2max∥w −w′∥2w.

To bound C, we have

2 max
i∈[m]

∣∣pi[Ri(w) −Ri(w
′)
]∣∣2 lnm

(115)

≤ 2 max
i∈[m]

∣∣piG∥w −w′∥w
∣∣2 lnm ≤ 2G2p2max∥w −w′∥2w lnm.

Putting everything together, we have

∥F ([w;q]) − F ([w′;q′])∥2∗ ≤ (4D2L2 + 2G2 lnm)p2max∥w −w′∥2w + 4D2G2p2max∥q− q′∥21

≤p2max(8D4L2 + 8D2G2 lnm)

(
1

2D2
∥w −w′∥2w +

1

2 lnm
∥q− q′∥21

)
=p2max(8D4L2 + 8D2G2 lnm)

∥∥[w −w′;q− q′]
∥∥2

which implies

∥F ([w;q]) − F ([w′;q′])∥∗ ≤pmax

√
8D4L2 + 8D2G2 lnm

∥∥[w −w′;q− q′]
∥∥

≤L̃
∥∥[w −w′;q− q′]

∥∥
where L̃ is defined in (44).

A.4 Proof of Lemma 21

The light tail condition, required by Juditsky et al. (2011), is essentially the sub-Gaussian
condition. To this end, we introduce the following sub-gaussian properties (Vershynin, 2018,
Proposition 2.5.2).
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Proposition 1 (Sub-gaussian properties) Let X be a random variable. Then the fol-
lowing properties are equivalent; the parameters Ki > 0 appearing in these properties differ
from each other by at most an absolute constant factor.
(i) The tails of X satisfy

Pr[|X| ≥ t] ≤ 2 exp(−t2/K2
1 ), ∀t ≥ 0.

(ii) The moments of X satisfy

∥X∥Lp = (E|X|p)1/p ≤ K2
√
p, ∀p ≥ 1.

(iii) The moment generating function (MGF) of X2 satisfies

E
[

exp(λ2X2)
]
≤ exp(K2

3λ
2), ∀λ such that |λ| ≤ 1/K3.

(iv) The MGF of X2 is bounded at some point, namely

E
[

exp(X2/K2
4 )
]
≤ 2.

From the above proposition, we observe that the exact value of those constant K1, . . . ,K5 is
not important, and it is very tedious to calculate them. So, in the following, we only focus
on the order of those constants. To simplify presentations, we use c to denote an absolute
constant that is independent of all the essential parameters, and its value may change from
line to line.

Since

∥F ([w;q]) − g([w;q])∥2∗
=2D2∥∇wφ(w,q) − gw(w,q)∥2w,∗ + 2∥∇qφ(w,q) − gq(w,q)∥2∞ lnm,

we proceed to analyze the behavior of ∥∇wφ(w,q) − gw(w,q)∥2w,∗ and ∥∇qφ(w,q) −
gq(w,q)∥2∞. To this end, we have the following lemma.

Lemma 24 We have

E

[
exp

(
1

cκG2ωmax
∥∇wφ(w,q) − gw(w,q)∥2w,∗

)]
≤ 2,

E

[
exp

(
1

cωmax lnm
∥∇qφ(w,q) − gq(w,q)∥2∞

)]
≤ 2

(141)

where ωmax is defined in (44) and c > 0 is an absolute constant.

From Lemma 24, we have

E

[
exp

(
1

2cκD2G2ωmax + 2cωmax ln2m
∥F ([w;q]) − g([w,q])∥2∗

)]
=E

[
exp

(
2D2

2cκD2G2ωmax + 2cωmax ln2m
∥∇wφ(w,q) − gw(w,q)∥2w,∗

+
2 lnm

2cκD2G2ωmax + 2cωmax ln2m
∥∇qφ(w,q) − gq(w,q)∥2∞

)]
=E

[
exp

(
κD2G2

κD2G2 + ln2m

∥∇wφ(w,q) − gw(w,q)∥2w,∗
cκG2ωmax

+
ln2m

κD2G2 + ln2m

∥∇qφ(w,q) − gq(w,q)∥2∞
cωmax lnm

)]
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≤ κD2G2

κD2G2 + ln2m
E

[
exp

(
∥∇wφ(w,q) − gw(w,q)∥2w,∗

cκG2ωmax

)]

+
ln2m

κD2G2 + ln2m
E

[
exp

(
∥∇qφ(w,q) − gq(w,q)∥2∞

cωmax lnm

)]
(141)

≤ κD2G2

κD2G2 + ln2m
2 +

ln2m

κD2G2 + ln2m
2 = 2

where the first inequality follows from Jensen’s inequality.

A.5 Proof of Lemma 22

The proof is built upon that of Corollary 1 of Neu (2015). Let β = 2γ and ξ′t,i =
ξ̂t,i
kpt,i

I[i ∈ It].
First, we have

ξ̃t,i =
ξ̂t,i

kpt,i + γ
I[i ∈ It]

≤ ξ̂t,i

kpt,i + γξ̂t,i
I[i ∈ It] =

1

2γ
· 2γξ̂t,i/kpt,i

1 + γξ̂t,i/kpt,i
I[i ∈ It] ≤

1

β
· log

(
1 + βξ′t,i

) (142)

where the first inequality follows from ξ̂t,i ∈ [0, 1] and last inequality from the elementary
inequality z

1+z/2 ≤ log(1 + z) that holds for all z ≥ 0. Second, from the property of
DepRound, we have

Et−1[ξ
′
t,i] = Et−1

[
ξt,i
kpt,i

I[i ∈ It]
]

(53)
= ξt,i. (143)

Then, we have

Et−1

[
exp(βξ̃t,i)

] (142)

≤ Et−1

[
1 + βξ′t,i

] (143)
= 1 + βξt,i ≤ exp(βξt,i).

Then, by repeating the subsequent analysis from Corollary 1 of Neu (2015), we can derive
this lemma.

A.6 Proof of Lemma 24

To analyze ∥∇wφ(w,q) − gw(w,q)∥2w,∗, we first consider the approximation error caused
by samples from Pi:∥∥∥∥∥∥nm

ni

ni/nm∑
j=1

∇ℓ(w; z(i,j)) −∇Ri(w)

∥∥∥∥∥∥
w,∗

=

∥∥∥∥∥∥nm

ni

ni/nm∑
j=1

[
∇ℓ(w; z(i,j)) −∇Ri(w)

]∥∥∥∥∥∥
w,∗

.

Under the regularity condition of ∥ · ∥w,∗ in Assumption 6, we have, for any γ ≥ 0,∥∥∥∥∥∥nm

ni

ni/nm∑
j=1

[
∇ℓ(w; z(i,j)) −∇Ri(w)

]∥∥∥∥∥∥
w,∗

≥ 2G(
√

2κ +
√

2γ)

√
nm

ni
≤ exp(−γ2/2) (144)

which is a directly consequence of the concentration inequality of vector norms (Juditsky
and Nemirovski, 2008, Theorem 2.1.(iii)) and (116). Then, we introduce the following
lemma to simplify (144).
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Lemma 25 Suppose we have

Pr [X ≥ α + γ] ≤ exp(−γ2/2), ∀γ > 0

where X is nonnegative. Then, we have

Pr [X ≥ γ] ≤ 2 exp
(
−γ2/max(6α2, 8)

)
, ∀γ > 0.

From (144) and Lemma 25, we have

Pr

 1

2
√

2G

√
ni

nm

∥∥∥∥∥∥nm

ni

ni/nm∑
j=1

[
∇ℓ(w; z(i,j)) −∇Ri(w)

]∥∥∥∥∥∥
w,∗

≥ γ


≤2 exp

(
−γ2/max(6κ, 8)

)
≤ 2 exp

(
−γ2/(8κ)

)
, ∀γ > 0

which satisfies the Proposition 1.(i). From the equivalence between Proposition 1.(i) and
Proposition 1.(iv), we have

E

exp

∥∥∥∥∥∥nm

ni

ni/nm∑
j=1

[
∇ℓ(w; z(i,j)) −∇Ri(w)

]∥∥∥∥∥∥
2

w,∗

/
cκG2nm

ni

 ≤ 2.

Inserting the scaling factor pi, we have

E

exp

∥∥∥∥∥∥pinm

ni

ni/nm∑
j=1

[
∇ℓ(w; z(i,j)) −∇Ri(w)

]∥∥∥∥∥∥
2

w,∗

/
cκG2p2inm

ni

 ≤ 2. (145)

To simplify the notation, we define

ui = pi
nm

ni

ni/nm∑
j=1

[
∇ℓ(w; z(i,j)) −∇Ri(w)

]
, and ωmax = max

i∈[m]

p2inm

ni
.

By Jensen’s inequality, we have

E

[
exp

(
1

cκG2ωmax
∥∇wφ(w,q) − gw(w,q)∥2w,∗

)]

=E

exp

∥∥∥∥∥
m∑
i=1

qiui

∥∥∥∥∥
2

w,∗

/[
cκG2ωmax

]
≤

m∑
i=1

qiE
[
exp

(
∥ui∥2w,∗

/[
cκG2ωmax

])] (145)

≤
m∑
i=1

qi2 = 2.

where we use the fact that ∥ · ∥w,∗, (·)2 and exp(·) are convex, and the last two functions
are increasing in R+.
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To analyze ∥∇qφ(w,q) − gq(w,q)∥2∞, we consider the approximation error related to
Pi: ∣∣∣∣∣∣nm

ni

ni/nm∑
j=1

ℓ(w; z(i,j)) −Ri(w)

∣∣∣∣∣∣ =

∣∣∣∣∣∣nm

ni

ni/nm∑
j=1

[
ℓ(w; z(i,j)) −Ri(w)

]∣∣∣∣∣∣ .
Note that the absolute value | · | is 1-regular (Juditsky and Nemirovski, 2008). Following
(113) and the derivation of (145), we have

E

exp

∣∣∣∣∣∣pinm

ni

ni/nm∑
j=1

[
ℓ(w; z(i,j)) −Ri(w)

]∣∣∣∣∣∣
2/

cp2inm

ni

 ≤ 2. (146)

To prove that ∥∇qφ(w,q)−gq(w,q)∥2∞ is also sub-Gaussian, we need to analyze the effect
of the infinity norm. To this end, we develop the following lemma.

Lemma 26 Suppose

E
[
exp

(
|Xj |2/K2

j

)]
≤ 2, ∀j ∈ [m]. (147)

Then,

E

[
exp

(
max
j∈[m]

|Xj |2
/[

cK2
max lnm

])]
≤ 2.

where c > 0 is an absolute constant, and Kmax = maxj∈[m]Kj.

From (146) and Lemma 26, we have

E

[
exp

(
1

cωmax lnm
∥∇qφ(w,q) − gq(w,q)∥2∞

)]
≤ 2.

A.7 Proof of Lemma 25

When γ ∈ [0, 2α], we have

Pr [X ≥ γ] ≤ 1 ≤ 2 exp(−2/3) ≤ 2 exp(−γ2/6α2).

When γ ≥ 2α, we have

Pr [X ≥ γ] = Pr [X ≥ α + γ − α] ≤ exp(−(γ − α)2/2) ≤ exp(−γ2/8)

where we use the fact γ − α ≥ γ
2 . Thus, we always have

Pr [X ≥ γ] ≤ 2 exp
(
−γ2/max(6α2, 8)

)
, ∀γ > 0.

A.8 Proof of Lemma 26

From (147), and the equivalence between Proposition 1.(i) and Proposition 1.(iv), we have

Pr
[
|Xj | ≥ t

]
≤ 2 exp

(
−t2/cK2

j

)
, ∀t ≥ 0, ∀j ∈ [m].
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As a result,

Pr

[
max
j∈[m]

|Xj | ≥ t

]
= Pr

[
∃j, |Xj | ≥ t

]
≤

m∑
j=1

Pr
[
|Xj | ≥ t

]
≤ 2

m∑
j=1

exp
(
−t2/cK2

j

)
≤2m exp

(
−t2/cK2

max

)
= exp

(
−t2/cK2

max + ln[2m]
)
.

Choosing t =
√
cK2

max(ln[2m] + γ2/2), we have

Pr

[
max
j∈[m]

|Xj | ≥
√

cK2
max(ln[2m] + γ2/2)

]
≤ exp

(
−γ2/2

)
.

Thus

Pr

[
max
j∈[m]

|Xj | ≥
√
cK2

max

(√
ln[2m] + γ/

√
2
)]

≤ exp
(
−γ2/2

)
⇔Pr

[√
2

cK2
max

max
j∈[m]

|Xj | ≥
√

2 ln[2m] + γ

]
≤ exp

(
−γ2/2

)
.

By Lemma 25, we have

Pr

[√
2

cK2
max

max
j∈[m]

|Xj | ≥ γ

]
≤ 2 exp

(
−γ2/max

(
12 · ln[2m], 8

))
, ∀γ > 0.

From the equivalence between Proposition 1.(i) and Proposition 1.(iv), we have

E

[
exp

(
max
j∈[m]

|Xj |2
/[

cK2
max lnm

])]
≤ 2.

Appendix B. Details of Example 1

According to our constructions, the i-th risk function is given by

Ri(w) = Ez∼Ber(µi,1)

[
(w − z)2

]
= w2 − 2µiw + µi.

We first derive the objective of GDRO, i.e., Lmax(w) in (2). When w ∈ [0, 0.5],
Lmax(w) = w2 − 2w + 1 with corresponding µi = 1, and when w ∈ [0.5, 1], Lmax(w) =
w2 − w + 0.5 with corresponding µi = 0.5. Then, it can be easily verified from Fig. 1(b)
that w∗

G = argminw∈W Lmax(w) = 0.5.
Then, we analyze the objective of AT5RO, i.e., L5(w) in (5). Denote I∗(w) = argmaxI∈Bm,5{

1
5

∑
i∈I Ri(w)

}
. We discuss the following two situations:

1. When w ∈ [0, 0.5], we have {µi}i∈I∗(w) = {0.96, · · · , 1}, and L5(w) = w2 − 1.96w +
0.98. In this case, 0.5 attains the minimum objective L5(0.5) = 0.25;

2. When w ∈ (0.5, 1], we have {µi}i∈I∗(w) = {0.5, 0.86, · · · , 0.89}, and L5(w) = w2 −
1.6w + 0.8. In this case, 0.8 attains the minimum objective L5(0.8) = 0.16.

In summary, w∗
A = argminw∈W L5(w) = 0.8.
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Appendix C. Supporting Algorithms

C.1 Projection onto the Capped Simplex

Algorithm 8 Neg-entropy Bregman projection onto the capped simplex

Input: size k, and non-negative vector p ∈ Rm

1: if maxi∈[m](pi) ≤ 1/k and
∑m

i=1 pi = 1 then
2: return p
3: end if
4: Partially sort p to p′ s.t. p′m ≥ · · · ≥ p′m−k+1 ≥ p′i ∀i ∈ [m−k] and record mapping M,

i.e., M(p) = p′.
5: Set p′m+1 = +∞
6: for i = m to m− k + 1 do
7: c =

(
1 − m−i

k

)
/
(
∥p′∥1 −

∑m
j=i+1 p

′
j

)
8: if p′ic < 1/k ≤ p′i+1c then
9:

p′j =

{
1/k j ≥ i + 1

cp′j j ≤ i

10: return M−1(p′)
11: end if
12: end for
13: return 1/k · I[p ̸= 0m]

C.2 Sampling Rule: DepRound

The original DepRound algorithm (Gandhi et al., 2006) takes an input vector p ∈ Rm that
satisfies 0 ≤ p ≤ 1 and p⊤1 = k. Here, we modify it to require p ∈ Sm,k.

Algorithm 9 DepRound

Input: size k, and probability vector p ∈ Sm,k ⊂ Rm

1: p = k · p
2: while ∃i ∈ [m] s.t. pi ∈ (0, 1) do
3: Choose any i, j ∈ [m] with i ̸= j and pi ∈ (0, 1), pj ∈ (0, 1)
4: Set α = min{1 − pi, pj} and β = min{pi, 1 − pj}
5: Update

(pi, pj) =

{
(pi + α, pj − α) with probability β

α+β

(pi − β, pj + β) with probability α
α+β

6: end while
7: return I = {i ∈ [n] | pi = 1}
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