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Abstract

Universal online learning aims to achieve optimal regret guarantees without requiring prior
knowledge of the curvature of online functions. Existing methods have established minimax-
optimal regret bounds for universal online learning, where a single algorithm can simul-
taneously attain O(\/T ) regret for convex functions, O(dlogT') for exp-concave functions,
and O(logT) for strongly convex functions, where T is the number of rounds and d is the
dimension of the feasible domain. However, these methods still lack problem-dependent
adaptivity. In particular, no universal method provides regret bounds that scale with the
gradient variation Vp, a key quantity that plays a crucial role in applications such as
stochastic optimization and fast-rate convergence in games. In this work, we introduce
UniGrad, a novel approach that achieves both universality and adaptivity, with two distinct
realizations: UniGrad.Correct and UniGrad.Bregman. Both methods achieve universal re-
gret guarantees that adapt to gradient variation, simultaneously attaining O(log Vi) regret
for strongly convex functions and O(dlog V) regret for exp-concave functions. For con-
vex functions, the regret bounds differ: UniGrad.Correct achieves an O(y/Vz log V) bound
while preserving the RVU property that is crucial for fast convergence in online games,
whereas UniGrad.Bregman achieves the optimal O(v/Vr) regret bound through a novel de-
sign. Both methods employ a meta algorithm with O(log T') base learners, which naturally
requires O(log T') gradient queries per round. To further enhance computational efficiency,
we introduce UniGrad++, which retains the regret guarantees while reducing the gradi-
ent query requirement to just 1 per round via a surrogate optimization technique. Our
results advance the state-of-the-art in universal online learning, with immediate implica-
tions and applications, including small-loss and gradient-variance bounds, novel guarantees
for the stochastically extended adversarial model, and faster convergence in online games.
Additionally, as an extension, we provide an anytime variant of our method.

1. Introduction

Online convex optimization (OCO) is a versatile and powerful framework for modeling the
interaction between a learner and the environment over time (Hazan, 2016; Orabona, 2019).
In each round ¢ € [T, the learner selects a decision x; from a convex compact set X C RY,
while the environment simultaneously chooses a convex online function f; : X — R. The
learner then incurs a loss fi;(x;) and receives information about the online function to
update the decision to xy41, with the goal of optimizing the game-theoretic performance
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metric known as regret (Cesa-Bianchi and Lugosi, 2006), whose definition is given by

T T
REGT = th(xt) — E’élilz fr(x). (1.1)
t=1

t=1

The regret quantifies the learner’s excess loss relative to the best offline decision in hindsight.
In OCQ, it is well-established that the type and curvature of online functions significantly in-
fluence the minimax regret bounds. For convex functions, Online Gradient Descent (OGD)
can achieve an O(v/T) regret (Zinkevich, 2003). For a-exp-concave functions, Online New-
ton Step (ONS), with prior knowledge of the curvature coefficient «, attains an (’)(g logT)
regret (Hazan et al., 2007). For A-strongly convex functions, OGD with a suitable step
size configuration relating to the curvature coefficient A\ enjoys an (9(% log T') regret (Hazan
et al., 2007). These regret rates have been proved to be minimax optimal (Ordentlich and
Cover, 1998; Abernethy et al., 2008).

Notably, there are two caveats in the above results. First, to achieve the optimal regret
bounds, these algorithms require prior knowledge of the function type and the parame-
ter characterizing the curvature as the algorithmic input. Moreover, these algorithms are
only optimal in the worst case and lack adaptivity to problem-dependent hardness. There-
fore, modern online learning research strengthens these results in two key aspects: (%)
universality, to handle the unknown types and curvatures; (i) adaptivity, to adapt to the
problem-dependent hardness. In the following, we discuss each aspect in detail.

1.1 Universality: Unknown Curvature of Online Functions

Traditionally, to attain the minimax optimality, the learner must select the “correct” algo-
rithm with well-tuned parameters tailored to each specific class of online functions, which re-
quires the prior knowledge of the curvature information and can be burdensome in practice.
Universal online learning aims to develop a single algorithm agnostic to the specific function
type and curvature while achieving the same regret guarantees as if they were known (van
Erven and Koolen, 2016; Cutkosky and Boahen, 2017; Wang et al., 2019; Mhammedi et al.,
2019; Zhang et al., 2021, 2022a; Yan et al., 2023, 2024; Yang et al., 2024). The pioneering
work of van Erven and Koolen (2016) proposes the MetaGrad algorithm that achieves an
O(VT) regret for convex functions and an O(<£ logT) regret for exp-concave/strongly con-
vex functions, leaving a gap to the optimal O(5 log T') regret for strongly convex functions,
which is later closed by Wang et al. (2019).

The above methods rely on a meta-base two-layer structure to handle the uncertainty of
the function curvature. Specifically, for each function family, the online learner maintains
a set of base learners with different configurations, with a meta algorithm running on top
to combine their outputs. To achieve the desired universality, MetaGrad and its variants
require the base learners to optimize over heterogeneous surrogate loss functions customized
to each function family, and use a complex meta algorithm to adaptively combine these het-
erogeneous base learners. The entire structure can be complex and technically challenging
to analyze due to the heterogeneity of the base learners.

To enhance flexibility, Zhang et al. (2022a) introduce a simple and general framework
that uses a meta algorithm equipped with a second-order regret bound, directly operating
the base learners on the original online functions. The method still achieves optimal regret
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bounds universally: O(v/T) for convex functions, (’)(g logT) for a-exp-concave functions,
and O(% logT') for A-strongly convex functions. It requires O(logT) gradient queries per
round, as O(logT') base learners are maintained in parallel with different configurations.

1.2 Adaptivity: Unknown Niceness of Online Environments

Within a specific function family, the algorithm’s performance is also influenced by the
problem-dependent hardness. Ideally, a well-designed online algorithm should be robust to
the worst-case scenarios while simultaneously delivering faster-rate guarantees in more be-
nign and easier environments. Problem-dependent online learning aims to design algorithms
with regret guarantees scaling with the problem-dependent quantities (Srebro et al., 2010;
Chiang et al., 2012; Orabona et al., 2012; Wei and Luo, 2018; Zhang et al., 2019; Cutkosky,
2020; Zhao et al., 2024). There are several different notions of problem-dependent adaptiv-
ity, including the small-loss bound, the gradient-variance bound, and the gradient-variation
bound. Among these, we focus on gradient-variation regret (Chiang et al., 2012; Yang
et al., 2014), due to its fundamental importance in modern online learning and its strong
connections to game theory and optimization. The gradient-variation regret replaces the
dependence on the time horizon T' with the gradient-variation quantity Vp defined as

T
Vp £ sup |V fi(x) = Vfier ()%, (1.2)
t—2 XEX

which measures the cumulative change of gradients across consecutive functions. When the
online functions change gradually, Vp can be very small, even as low as O(1) when the
functions are basically the same. On the other hand, under the standard bounded-gradient
assumption, Vp is at most O(T) in the worst case. Under smoothness, more adaptive
algorithms can improve the minimax regret to O(v/Vr), O(Z1log V), and O(%log V) for
convex, a-exp-concave, and A-strongly convex functions, respectively.

These results are important since they safeguard the minimax worst-case rates and can
be much better when the environment is easier such as Vp = O(1). Moreover, as demon-
strated by Zhao et al. (2024), the gradient-variation regret is more fundamental than other
well-known problem-dependent quantities like the small loss Fr = minyex Y2 f¢(x) (Sre-
bro et al., 2010; Orabona et al., 2012), since gradient-variation regret can imply small-loss
bounds directly in analysis. Furthermore, gradient variation plays a crucial role in bridging
adversarial and stochastic optimization (Sachs et al., 2022; Chen et al., 2024), enabling fast
rates in online games (Syrgkanis et al., 2015; Zhang et al., 2022b), and facilitating accel-
eration in smooth offline optimization (Zhao, 2025; Zhao et al., 2025). As a result, there
has been a surge of recent interest in achieving gradient-variation regret bounds in various
online learning problems (Zhao et al., 2020; Sachs et al., 2022; Zhang et al., 2022b; Qiu
et al., 2023; Tsai et al., 2023; Zhao et al., 2024; Tarzanagh et al., 2024; Xie et al., 2024).

1.3 Our Contributions and Techniques

Motivated by the above progress of modern online learning, a natural question arises: Is it
possible to design a single algorithm that achieves both universality and adaptivity? More
concretely, the goal is to design a universal algorithm with gradient-variation regret bounds
across different function families: a single online algorithm simultaneously achieving an
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Table 1: Comparison with existing results (including prior works and our conference ver-
sion (Yan et al., 2023)). The second column shows the regret bounds for strongly convex,
exp-concave, and convex functions. The third column indicates the computational effi-
ciency, where “# Grad.” is the number of gradient queries in each round and “# Base” is
the number of maintained base learners. The last column indicates whether the method
can support the RVU property that is vital for the fast-convergence of online games.

Mothod Regret Bounds Efficiency RVU
Strongly Convex Exp-concave Convex # Grad. # Base

van Erven and Koolen (2016) O(dlogT) O(dlogT) O(VT) 1 O(logT) X
Wang et al. (2019) O(logT) O(dlogT) OWT) 1 O(logT) X
Zhang et al. (2022a) O(log Vir) O(dlog V) OWT) O(logT) O(logT) X
Yan et al. (2023) O(log V) O(dlogVr) O(V/VrlogVz) | O((logT)?) | O((logT)?) v
UniGrad.Correct (Theorem 1) O(log V1) O(dlogVr) O VrlogVr) | O(logT) O(logT) v
UniGrad.Bregman (Theorem 2) O(log V1) O(dlog Vr) O/ Vr) O(logT) O(logT) X
UniGrad++-.Correct (Theorem 3) O(log V1) O(dlogVr) O(V/Vrlog V) 1 O(logT) v
UniGrad++.Bregman (Theorem 4) O(log V1) O(dlog V) O(K/Vr) 1 O(logT) X

O(+/Vr) regret for convex functions, an O(%log Vr) regret for a-exp-concave functions,
and an O(% log V) regret for A-strongly convex functions, respectively.

Zhang et al. (2022a) obtain partial results with regret bounds of O(v/T), (’)(g log V1),
and O(% log V) for convex, a-exp-concave, and A-strongly convex functions, simultaneously.
Their result, however, falls short in the convex case, which is arguably the most important:
the improvement from 7" to Vr is polynomial for convex functions, whereas logarithmic for
the other cases. This gap was left open in their work.

In this paper, we resolve the open problem and obtain the desired gradient-variation
regret bounds for all three types of functions. Our approach builds on the optimistic online
ensemble framework developed for gradient-variation dynamic regret (Zhao et al., 2024).
However, significant new ingredients are required for universal online learning, particularly
in properly encoding gradient-variation adaptivity across all three types of functions. We
propose a novel approach called UniGrad (short for “Universal Gradient-variation Online
Learning”), consisting of two distinct realizations based on fundamentally different ideas.

o Method 1 (UniGrad.Correct): Online Ensemble with Injected Corrections. We
propose the UniGrad.Correct algorithm, which consists of a three-layer ensemble structure
and incorporates injected corrections to ensure stability cancellation within the online
ensemble. The algorithm simultaneously achieves regret bounds of (’)(%log Vr) for A
strongly convex functions, (’)(g log Vi) for a-exp-concave functions, and O(y/Vrlog V)
for convex functions.

o Method 2 (UniGrad.Bregman): Online Ensemble with Extracted Bregman Di-
vergence. We propose the UniGrad.Bregman algorithm, which leverages a negative term
from the extracted Bregman divergence in linearization and employs a novel analysis that
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bypasses stability arguments to handle gradient variation. The algorithm simultaneously
achieves regret bounds of O(% log V) for A-strongly convex functions, (’)(g log Vi) for
a-exp-concave functions, and O(y/Vr) for convex functions.

Although UniGrad.Correct exhibits slight suboptimality in the convex case compared to Un-
iGrad.Bregman, the two methods rely on fundamentally different principles and enjoy their
own merits. Table 1 provides a comparison of our results with prior works and our conference
version (Yan et al., 2023), highlighting that we are the first to achieve gradient-variation
regret bounds across all three types of functions simultaneously. Both UniGrad.Correct
and UniGrad.Bregman require O(logT') gradient queries per round, as they maintain this
many base learners in parallel. To improve efficiency, we further develop UniGrad++, which
matches the same regret guarantees with only 1 gradient query per round. The key improve-
ment is a careful deployment of the “surrogate optimization” technique, which broadcasts
global gradient information to all base learners while effectively handling bias. Addition-
ally, we extend our method to an anytime variant, eliminating the requirement of the time
horizon T in advance and preserving the same guarantees.

Technical Contributions. To achieve gradient-variation adaptivity, it is typical to first
establish regret guarantees with respect to the empirical gradient-variation quantity Vi =
S LIV fi(xt) = Vfio1(x:-1)||?, and then convert them to the desired Vi-type bounds (see
definition in Eq. (1.2)) by handling the additional positive terms. This requires carefully ex-
tracting proper positive terms and canceling them by leveraging negative terms in the regret
analysis and algorithm design comprehensively, as well as exploiting additional curvature-
induced negative terms in the exp-concave and strongly convex cases. Crucially, all these
considerations must be compatible with the online ensemble structure, which demands
careful design and, in some cases, surgical adjustments across meta-base layers. Below, we
discuss key techniques of each method (with further comparisons in Section 7), along with
UniGrad++ and the anytime variant.

e Techniques of UniGrad.Correct. The key challenge here is to handle the stability
term Y7, ||x; — x;_1||? in universal online learning. This requires the meta algorithm
to achieve an optimistic second-order regret while retaining a stability negative term in
the analysis. To this end, we employ a two-layer mirror-descent-based meta algorithm,
resulting in an overall three-layer online ensemble structure. We develop a cascaded
correction mechanism to cancel stability in this three-layer ensemble and design appro-
priate optimism to ensure adaptivity across all three function classes. Owing to this
explicit stability cancellation, UniGrad.Correct preserves the RVU (Regret bounded by
Variations in Utility) property, which is essential for achieving fast convergence in online
games (Syrgkanis et al., 2015).

e Techniques of UniGrad.Bregman. We employ a fundamentally different approach by
conducting a novel smoothness analysis of gradient variations. This enables handling
a positive term unrelated to stability, thereby bypassing the need for stability-induced
negative terms in the meta algorithm. Combined with a new Bregman-divergence neg-
ative term extracted from the linearization, the algorithm avoids stability arguments
entirely and employs a simple two-layer structure, achieving the optimal O(v/V7) regret
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for convex functions. This optimal universal rate directly yields optimal guarantees for
the stochastically extended adversarial (SEA) model (Chen et al., 2024).

e Techniques of UniGrad++4. To improve gradient query efficiency, instead of relying on
the multi-gradient information {V f;(x;;)}X.;, UniGrad-++ adopts surrogate optimization
by using only the global gradient V f;(x;) to construct different surrogate functions that
incorporate curvature information and then feed them into the meta and base updates.
Consequently, it is crucial to address the bias introduced by the surrogate function and
to handle the additional positive term arising from gradient variations with respect to
the surrogate functions.

e Techniques of Anytime variant. For the anytime variant, since the algorithm does
not know the time horizon T in advance, it is impossible to predefine the number of
base learners, which is originally set as O(logT"). Moreover, the doubling trick cannot be
employed in this case, as it would introduce poly(log T') regret degradations, thereby ruin-
ing the desired gradient-variation bounds for exp-concave and strongly convex functions.
We design a dynamic online ensemble framework where the number of base learners is
adjusted dynamically based on certain monitoring metrics.

Implication and Applications. We demonstrate the importance and generality of our
results through several implications and applications. (i) The obtained gradient-variation
regret bounds not only safeguard worst-case guarantees (van Erven and Koolen, 2016; Wang
et al., 2019) but also directly imply the small-loss bounds of Zhang et al. (2022a) and the
gradient-variance bounds of Hazan and Kale (2010) in analysis. () Gradient variation is
shown to play an essential role in the stochastically extended adversarial (SEA) model (Sachs
et al., 2022; Chen et al., 2024), an interpolation between stochastic and adversarial convex
optimization. Our approach positively resolves a major open problem left in Chen et al.
(2024) on whether it is possible to develop a single algorithm with universal guarantees
across strongly convex, exp-concave, and convex functions in the SEA model. (74) In game
theory, gradient variation captures changes in other players’ actions and facilitates fast con-
vergence to the Nash equilibrium with stability cancellation arguments (Rakhlin and Srid-
haran, 2013b; Syrgkanis et al., 2015; Zhang et al., 2022b), and we apply UniGrad.Correct
to two-player zero-sum games to illustrate its universality.

Comparison to Conference Version. This journal extension significantly improves
upon our earlier conference papers (Yan et al., 2023, 2024) in algorithm design, regret
analysis, presentation, and experimental evaluation. Specifically, while UniGrad.Correct still
employs a three-layer online ensemble to achieve the desired gradient-variation regret, the
initial algorithm of Yan et al. (2023) required maintaining O((logT)?) base learners. In
contrast, the new design reduces the number of base learners to O(logT), substantially
improving computational efficiency. This improvement is enabled by a sharper understand-
ing of the three-layer online ensemble, leading to a new construction of correction terms
injected into the meta algorithm’s feedback loss. More comparisons are discussed in Sec-
tion 7.2. Additionally, we develop an anytime variant of Yan et al. (2024) that eliminates
the need for T in advance, which is achieved through a novel dynamic online ensemble
framework that adjusts the number of base learners based on monitoring metrics. Lastly,
we have made substantial improvements to the presentation, introducing a more systematic
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and unified framework for the two methods and a modular structure for technical proofs.
We then present the one-gradient version, with the critical role of surrogate loss design high-
lighted. We also include additional implications and applications to broaden the scope and
significance of our methods and conduct empirical evaluation to validate their effectiveness.

Organization. In the following, we first formally state the problem setup and review a
general framework for universal online learning in Section 2. Next, we provide the main
technical results in Section 3 and Section 4, where two methods with universal gradient-
variation regret bounds are developed. Section 5 enhances the efficiency by ensuring only 1
gradient query per round. Then, we discuss the implications, applications, and extensions of
the obtained gradient-variation universal regret bounds in Section 6. Based on the technical
details and provided applications, Section 7 offers detailed discussions of the two methods
and the extension over the conference version. Section 8 reports the experiments. Finally,
Section 9 concludes the paper. All proofs and omitted details are deferred to appendices.

2. Problem Setup and Preliminaries

In this section, we introduce preliminaries, including the problem setup, assumptions, the
optimistic online mirror descent, and a general universal online learning framework.

Notations. We use ||-|| for ||-||2 by default. We represent the i-th out of d dimensions of the
bold vector v (or v) using the corresponding regular font v;, i.e., v (or v) = (v1,va,...,vq) "
|x|ly & VxTUx refers to the matrix norm for any x, where U is a positive semi-definite
matrix. For a strictly convex and differentiable function ¢ : X — R, the induced Bregman
divergence is defined as Dy (x,y) = ¥(x) — ¥ (y) — (V¥ (y),x —y). We use A4 to represent
a d-dimensional simplex and denote the i-th basis vector by e;. We adopt the asymptotic
notations a < b or a = O(b) to denote that there exists a constant C' < oo such that
a < Cb. We use the O(-)-notation to highlight the dependence on T" and Vi while treating
the iterated logarithmic factors as a constant following previous work (Adamskiy et al.,
2012; Luo and Schapire, 2015; Zhao et al., 2024).

2.1 Problem Setup

The protocol of online convex optimization (OCO) is as follows: at each round t € [T, the
learner will select a decision x; € X C R%, while the environment simultaneously chooses a
convex function f; : X — R. The learner then incurs a loss f;(x;) and observes the gradient
information of the online function f;(-). Following Zhao et al. (2024), the OCO setting can
be further refined based on the type of gradient information accessible to the learner:

(i) multi-gradient feedback: the learner can access multiple gradients of the online
function, that is, f;(-) at round ¢ € [T7;

(ii) one-gradient feedback: the learner can only access one gradient at the decision
point, that is, V f;(x¢) at round ¢ € [T]].

We will first address the multi-gradient feedback model (in Section 3 and Section 4) and
then improve our results to the more challenging one-gradient feedback model in Section 5.
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The goal of the online learner is to minimize the regret measure defined in Eq. (1.1).
It is now well-established that the regret rates differ significantly depending on the type
of online functions and their curvature coefficients. In fact, there are three main classes of
online functions: strongly convex, exponentially concave (abbreviated as exp-concave), and
convex functions. The formal definitions are as follows (with convex functions omitted).

Definition 1 (Strong Convexity). A function f(-) is A-strongly convex if f(x) — f(y) <
(Vf(x),x —y) — 3 - ||x — y||? holds for any x,y € X.

Definition 2 (Exp-Concavity). A function f(-) is a-exponentially concave (abbreviated as
exp-concave),' if f(x)— f(y) < (Vf(x),x—y)— 5 -(Vf(x),x—y)? holds for any x,y € X.

We refer to the —%-||x—y||? term in A-strongly convex functions and the —%-(V f(x), x—
y)? term in a-exp-concave functions as the curvature-induced negative terms, which play
a crucial role in achieving improved regret bounds compared to convex functions. For the
problem-independent regret bounds, it is known that the minimax rates are O(%log T),
O(glog T), and O(V/T) for A-strongly convex, a-exp-concave, and convex functions, re-
spectively (Ordentlich and Cover, 1998; Abernethy et al., 2008). For the more adaptive
gradient-variation regret bounds, it is known that different algorithms can be designed for
each class of functions to achieve the corresponding regret bounds: (9(% log V) regret for
A-strongly convex functions, (9(% log V1) regret for a-exp-concave functions, and O(y/Vr)
regret for convex functions (Chiang et al., 2012; Zhang et al., 2022a).

Universal Online Learning. As can be observed from the above discussions, the cur-
vature information is crucial for the regret rate (no matter for the problem-independent
or gradient-variation regret), and thus it is crucial for the online learner to choose the
correct algorithm with well-tuned parameters for each class of functions. However, this
clearly burdens the learner with the prior knowledge of the function type and the parame-
ter characterizing the curvature, hence prohibiting more applications in practice. Given this
background, universal online learning aims to design a single algorithm that can achieve
the optimal regret bound for all three classes of online functions simultaneously.
Mathematically, for a sequence of online functions {f;}/_; that may belong to one of the
three classes — F2 (for A-strongly convex functions), F< (for a-exp-concave functions), and
Fe (for convex functions), universal online learning algorithm A aims to attain the following
universal regret satisfying:
REGT(Ase, F2.), when {f;}]_; belongs to F2\

REGT(A, {fi},) < REGT(Aec, F2), when {f;}]_ belongs to F<, (2.1)
REGT (A, Fe),  when {f;}]_; belongs to Fe,

where Asc, Acc, Ac are the (optimal) algorithms designed for F2, F<, and F., respec-
tively. The corresponding regret bounds are denoted as REGT(Agc, F2), REGT(Aec, F2),

1. The formal definition of B-exp-concavity is that exp(—Bf(-)) is concave. Under Assumptions 1 and 2
(see Section 2.2), B-exp-concavity implies Definition 2 with a = 3 - min{1/(4GD), 8} (Hazan, 2016,
Lemma 4.3). For clarity and simplicity, we adopt Definition 2 as an alternative of exp-concavity.
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and REG7(A., Fc). For problem-independent regret, the respective rates are O(%log T),
O(% log T), and O(\/T), as achieved by Zhang et al. (2022a). Furthermore, when adapting
to gradient variations, the regret improves to (9(% log V), O(% log V), and O(\/Vr).

2.2 Assumptions and Optimistic Online Mirror Descent

In this subsection, we first present several standard assumptions commonly used in online
convex optimization, and then introduce the algorithmic framework of optimistic online
mirror descent (OOMD) (Chiang et al., 2012; Rakhlin and Sridharan, 2013a), which serves
not only the foundation of many (adaptive) online learning algorithms, but also the basis
of our proposed methods for universal online learning.

Assumption 1 (Domain Boundedness). For any x,y € X C R% the domain diameter
satisfies ||x —y|| < D.

Assumption 2 (Gradient Boundedness). For all ¢t € [T] and any x € X, the gradient norm
of the online functions is bounded as ||V f(x)|| < G.

Assumption 3 (Smoothness). For each ¢ € [T, the online function f;(-) is L-smooth, i.e.,
IV fi(x) = Vfi(y)|| < L||x — y|| holds for any x,y € R%.

The domain boundedness and gradient boundedness are standard assumptions for regret
minimization in OCO (Shalev-Shwartz, 2012; Hazan, 2016). The smoothness assumption on
the online functions is necessary for first-order algorithms to achieve the gradient-variation
regret (Chiang et al., 2012). While Assumption 3 requires the smoothness on the entire
R? space here, this assumption can be relaxed to different degrees for our two proposed
methods, which will be specified later.

Optimistic Online Mirror Descent. OOMD applies to the optimistic online learning
scenario, where in addition to the standard protocol of OCO, at round ¢ € [T, the learner
also has access to an optimistic estimation of the future loss’s gradient V f;(x;) denoted
by M; € R% which is called “optimistic vector” or simply “optimism”. Based on this
information, OOMD updates in the following way:

X; = arg Iﬁl{in {ne(My,x) + Dy, (%,X¢) },
xXE

i1 = angin {10V fi(x),%) + Doy (x,%0) =2
xeX
where 1 (+) is a regularizer to be specified, 7; > 0 is a time-varying step size, X; is an internal
decision. This framework is highly generic and can recover many existing online learning al-
gorithms through flexible configurations (Zhao et al., 2024). A notable fact is that OOMD
can achieve an O(y/Ar) adaptive bound for convex functions under standard bounded
domain and gradient assumptions, where A 2 "L |V fi(x;) — M;||* (Rakhlin and Srid-
haran, 2013a). Essentially, this design represents how to capture the intrinsic/desired adap-
tivity in the online learning process: when the optimistic vector M; accurately predicts the
actual gradient V fi(x;), the quantity Ay becomes small, leading to improved regret.
Focusing on the gradient-variation regret and the case of known curvature information,
we have the following results. For convex functions, setting the optimism as the last-round
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gradient (i.e., M; = Vf,_1(x;—1)) and the Euclidean regularizer ¢;(x) = %[x|3, OOMD
recovers the well-known Optimistic Online Gradient Descent (OOGD) (Chiang et al., 2012):

xp =y [X — M), Ry = Ty [Re — eV fi(x4)] (2.3)

where [y[x] £ arg mingcy [[x — yll2 is the Euclidean projection onto the feasible domain

X. Under standard assumptions, setting the step size as 1y = min{D/\/1 + V;_1,1/(2L)},
where V; £ S0 [V fs(xs) — Vfs_1(x5-1)||?, OOGD enjoys an O(y/V7) gradient-variation
regret bound, which is provably optimal (Chiang et al., 2012).

For A-strongly convex functions, using the OOGD algorithm with M; = Vfi_1(x¢—1)
and 7, = 2/At, we can obtain an O(3logVr) gradient-variation regret bound (Chiang
et al., 2012; Zhang et al., 2022a).

For a-exp-concave functions, setting the optimism as the last-round gradient (i.e.,
M; = Vfi_1(x4—1)) and using the regularizer ¢y(x) = 3||x||, with U; = I + O‘TGQI +
g ’;;11 V fs(xs)V fs(x5)T, OOMD recovers the Optimistic Online Newton Step (OONS)
algorithm (Yang et al., 2014):

x; = argmin ||x — (X; — Ut_lMt)H?]ta X¢41 = argmin ||x — (X — Ut_IVft(xt))H?]t. (2.4)
xeX xeX

OONS achieves an O(g log V) gradient-variation regret bound (Yang et al., 2014).

2.3 A General Framework for Universal Online Learning

As presented in Section 2.2, while the same algorithmic template (OOMD) can be used
to achieve gradient-variation regret bounds across different function classes, the specific
configurations such as step size tuning and regularization are vastly different. This requires
the online learner to select the “correct” algorithm and configuration to ensure the favorable
guarantees. Universal online learning seeks to eliminate this burden by designing a single
algorithm that does not require prior knowledge of the function type or curvature, yet still
achieves the same regret bounds as if this information were known.

Now we will review a general framework for universal online learning and the key insight
of Zhang et al. (2022a), which achieves the minimax optimal regret bounds of O(5 logT)
for A-strongly convex, O(g log T') for a-exp-concave, and O(v/T) for convex functions. We
will also discuss the challenges of adapting this framework to the gradient-variation regret.

Online Ensemble for Universal Online Learning. The fundamental challenge in uni-
versal online learning lies in the uncertainty of the function type and curvature parameters.
A common wisdom is to employ an online ensemble with a meta-base two-layer structure,
where multiple diverse base learners are deployed to explore the environment and a meta
algorithm runs on top to dynamically track the best-performing base learner (van Erven
and Koolen, 2016; van Erven et al., 2021; Zhang et al., 2022a; Yan et al., 2023, 2024).
Without loss of generality, we can focus on the case where parameters o, A € [1/T,1]. If
a, A < 1/T, even the optimal minimax results—(’)(g logT') for exp-concave functions and
O(5 logT) for strongly convex functions (Hazan et al., 2007)—become linear in T, making
the regret bounds vacuous. Conversely, if a, A > 1, they can be treated as o, A = 1, which
only worsens the regret by an ignorable constant factor.

10



ADAPTIVITY AND UNIVERSALITY: PROBLEM-DEPENDENT UNIVERSAL REGRET FOR OCO

For the non-degenerated case of a, A € [1/T, 1], we can discretize the unknown « and A
into a candidate pool H**P and H*® using an exponential grid, defined as

1 2 22 on—1
T’T’T’ ) T b

HOP = e & { (2.5)

where n = [logy T'] + 1 = O(log T') is the number of candidates. It can be proved that the
discretized candidate pool H®*P and H*¢ can approximate the continuous value of a and A
with only constant errors. Based on the pool, it is natural to design three distinct groups
of base learners, each tailored to handle different curvature properties:

(i) strongly conver base learners {B;}icin,): |H*| = n in total. Each base learner B;
runs the algorithm for strongly convex functions with a guess A; € H®¢ of the true A;

(i) exp-concave base learners {B;" }icin,,,: [H®P| = n in total. Each base learner B;
runs the algorithm for exp-concave functions with a guess a; € H®P of the true «;

(iii) convez base learners B: only 1 base learner running an algorithm for convex functions.

In total, there are N = 1+ |H®P| +|H*| = 2n+ 1 = O(log T base learners. The best base
learner is the one with the right guess of the curvature type and the closest guess of the
curvature coefficient. For example, suppose the online functions are a-exp-concave (while
this is unknown to the online learner), then the right guessed coefficient of the best base
learner (indexed by i*) satisfies ajx < o < 20+

In addition, there is a meta algorithm running on top of those base learners. At the ¢t-th
round, we denote by x;; the decision generated by the i-th base learner, for i € [N]. The
meta learner will produce the weight vector p; = (pt.1,pr2, - - - ,thV)T € Apn to combine the
base learners adaptively. The final decision is formed as x; = Zﬁil Dt,iXt,i-

The key idea of Zhang et al. (2022a). The online ensemble framework offers a general
recipe for constructing a universal online learning algorithm, but the specific designs for base
learners and, more critically, the meta algorithm remain undefined. The key innovation
of Zhang et al. (2022a) lies in the design of the meta algorithm. Their approach starts from
the regret decomposition of the two-layer algorithm:

T

T
> felxii) — xmelﬁ Y Hx)|, (2.6)
t=1

t=1

T T
REGT = Z ft(xt) - Z ft(xt,i*) +
t=1 t=1

where the meta regret (first term) evaluates how well the algorithm tracks the best base
learner, and the base regret (second term) measures the performance of this base learner.
The best base learner is the one that runs the algorithm matching the ground-truth function
type with the most accurate guess of the curvature. Zhang et al. (2022a) insightfully
observe that ensuring the second-order regret for the meta algorithm is pivotal for achieving
universality. Specifically, the meta algorithm should satisfy:

T T

T T
D AVI(Xe), %t = Xpir) = Y (D, ) = Y by =D 11 <O (
t=1 =1

t=1 t=1
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where the feedback loss is defined as ¢ ; 2 (Vfi(xy), xti), and hence r; = (V fi(x¢), x¢—X¢ 4)
represents the instantaneous regret for the meta algorithm for ¢ € [INV]. This condition can

be satisfied by advanced prediction-with-expert-advice (PEA) algorithms, such as Adapt-
ML-Prod (Gaillard et al., 2014).

By combining this condition with the curvature-induced negative terms, Zhang et al.
(2022a) demonstrate that the meta regret can be bounded by a constant O(1) for exp-
concave and strongly convex functions, while ensuring O(\/T ) for convex functions. Taking
a-exp-concave functions as an example, by definition, the meta regret can be bounded as

T T T T
(0] (0]
META-REG <) 1y — = D 170 S 4| D120 — = D i < O(1 2.8
> o Tt 9 — Trixr S P Tt,z 9 P Ttir S ( )7 ( )

where the first inequality follows from the property of exp-concave functions (Definition 2),
and the second step holds by the second-order regret (2.7) of the meta algorithm. The
last inequality is by the AM-GM inequality (Lemma 18). A similar derivation applies to
strongly convex functions. Eq. (2.7) illuminates the importance of both the second-order
regret of the meta algorithm and the curvature-induced negative terms in universal online
learning. Meanwhile, for the convex case, the second-order regret in Eq. (2.7) still ensures
an O(VT) meta regret.

Therefore, with the meta algorithm achieving the second-order regret bound, Zhang
et al. (2022a) further employ base learners that directly optimize the base regret: using
ONS for exp-concave functions leads to an O(glog T) base regret; using OGD with an
appropriate step size for A-strongly convex functions yields an O(% log T') base regret; and
using OGD with a proper step size for convex functions results in an O(v/T) base regret.
Combining these base regret bounds with the corresponding meta regret bounds (i.e., O(1)
for exp-concave and strongly convex functions, and O(v/T) for convex functions) yields the
desired minimax optimal guarantees for universal online learning.

Challenges for Gradient-Variation Regret. The meta regret of Zhang et al. (2022a)
is O(1) for strongly convex and exp-concave functions, and O(v/T) for convex functions.
As a consequence, for gradient-variation regret, one can choose base learners with gradient-
variation bounds (Chiang et al., 2012) to achieve final regret bounds of O(3 logVr) for
A-strongly convex functions and O(g log V) for a-exp-concave functions. However, for the
convex case, since the meta regret is O(v/T), it will dominate the final regret even if the
base regret can be improved to O(y/V7), resulting in an unfavorable O(v/T) overall regret
for convex functions that is problem-independent. In the following two sections, we will
present novel methods building upon Zhang et al. (2022a) to fix the issue and achieve the
desired universal gradient-variation regret across all the three function families.

3. Method I: Online Ensemble with Injected Corrections

This section introduces our first method, UniGrad.Correct, which achieves universal gradient-
variation regret bounds for strongly convex, exp-concave, and convex functions.

12
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3.1 Requirement on Meta Algorithm

As discussed in Section 2.3, the main challenge for the existing universal online learning
method (Zhang et al., 2022a) in achieving gradient-variation regret is the O(v/T) meta
regret in the convex case. Therefore, in this subsection, we first analyze the requirements
for the meta algorithm and address them in the following subsections.

To achieve adaptivity, we build upon the optimistic online ensemble framework (Zhao
et al., 2024), in which it is crucial to introduce the optimistic update in the meta algorithm.
Essentially, the meta algorithm is solving the problem of Prediction with Expert Advice
(PEA) involving N experts over T rounds. At each round ¢ € [T], in addition to the
feedback loss £; € [0,1]" from the environment, optimistic online learning also receives an
optimistic vector (also called optimism), denoted by my; € RY, that encodes predictable
future information. Using this hint, the learner updates the weight vector p;+1 € Ay to
minimize cumulative regret: 3L, (€, p;) — min, ey SE b

As shown in the analysis surrounding Eqs. (2.7)—(2.8), the second-order regret of the
meta algorithm is crucial for ensuring universality across different function families. To
enjoy gradient-variation adaptivity in the convex case, it is necessary to further incorporate
the optimistic update in the meta algorithm. An example of such an algorithm is the
Optimistic-Adapt-ML-Prod algorithm (Wei et al., 2016), which can be viewed as an optimistic
variant of Adapt-ML-Prod (Gaillard et al., 2014) used in (Zhang et al., 2022a). While we
do not present algorithmic details here, we give its optimistic second-order regret bound in
the following form:

T T T 9
Z<£t:pt> =D b <O Z (Tt,i* - mt,i*) ) (3.1)
1

t=1 t= t=1

where 7, = (€, pr) — L = (V fi(xt), Xt — X¢,3) is the instantaneous regret of the i-th base
learner, since we set the feedback loss as £;; = (V fi(x¢),%¢;) in the meta update. We are
now in a position to design an optimistic vector m; € RY to attain a favorable meta regret,
particularly to avoid the (’)(\/T) meta regret in the convex case.

Indeed, to achieve gradient-variation adaptivity with Vp 2 S°F, supyecy [|[Vfi(x) —
Vfi—1(x)||?, a common approach in the literature (Chiang et al., 2012; Zhao et al., 2024)
is to first obtain an upper bound related to empirical gradient variations, defined as Vp £
SE LIV fi(xt) = Vfio1(x¢-1)||?, and then account for the additional positive term intro-
duced by the smoothness of the online functions (Assumption 3). In fact, we can relax
the assumption to the following one, which only requires the smoothness over the feasible
domain X rather than the entire space R,

Assumption 4 (Smoothness over X'). For each ¢ € [T], the online function f;() is L-
smooth, i.e., ||V fi(x) = Vfi(y)|| < L||x — y|| holds for any x,y € X.

We then have the following decomposition of the empirical gradient variation.

13
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Lemma 1 (Empirical Gradient Variation Conversion). Under Assumption 4, the empirical
gradient variation can be upper bounded as follows:

T T
Vp <23 IV filxe) = Vr(x)1? + 2 IV fio1(xe) = V fro1(xe-1) |1

t=2 t=2

- . (3.2)
<2 supyer [VA(x) = Vit (012 + 2023 s — x|

t=2 t=2

As a result, we can achieve the favorable Vp-type meta regret by eliminating the positive
stability term of the final decisions, i.e., ||x; — x;,_1||*. Following the analysis in previous
work (Zhao et al., 2024), it can be observed that the final decision x; = Zf\il DtiX¢; admits
a meta-base ensemble update, leading to the following decomposition:

N

Ix¢ = xe—1]]* S lpe — pe—1llf + D prillxes — Xe—1
=1

2 (3.3)

where the first part is the meta learner’s stability, and the second one is a weighted version
of the base learners’ stability. The proof is provided in Lemma 10. For now, we focus on the
meta stability term, ||p; — p;—1]|3, which typically requires the meta algorithm to contribute
a negative regret of the same form to cancel it out, as pioneered in (Zhao et al., 2020) and
further developed in the follow-up works (Zhao et al., 2024; Zhang et al., 2022b).

Now the requirements for the meta algorithm are clear: it must not only ensure a regret
upper bound with a negative stability term, but also provide a concrete optimism that
attains the empirical gradient variation across different function types. Specifically,

(i) Regret Bound: The meta algorithm needs to ensure the following optimistic second-
order meta regret bound with negative stability terms:

t=1 t=1

T T , T
> lpr—eir) <O (Tt,i* - mt,i*) Y e —pal? ], (3.4)
=2

or other similar formulations.

(i1) Optimism Design: The meta algorithm needs a concrete and feasible design for the
optimism m; € RY that can effectively unify various function types to achieve the
desired Vp-type (empirical gradient variation) bound.

Based on the above, we briefly clarify our choice of meta algorithm. The meta algo-
rithm should achieve an optimistic second-order regret bound while preserving the negative
stability terms as shown in Eq. (3.4). For this purpose, instead of using the Prod-type
update like Optimistic-Adapt-ML-Prod, we focus on the mirror-descent-type update, which
is well-studied and proven to enjoy negative stability terms in analysis. To the best of our
knowledge, the only one satisfying both requirements so far is the Multi-scale Multiplicative-
weight with Correction (MsMwC) proposed by Chen et al. (2021), which updates as follows:

pr = argmin {(my,p) + Dy, (P, Pt)}, Prp1 = argmin {(€ + by, p) + Dy, (P, D)}, (3.5)
PEA, PEA,
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where 1 (p) = ZZ 1 6t2 pilogp; is the weighted negative entropy regularizer with time-
coordinate-varying learning rate €;;, m; is the optimism, £; is the loss vector, and b; is a
bias term, which is key to solving the “impossible tuning” issue (Chen et al., 2021).

Next, we analyze the negative terms in MsMwC, which are omitted by the authors in
their analysis and turn out to be crucial for our purpose. In Lemma 2 below, we extend
Lemma 1 of Chen et al. (2021) by explicitly exhibiting the negative terms in MsMwC. The
proof is deferred to Appendix A.1.

Lemma 2 (MsMwC Regret). If maxic(r)ic(qillel, |meil} <1 ande; <1/32, then MsMwC
in Eq. (3.5) with time-invariant step sizes (i.e., e1; = &; for any t € [T])* and bias term
by = 16e4(€y; — mt,i)2 enjoys:

T

d ~
b1,
Z<£t7pt th i* S 7log Z 822&]&1 gtz my z)
=1 t=1 g DLir I G t=1i=1
T T
+16€i* Z(gt’i* —_ mm-*)Q — 42 ”pt — pt—l”%'
t=1 t=2

With proper step size tuning, Lemma 2 derives an optimistic second-order regret bound
with negative stability terms, i.e., 6(\/2?:1(@,1'* — )2 = S e — pt,lH%), which is

much closer to the desired one in Eq. (3.4), where O(-)-notation omits poly(log T) factors.
Nonetheless, there are two caveats.

(i) The second-order bound of MsMwC is based on (¢;;+ — my;+)?, which differs from
(1« —me+)? in Eq. (3.4) and is in fact stronger. To see this, note that the OMD
update of Chen et al. (2021) in Eq. (3.5) enjoys a shifting-invariant property, meaning
that adding a constant to all entries of the loss vector does not change the update of
pt. Therefore, we can define my; = (V fi(x¢), x¢) —my; for any i € [d] as the optimism
in MsMwC. With this choice, (¢ — 1t +)? = (r1i+ — me )%, while the update of p;
remains unchanged. In other words, even when using the original optimism my ;, the
algorithm still enjoys the second-order regret bound scaling with (ry« — my i« ).

(i) The aforementioned bound of MsMwC omits poly(logT') factors. Unfortunately, this
makes it infeasible for the strongly convex or exp-concave cases, since the target rate
is O(log V), and an O(1) = O(logT) meta regret would ruin the desired gradient-
variation adaptivity.

In Section 3.2, we design optimism compatible with various function types, where the
shift-invariant property plays a key role. We then introduce a new meta algorithm in Sec-
tion 3.3, which builds on MsMwC and further consists of a two-layer structure to eliminate
the additional O(logT') factor in the meta regret. Finally, in Section 3.4, we combine these
components to present the overall algorithm and its regret guarantees.

3.2 Optimistic Second-Order Meta Regret: A Universal Optimism Design

In the following, we will demonstrate that designing an optimism my; to effectively unify
various function types with the desired adaptivity is non-trivial, necessitating novel ideas.

2. We only focus on the proof with fixed learning rate, since it is sufficient for our analysis.
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A First Attempt on Optimism Design. Examining the optimistic second-order regret
bound of the meta algorithm in Eq. (3.1) and the analysis around Eq. (2.8), it is known that
the meta regret for base learners associated with exp-concave and strongly convex functions
(i.e., i € [Ns] and i € [Nexp), respectively) is bounded by a constant. Therefore, a natural
choice for the optimism m; € RY is:

my; = (Vo1 (x¢—1),xi—1 — X¢3) for i € [N], and my; = 0 for i € [Nexp| U [Ne]2 (3.6)

This essentially keeps the optimism for exp-concave and strongly convex base learners to
zero, while approximating the instantaneous regret r; = (V fi(x¢), x; — x¢4) for the convex
base learner as closely as possible using the last-round decision x;_; and the latest base
decisions {Xt,i}z‘e[ ~]- However, for the non-zero entries, it becomes challenging to quantify
the upper bound of the term (r; —me;)? = ((V fo(xt), Xt —Xt) — (V fro1(X¢—1), Xt—1— X))
due to a mismatch in indices.

To tackle this challenge, inspired by the literature (Wei et al., 2016; Chen et al., 2021),
one possibility is to make the optimism slightly “lookahead”, leveraging the shift-invariant
property of MsMwC. Specifically, we can set the optimism vector m; € RY as:

mg; = <Vft,1(Xt,1),Xt — Xt,i>7 Vi € [N] (37)

Although x; is unknown when defining my ;, all entries of m; share the same unknown value
(V fi—1(x¢—1), x¢), making it equivalent to using m¢; = (V fi—1(x¢—1),%¢,) for i € [N], and
the OMD-type update remains unchanged. Under the optimism in Eq. (3.7), the second-
order optimistic quantity in the meta regret can be bounded as follows:

l[x¢ — g0, (strongly convex)
(reix — mt,i*)2 SV fe(xe) = Vo1 (xe-1), X — Xt,i*>2, (exp-concave)
IV fi(xt) = V froa (xi-) |1 (convex)

This works well for the convex case, since it yields a Vp-type bound that can be converted
into the desired Vp bound by addressing the additional positive term later (see Lemma 1). It
also works for the strongly convex case, where the upper bound is canceled by the curvature-
induced negative term — ||x; — x4+ ||® from strong convexity (see Definition 1). However,
this design (3.7) would fail for exp-concave base learners, because the curvature-induced
negative term —(V f;(x;), % — X¢,+)? from exp-concavity (see Definition 2) cannot cancel
the positive term (V fi(x¢) — V fr_1(x¢—1), Xt — X¢,+)? in the meta regret due to a mismatch.

Our Unifying Optimism Design. To unify various types of functions, we propose a
simple optimism design: set the optimism as the last-round instantaneous regret, i.e.,

my; =11 = (Vo1 (Xem1), Xe—1 — Xe), Vi € [N]. (3.8)

Unlike the “lookahead” design in (3.7), we simply use the last-round information. The key
idea is that, although the resulting optimistic second-order regret bound in (3.1) cannot be

3. In Section 3.2 and Section 3.3, we ignore the requirement of max;c(r),icia{|¢s,i|, M|} < 1 only for
clarity. When presenting the final and formal setups of the losses and optimisms of the meta algorithm
in Section 3.4, we will ensure that this requirement is satisfied using normalization.
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perfectly canceled by the exp-concavity-induced negative term (i.e., —rf’i*) on each round,
it becomes manageable when aggregated over the entire horizon:

T

T T
3.8
Z(Tt,i* - mt,i*)2 () Z(Tt,i* - thl,i*)Z S 42 T?,i*- (3.9)
t=1 t=1

t=1

This holds because 7 ;+ and r;_1 ;= differ only by one step, making the cumulative sum easier
to control than the individual terms. Lemma 3 shows that this design achieves universality,
in particular resolving the failure in the exp-concave case.

Lemma 3 (Universality of Optimism). Under Assumption 1-3, when setting the optimism
as in Eq. (3.8), it holds that

Z l|lx¢ — x4+ 1%, (strongly convezx)
T T
Z (ree — my)? < Z(vft(xt) X¢ — X0)7, (exp-concave)
t=1 =

T

Z IV fe(xe) — V oo (xe—1) |2 (convex)

t=2

The proof is in Appendix A.2. For strongly convex and exp-concave learners, the meta
regret is effectively canceled by curvature-induced negative terms, following the same anal-
ysis as in Zhang et al. (2022a) (see Eq. (2.8)). For the convex case, we achieve a Vp-type
bound scaling with the empirical gradient variation. As shown in Lemma 1, this can be
further reduced to the desired O(y/Vr) meta regret by addressing the extra positive stability
term of the final decisions, i.e., ||x; — x;—1 HQ, which will be discussed in the next subsection.

3.3 A New Meta Algorithm: Negative Regret Terms and Injected Corrections

In this part, we present the complete meta algorithm design for this problem. To motivate
this, we recall that the meta algorithm is required to ensure an optimistic second-order
regret bound with negative stability terms as in Eq. (3.4). MsMwC (Chen et al., 2021) is
the only known algorithm satisfying both requirements, but its regret bound contains an
additional poly(log T") factor, making it infeasible for strongly convex or exp-concave cases.

To address this issue, we design a new meta algorithm termed MoM (MsMwC-over-
MsMwC), which itself is a two-layer algorithm using MsMwC as both meta and base learners.
The key insight is that the logT factor arises from the multi-scale regularizer with time-
varying learning rates. While this regularizer is crucial for resolving the “impossible tuning”
issue addressed in their paper, it introduces undesired poly(log T') factors due to the clipping
issue, which is intolerable for our setting. To overcome this, our proposed MoM meta
algorithm uses MsMwC with time-invariant learning rates as a base learner, maintaining
multiple base learners with different candidate learning rates and dynamically searching
for a suitable one to achieve adaptivity. This approach effectively replaces the additional
O(log T) factors with O(log 3", (£t.i+ — meix)?), a tolerable overhead introduced by the two-
layer structure, making it possible to achieve the desired O(log V) regret for strongly convex
and exp-concave cases.
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Algorithm 1 MsMwC-over-MsMwC (MoM): Meta algorithm of UniGrad.Correct
Input: Time horizon T, hyperparameter Cy
1: Initialize:

¢ MoM-Top with learning rates ¢; " = ;" = L [T] and initial decision
(ETOP)Q
TOP __ ~TOP __ for i € [M
q1; =415 Zjul( Tor)2 J € [M]
¢ MoM-Mid with learning rates &)} = 2¢7°" for all ¢ € [T] and initial decision

MID ~MID __ 1 .
ql,]z ql,]ziﬁ fori € [N]

o Number of MoM-Mid’s M = [log, T'|, number of base learners N = 2[log, T'] + 1
2: fort=1to T do

3:  Compute the aggregated weight for the next round: p; = Z] 1915 at € AN

4: Forall j € [M], the j-th MoM-Mid updates to ¢;\} ; € An using by} = 16} (65 —
MID

my )2 via the following rule:

Qi1 = argmin (6 + 6.0) + Dy (a.6157)

A

MID o MID ~MID (310)

q; 1, = argmin {<mt+1,j7 q) + Dz/;MID ((L q; 11 j)}
qeAN
5. MoM-Top updates to g; ] € Ay using b;§" = 16657 (45" — mt“;‘))2 via;
g/} = argmin {(EtTOP + b, q) + Dyror (q, qgop)} )
actu (3.11)

g2l = argmin { (m[9}, q) + Dyor (a0, G50 } -

1 [SANYS

6: end for

Meta Algorithm. MoM updates in the following way. The first layer runs a single
MsMwC (marked as MoM-Top) on Ajs, whose decision is denoted by ¢f°" € Ays. It fol-
lows the general update rule of (3.5) with its own losses {£;°"}]_,, optimisms {m[°"}L ,,
bias terms {b7°?}_;, and learning rates Hel§ e MAE 1 The weighted negative entropy
regularizer ¢/ is defined as ¢¥{°"(q) = ;‘4 l(etT(])P) gjlogg;. MoM-Top further con-
nects with M MsMwCs (marked as MoM-Mid) in the second layer. The decision of the
J-th MoM-Mid is denoted by g;'}” € Ay, which is updated via the same update rule as
in (3.5) with its own losses {EMID}t 1, optimisms {mMID}t 1, bias terms {me}t 1, and
learning rates {{e}'}, }Z 1}t 1- The weighted negative entropy regularizer ¢;";" is defined as

i (q) = >N 1(6%2) ¢i log ¢;. The final output of MoM at the ¢-th iteration is:

ZqTOP I\:IID ) (3.12)

The details of the two-layer meta algorithm MoM are described in Algorithm 1.
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Building on Lemma 2, we provide an analysis for the two-layer meta learner MoM, which
largely follows Theorems 4 and 5 of Chen et al. (2021), but includes additional negative
stability terms. The proof is deferred to Appendix A.3.

Lemma 4 (Two-layer MoM). If [€77],[mfS7], [65], Imyh] < 1 and (679" — mi9")? =

(e — m%gD,q?gDV for any t € [T], j € [M], and i € [N], MoM (Algorithm 1) satisfies

d TOP _ TOP d MID  MID 1 N TOP Co TOP Co MID
D a4/ e )+ (G at—eir) < <o log 3CR(eTT) TN Vem g STy AT
t=1 t=1 J* J*

where the terms are defined as follows:
e ViYL YR e —mR )2 s the second-order quantity;
o STOP 2 ST N1gro" — ¢} |13 measures the stability of MoM-Top;

o SY7 = lgs” — @™ ;|17 measures the stability of MoM-Mid.

We highlight several important points regarding this result. First, following Chen et al.
(2021), we choose M = O(logT) instances of MoM-Mid to ensure a second-order regret
guarantee of O(y/V,1logV,) (Theorem 5 therein). Second, following Lemma 3, we set
mi‘f}?,i = (Vfu(xt), x¢) = (V fr—1(x¢—1), Xt—1 —X4—1,;) to unify various function types. Finally,
we note that the condition (£;5" — mE?P)2 = (G0 — mylP, qtl”fjl»D>2 in Lemma 4 is only to
make the lemma self-contained. When using Lemma 4 (more specifically, in Theorem 3),

we will verify that this condition is inherently satisfied by our algorithm.

Injected Corrections. Note that from Lemma 4, the two-layer MoM already consists of
negative terms of ||g/°" — g/} |7 and ||g}"}” —q}"} ;||7. However, observing the decomposition
in Eq. (3.3), we can see that those negative terms still mismatch with the positive term
lpt — pi—1|3, where p;; = Zj]\il g5 qr'5 as shown in Eq. (3.12). To solve this issue, we

decompose the stability term ||p; — p;_1]|? into two parts (with proof in Lemma 11):

2. (3.13)

M
It — pe—1llf < 20af" — ¢ T 1T+ 2> ' lla” — ¢™
j=1

The first term on the right-hand side, ||gf°" — q/°}||?, can be directly canceled by the
corresponding negative term in the analysis of MoM, as shown in Lemma 4. However, the

second term, ij\il a5 gt — @t |2, cannot be canceled in the same way as the negative
term ||q;" — q;"% ;|If in Lemma 4 does not align with it. This mismatch presents a key

challenge in the analysis. To address this issue, we draw inspiration from the work of Zhao
et al. (2024) on the gradient-variation dynamic regret in non-stationary online learning,* and
introduce carefully designed correction terms to facilitate effective collaboration between
layers, such that the second term in Eq. (3.13) can be canceled under the universal online
learning scenario. This adaptation exhibits more challenges due to the more complicated
structure of the employed meta algorithm.

4. This work proposes an improved dynamic regret minimization algorithm compared to its conference
version (Zhao et al., 2020), which introduces the correction terms to the meta-base online ensemble
structure and thus improves the gradient query complexity from O(logT') to 1 within each round.
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To see how the correction works, consider a simpler PEA problem with regret >, (€;, g —
e;+). If we instead optimize the corrected loss €; + ¢; and obtain a regret bound of Ry,
ie., >, (€ + ct,q. — ejx) < Ry, then moving the correction terms to the right-hand side,
the original regret is at most >-, (€, qr — €jx) < Ry — 32,325 qrjctj + o4 ¢t j+, where the
correction-induced negative term — 3, > ;G jctj can be used for cancellation. Meanwhile,
the algorithm is required to handle an extra term of ), ¢; j~, which only relies on the j*-th
dimension and is thus relatively easier to control within that dimension (or called expert).

To see how the correction scheme works in our case, we can inject the correction terms
into the loss of MoM-Top as:

19 = (6, ) + 4O g — g 13,

mg“cy)l:’ — < IVHD7 q}‘/\/[;D> + /_YTOPHqI\IID _ qivﬂfl)’]Hl? (314)
where y7°" > 0 is the coefficient of corrections, which will be specified later. This correction

setup is analogous to ¢; j = ™" [|g}}° — g} ,||7 in the simplified example above. As a result,

by choosing the correction coefficient appropriately, we can ensure that the correction-
induced negative term — > ¢;5" [lg";” — @7 ; |3 can be used for cancellation. Moreover, as
shown above, the correction introduces a positive term (the cost of corrections) ¢ j«, which
equals 7" g";? — q;1f .||? in our case. Note that this cost of corrections can be perfectly
handled by the intrinsic negative terms in the analysis of MoM, as given in Lemma 4. We
further note that the construction of the loss and optimism in (3.14) satisfies the requirement
(79" —mf9")? = (4" — m)P, ¢}"'")? in Lemma 4, which is crucial for the correctness of
the regret analysis.

Finally, to conclude, given a PEA problem with regret Y ,(¢;, p; — e;x), by leveraging

MoM (Algorithm 1) along with corrected losses in Eq. (3.14), it holds that

™=

T T
(Le.pr — eir) =D (L,pr — @) + > (b, q" — ep)
=1 =1

I
=

t

T M
TOP TOP MID MID TOP TOP MID MID TOP MID
(€:°F, " — ej +Z —eix) =7 qu Qt,g —q;_ 1;H1+’Y
t=1 t=1j=1

M
VVilogVi — ZIIqTOP VT =" @ e — @t
t=1j=1

I
M=

-
I

IN IN
G a
o A —

NaT A —pt_luf) ,
t=1

where V, £ Y7 o( MR e — mp2 )% is the second-order quantity, the second step sets
£"" = ¢, and uses the definition of correction terms in Eq. (3.14), the third step leverages

Lemma 4, and the last step is due to Eq. (3.13). This nearly matches our goal in Eq. (3.4),
up to a logarithmic regret overhead in the second-order optimistic term.

3.4 Overall Algorithm and Regret Guarantee

The meta algorithm proposed in Section 3.3 is able to achieve a second-order regret bound
of O(v/Vilog V) with negative stability terms of ||p; — p;—1]/?. Recall that we still need to
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Positive Term: ||x; — x;—1]

MsMwC-Top f \. \ \

TOP TOP MID MID TOP MID
lai®" - q;° 1H1+qu Plg) — g™ 1]H1+Zq th], lxe.i — xe—1.41?
canceled by negative terms canceled by corrections canceled by corrections
| I
MsMwC-Mid l (correction costs) l > Meta Learner
MID MID MID 2
||‘1 i i Xi—1,i
canceled by negative terms canceled by corrections j
|

(correction costs)

2
HXt,i* — Xt—1,i* Base Learners

canceled by negative terms

Figure 1: Decomposition of the positive term ||x; — x;_1||? and how it is handled by our online
ensemble method via intrinsic negative stability terms and injected corrections.

handle N | pyillxe; — X¢—1.4]|> as shown in the second term of Eq. (3.3). To this end, we
provide a further decomposition of this quantity:

i X—lF =) Z a3 @ | e — xe—1a))?
=1 =1 (3.15)

N M M N
= > > ary dhgallxes — xe-1l* =D ai§" Y adillxes —xe-val®,
j=1 i=1

i=1j=1

where the first equality exploits the two-layer structure of the meta algorithm for computing
pei in Eq. (3.12). Thus, we obtain the following decomposition of the overall algorithmic
stability ||x; — x;_1]|?.

Lemma 5. For any t > 2, if x; = valpt,ixtyi e X and p; = ZJ 195 at” € An, where
q;°" € Ay and q;"}° € Ay for any j € [M], then it holds that

I —x¢—1* < 4D?||q{ "~ th°{’!!1+4D2Zqtop\\qt“,‘}D—qFI?jlllJr?ZqTOPth“f}?HXt,i—Xt—LiIP-
Jj=1 i=

The proof can be directly derived by combining Lemma 10, Eq. (3.13), and Eq. (3.15).
It is worth noting that this decomposition differs from the one presented in our conference
version (Yan et al., 2023). The specific differences and key improvements will be discussed
at the end of this section.

Based on Lemma 5, we leverage the idea of cancellation by corrections (Zhao et al.,
2024), as already employed in the last subsection. Generally, to handle weighted terms like
>, 45" ctj, we inject correction terms into the loss of MoM-Top as (75" < (7" + ¢t j. Here

i
J
the correction term ¢; ; is designed with two components:

K Xt—l,iH27

N
oy a1 = a1+ 0
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allowing us to cancel both the second and third terms in Lemma 5 simultaneously, rather
than relying on a single correction as in Eq. (3.14). Thus, the final feedback loss and
optimism of MoM-Top are set using two corrections:

1 ’ N
i =7 << 1) A N — @t I D e — Xt—qu> € [=1,1],
1=1

N
) ) / y / 2
myg = ((mﬁm’j @)+ = @™ I+ D" ke — x| € [-1,1],
i=1

(3.16)
where yTOF AMP > () are the correction coefficients and Z > 0 is a to-be-determined nor-
malization factor to ensure that both the feedback loss and the optimism in Eq. (3.16) lie
n [—1,1]. Note that when injecting a correction into the loss, the same correction must be
applied to the optimism. This is because the second-order bound depends on the difference
between the loss and the optimism, i.e., £{$" —m;$". Therefore, this preserves the regret
guarantees while incorporating corrections.

Recall that the correction scheme comes with a cost. Specifically, when we use the
corrections in Eq. (3.16), we need to handle the extra term of /™™ "N | e i 1%t — xi 14|
for some specific but unknown j* € [M] in the analysis. To this end, we inject the correction
term into the loss of every MoM-Mid as KthDZ — E%IDZ + ct4, where ¢ = YMP||xp; — Xp—1.4]%
To conclude, the final losses and optimisms of MoM-Mid are:

, 1 ,
15 = 2 (VA0 %00) + 7" s = x0m14]?) € [-1,1], .
- .
it = — ((V fit (1), Xe-10) + 7" Ixes = xevall?) € [<1,1),

where Z is set as max{Zym, Zrop}. Specifically, Zyp = GD + yMPD? serves as the nor-
malization factor ensuring that 75, mplh € [-1,1] for all ¢ € [T],j € [M],i € [N], and
Zrop = 149MP D? 4277 is chosen to restrict the range of £;9", m{9" for all t € [T],j € [M].
We note that setting the same normalization factor for MoM-Top and MoM-Mid is necessary
to directly apply Lemma 4.

We now present our final meta algorithm MoM (Algorithm 1) with carefully designed
injected corrections into both MoM-Top and MoM-Mid. We emphasize that the cost of the
corrections in MoM-Mid is a positive term of yMP||xyx — xt_l’,»*HQ for some specific but
unknown ¢* € [N] in the analysis. Fortunately, this is exactly the stability term of the i-th
base learner, which can be perfectly handled by the intrinsic negative terms in the analysis
of classic online mirror descent algorithms. We summarize the overall correction process in
Figure 1. Because (3.16) and (3.17) both include correction steps, the mechanism exhibits a
cascade in which higher-layer corrections propagate to lower layers to cancel negative terms.
Thus, we refer to this as a cascaded correction mechanism.

To conclude, because we choose the two-layer MoM as the meta learner, the overall
algorithm results in a three-layer online ensemble structure. The overall update of Uni-
Grad.Correct is presented in Algorithm 2. The base learner configurations are the same as
those introduced in Section 2.3. Specifically, in Line 3, the learner submits the weighted

decision, suffers the corresponding loss, and receives the gradient information of the loss
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Algorithm 2 UniGrad.Correct: Universal Gradient-variation Regret by Injected Corrections

Input: Base learner configurations {B;}ie(n) = {B5 bicini U{B; ™ }ie[Ne, U B algorithm
parameters YMP ~TOF “and C
1: Initialize: M — meta algorithm MoM as shown in Algorithm 1
{Bi}ic[n) — base learners as specified in Section 2.3
2: fort=1to T do
Submit x; = Z?;l Pr,iXe,i, suffer f;(x;), and observe V fi(-)
{B;}Y, update their own decisions to {x;11,}¥, using Vf(-)
Compute {£}}°, my'h ;}72, via Eq. (3.17), send to M, get {q;1} ; jj‘il € (An)M
Compute £{°7, m{{} via Eq. (3.16), send to M, and obtain g7 € Ay
Aggregate the final meta weights p;+1 € Ay via Eq. (3.12)
end for

function. Subsequently, the update is conducted from the bottom to the top. Concretely, in
Line 4, the base learners update their own decisions to {x;11,;}¥ ; using V f;(-). In Line 5,
each MoM-Mid computes its own losses and optimisms using Eq. (3.17) and updates its own
decisions according to Algorithm 1. In Line 6, MoM-Top computes its loss and optimism
using Eq. (3.16) and updates accordingly. Finally, in Line 7, the meta learner aggregates
the final weights pi+1 € Ay via Eq. (3.12).

We next present the main theoretical result. Our proposed UniGrad.Correct can achieve
the following gradient-variation regret guarantees, with the proof provided in Appendix A.4.

Theorem 1. Under Assumptions 1, 2, 4, by setting Co = max{1,8D,4y™" 4D?C,},
TP = C1, and yMP = 2D2C, where C1 = 128(D?L? + G?), UniGrad.Correct (Algorithm 2)
achieves the following universal gradient-variation regret guarantees:

o (% log VT) . when {fi}_| are \-strongly conver,
T T
Z fr(xt) —f%i}\} Z fi(x) < Q0 (% log VT> . when {f;}1, are a-exp-concave, (3.18)
t=1 =

O(VVrlogVr), when {fi}l_, are conver,

We emphasize that the regret guarantee is achieved without prior knowledge of the
function families or curvature information. For strongly convex functions and exp-concave
functions, the regret bound matches the best-known gradient-variation regret bounds that
were specifically designed with curvature prior knowledge. For convex functions, the result
exhibits a slight logarithmic gap compared to the target O(v/Vr) bound, and this gap will
be addressed and closed in the next section.

It is worth mentioning that even when the curvature « (or A) is smaller than 1/7, our
algorithm can still guarantee an O(y/Vrlog V) bound, because exp-concave and strongly
convex functions are also convex and thus our convex bound still holds.

Remark 1 (Technique). Our method follows the general optimistic online ensemble frame-
work proposed by Zhao et al. (2024), which was originally designed for dynamic regret min-
imization with convex functions. In the universal online learning with gradient-variation
setting, new ingredients are required. Specifically, the goal of handling different function
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families universally necessitates a two-layer meta algorithm with both second-order regret
and negative stability terms, namely, MoM. Furthermore, solving this problem requires
new ideas on universal optimism design, the correction scheme, and base-learner sharing,
which collectively lead to our three-layer collaborative online ensemble structure, making it
significantly different from the two-layer structure used in Zhao et al. (2024). N

Remark 2 (Comparison to Conference Version). We here briefly mention the differences
between UniGrad.Correct and the conference version (Yan et al., 2023). In the conference
version, we have introduced the idea of employing a three-layer online ensemble (with a two-
layer MoM as the meta algorithm and cascaded correction terms to address positive stability
terms) to achieve gradient-variation universal regret. However, the current UniGrad.Correct
differs significantly from the conference version—the conference version requires maintain-
ing O((logT)?) base learners that are updated simultaneously, whereas UniGrad.Correct
reduces this complexity to O(logT), offering a more efficient solution. Detailed technical
comparisons and the improvement will be discussed in Section 7.2. N

4. Method II: Online Ensemble with Extracted Bregman Divergence

This section introduces our second method, named UniGrad.Bregman, which achieves op-
timal universal gradient-variation regret bounds. The new method exhibits a significantly
different methodology from the UniGrad.Correct method presented in Section 3.

4.1 Online Ensemble with Extracted Bregman Divergence

This subsection leverages the Bregman divergence term extracted from the linearization
of convex online functions, along with a key property of smooth functions that connects
gradient variation to Bregman divergence.

For clarity, we illustrate our idea from the ground level. To obtain the gradient variation
Vi defined in (1.2), we first need to attain its empirical version Vp 2 3,1 ||V fi(x;) —
V fi—1(x¢—1)||>. Previous studies decompose this term as shown in Eq. (3.2), which requires
controlling the algorithmic stability ||x; — x;_1||>. Consequently, since each decision is a
weighted combination of base learners’ decisions (i.e., x; = > ;< Pt,iXt,i), the stability is
difficult to control. This requires a very powerful meta algorith_m with both second-order
regret guarantees and negative stability terms. This is why UniGrad.Correct requires a three-
layer online ensemble structure and achieves a sub-optimal O(y/Vr log V) regret bound for
convex functions.

Empirical Gradient Variation Decomposition. To address the above problem, we
propose a novel decomposition of the empirical gradient variation that avoids the stability
term at the meta algorithm level. Specifically, we decompose the empirical gradient variation
into three parts:

Vi SV fi(xe) =V fe(xei ) PV fe(Xei0) =V fro1 (e 1,0) 1P+ IV ot (Re—1,00 )= V o1 (xe-1) 12
(4.1)

e The middle term on the right-hand side measures the empirical gradient variation of a
base learner, which can be controlled within the base learner via its intrinsic negative
stability terms using optimistic OMD algorithms.
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e The first and last terms capture the gradient differences between the meta decision x;
(or x;—1) and the best base learner’s decision x; ;« (or x;—1 «). We show that they can be
upper-bounded by Bregman divergences using a useful property of smoothness (Nesterov,
2018) (restated below), which yields ||V f;(x¢) — V fi(x¢,i)||* < 2L - Dy, (x¢,i%, X¢).

Proposition 1 (Theorem 2.1.5 of Nesterov (2018)). A function f(-) is L-smooth over R?
if and only if

|V f(x)— Vf(y)H2 <2L-Dy(y,x), foranyx,y € R, (4.2)

Compared with the commonly used inequality |V f(x) — V f(y)| < L||x—y||, Proposition 1
provides a tighter bound for the squared gradient changes. Since |V f(x) — Vf(y)|? <
2LD;(y,x) < L?||x —y|?, where the second inequality holds because D;(y,x) < £|jx —y||?
for any x,y € R? (Nesterov, 2018, Theorem 2.1.5), this yields a simpler subsequent analysis.

Combining the above decomposition with the smoothness property yields the following
result, which upper-bounds the empirical gradient variation Vi by the Bregman divergence
terms and the gradient variation Vp. The proof is deferred to Appendix B.1.

Lemma 6 (Empirical Gr@dien‘c Variation Conversion - IT). Under Assumption 3, the em-
pirical gradient variation Vi 2 Y1, |V fi(x¢) — Vfi_1(x¢-1)||? can be upper bounded as

T T
Vi S2LY Dy, (xpir, %) + LY [[Xeie = Xm0 |” + Vi, (4.3)
=1 =2

where i* € [N] can be any base learner index.

Negative Bregman Divergence. In Lemma 6, the only term that remains to be handled
is the Bregman divergence Dy, (x¢+,%;). Fortunately, this term is canceled by a negative
term arising from the linearization of convex functions. Specifically, the meta regret can be
transformed into

T T

T T
META-REG = Z ft(xt) — Z ft(Xt,i*) = Z(Vft(xt), X¢ — Xt,i*> — prt (Xt,i*,xt)a (44)
t=1

t=1 t=1 t=1

where ¢* indicates the best base learner. The last term is a negative term from linearization,
which represents the compensation when treating a convex function as linear. Previous
studies on gradient-variation regret omit this term, while we show below that this negative
term helps achieve a simpler analysis of the empirical gradient variation.

The Bregman divergence negative term in Eq. (4.4) cancels the positive term in Eq. (4.3),
and the stability term ||x;« — x¢—1+||* can be controlled within the base learner via its
intrinsic negative stability terms using optimistic algorithms. Thus, only the gradient vari-
ation quantity Vr remains as the desired regret bound.

We emphasize that the Bregman divergence negative term arises from the linearization
of convex functions and is thus algorithm-independent. Therefore, we avoid controlling the
algorithmic stability for gradient variation regret, in contrast to previous works (Chiang
et al., 2012; Yan et al., 2023). To the best of our knowledge, this is the first alternative
analysis of gradient-variation regret since its introduction.
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The inspiration for our negative term from linearization comes from recent advances
in stochastic smooth optimization (Joulani et al., 2020). While their work focuses on
achieving the O(1/T?) function-value convergence rate of Nesterov’s accelerated gradient
method (Nesterov, 2018), our approach addresses the gradient-variation regret in the uni-
versal online (adversarial) convex optimization setting.

About Smoothness Requirement. Finally, we discuss the smoothness requirement.
Notice that Proposition 1 requires smoothness over the whole R?, which is a much too strong
assumption. We emphasize that to leverage the useful smoothness property in Proposition 1,
we only need ||V f(x) — Vf(y)||? < 2LD;(y,x) on the feasible domain X. In this work, we
show that this requirement can be satisfied with smoothness over a slightly larger domain
than X, formally, the minimal Assumption 5 below. Readers can refer to Lemma 7 in
Appendix B.2 for the formal statement and the proof.

Assumption 5 (Smoothness over Xy). Under the condition of ||V fi(x)|| < G for any
x € X and t € [T, all online functions are L-smooth: ||V fi(x) — Vfi(y)| < L||jx — y|| over
X,, where X, 2 {x+z|x € X,z€ GB/L} and B = {x||x|| <1} is a unit ball.

We note that Assumption 5 is reasonable, as many commonly used functions are glob-
ally smooth, such as the squared loss f(x) = 3x[/* and the logistic loss f(x) = log(1 +
exp(—07x)) for some 6 € RY. While the feasible domains of these functions are constrained
to X (satisfying Assumption 4), they remain smooth over larger sets that extend beyond
X, thereby satisfying Assumption 5.

Building on the fact that Assumption 5 is a sufficient condition for Eq. (4.2) on X, it

can be directly obtained that Lemma 6 also holds under the relaxed Assumption 5.

4.2 Overall Algorithm and Regret Guarantee

In this section, we present the overall algorithm and its regret guarantees. Our algo-
rithm adopts a two-layer online ensemble structure. Leveraging the new decomposition
in Lemma 6, the meta algorithm does not require explicit control of its algorithmic stabil-
ity; it only needs an optimistic second-order regret guarantee. Consequently, we employ
Optimistic-Adapt-ML-Prod (Wei et al., 2016) as the meta algorithm. The base learners
remain the same as those introduced in Section 2.3.

Meta Algorithm. UniGrad.Bregman employs Optimistic-Adapt-ML-Prod (Wei et al., 2016)
as the meta algorithm to dynamically combine the base learners, in contrast to the complex
MoM used in UniGrad.Correct. Optimistic-Adapt-ML-Prod is a simple algorithm that enjoys
a second-order optimistic regret bound and admits closed-form weight updates. Specifically,
the weight vector p;y1 € Ay is updated as follows: Vi € [N],

Ct,i
P 1
Vi > 1, W, = (Wt—l,z‘ - exp (st_1,irt,i — e} qi(re — mt,i))) =, and Woi = (4.5)

Dit1,i X Eti - €xp(eg,imiyi,i) - Wi,

where Wy ; and €;; denote the potential variable and learning rate for the i-th base learner,
respectively. The feedback loss vector £; € RY is configured as ¢;; = m%(V fr(xy), xm>+% IS
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Algorithm 3 UniGrad.Bregman: Universal GV Regret by Extracted Bregman Divergence

Input: Base learner configurations {B;}icin) = {B; }icineg U {B; " Yie [N U B
1: Initialize: M — meta learner Optimistic-Adapt-ML-Prod with Wy; = + for all i € [NV]
{Bi}ic|n) — base learners as specified in Section 2.3
:fort=1to T do
Submit x; = Zi]\il Pt,iXe,i, suffer f;(x;), and observe V fi(-)
{B;}Y | update their own decisions to {x;11,}¥, using Vf(-)
Calculate my11 (4.6) and 7 using {xm}ij\il, x¢, V fi(x¢), and {Xt+1,i}f\i1, send them
to M, and obtain p;y; € Ay via Eq. (4.5) and Eq. (4.7)
6: end for

A e

[0,1], where 7¢; = (p¢, €:) — ¢;; measures the instantaneous regret. The optimistic vector
m; € RY is designed as’

my; = m%(Vft_l(xt_l),xt —xy;) for i € [N}, and my; = 0 for i € [Nexp| U [Nse]. (4.6)

The learning rate €;; is set as

1 log N
.= min{ -, . 47
mm{g kg:l(w_m&i)z} (47)

Algorithm 3 describes the overall update procedures of UniGrad.Bregman.

We now present the regret guarantees of UniGrad.Bregman, demonstrating that the
algorithm achieves optimal gradient-variation regret without requiring prior knowledge of
curvature information. The proof is provided in Appendix B.3.

Theorem 2. Under Assumptions 1, 2, 5, by setting the learning rate of meta algorithm
as Eq. (4.7), UniGrad.Bregman (Algorithm 3) achieves the following universal gradient-
variation regret guarantees:

(@) (% log VT) ., when {fi}L, are \-strongly conver,
T T
Z fe(xt) — Hgf\}Z fi(x) << 0O (g log VT) ., when {fi}_, are a-exp-concave,
t=1 =t i=1

O/ Vr), when {f;}1_, are convex.

Notably, UniGrad.Bregman improves the convex regret bound from O(y/VlogVr) to
the optimal O(v/Vr) (Yang et al., 2014), at the cost of requiring smoothness over a slightly
larger domain. Even when the curvature o (or A) is smaller than 1/T, our algorithm still
guarantees an O(y/Vr) bound, since exp-concave and strongly convex functions are also
convex, and therefore our convex bound remains valid.

Finally, we compare UniGrad.Correct and UniGrad.Bregman in terms of their implications
and applications. UniGrad.Correct is applicable to multi-player game settings (Syrgkanis

5. Though x: is unknown when using m:;, we only need the scalar value of (V fi—1(x¢—1),x¢), which is
bounded and can be efficiently solved via a one-dimensional fixed-point problem: (V fi_1(x¢—1), x¢(2)) =
z. x; is a function of z because x; relies on py ;, pi,; relies on my ; and my,; relies on z. Interested readers
can refer to Section 3.3 of Wei et al. (2016) for more details.
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et al., 2015; Zhang et al., 2022b) due to its stability property, which has been shown to be es-
sential for achieving faster convergence in games (Syrgkanis et al., 2015). UniGrad.Bregman,
by contrast, can be extended to the anytime setting, thanks to the simplicity and flexibility
of its meta algorithm. Details of these extensions and applications are provided in Sec-
tion 6. A more detailed comparison between UniGrad.Correct and UniGrad.Bregman will be
discussed in Section 7.1.

5. One Gradient Query per Round

Though achieving favorable regret guarantees in Section 3 and Section 4, one caveat is that
both UniGrad.Correct and UniGrad.Bregman require O(logT) gradient queries per round
because they need V fi(x¢;) for all i € [N], making them computationally inefficient when
the gradient evaluation is costly, e.g., in nuclear norm optimization (Ji and Ye, 2009) and
mini-batch optimization (Li et al., 2014). The same concern also appears in the approach of
Zhang et al. (2022a), who provided small-loss and worst-case regret guarantees for universal
online learning. By contrast, traditional algorithms such as OGD typically work under the
one-gradient feedback setup, namely, they only require one gradient V f;(x;) for the update.
In light of this, it is natural to ask whether we can design a universal algorithm that can
maintain the desired regret guarantees while using only one gradient query per round.

In this section, we provide an affirmative answer for this question via a dedicated sur-
rogate optimization technique that implements base algorithms on carefully designed sur-
rogate functions. We first present a general framework for the one-gradient algorithm in
Section 5.1, and then instantiate it for UniGrad.Correct and UniGrad.Bregman algorithms, in
Section 5.2 and Section 5.3, respectively.

5.1 A General Idea of Surrogate Optimization

In the following, we take A-strongly convex functions as an example. To address this
challenge, inspired by Wang et al. (2018), we propose an effective regret decomposition as
follows. Specifically, let x* € argminygcy >2yc[r) ft(x) denote the optimal solution and i* be
the index of the best base learner with A\jx < A < 2\;». We have

T T T
A 1
REGT < ZWft(Xt),Xt —x") - 1 Dl = x*|* - 3 > Dp (%, xt)
t=1 t=1

T Ais T 1 T
1
<Y (Vi) xe = x5) = S lxe = XM P = 5 Dy (xF,xy)
t=1 4 t=1 2 t=1
T \o L 1 T
1
< [Z Vi) % = %) = == >[I —Xt,z'*HQ] =52 D x)
t=1 t=1 t=1

T

+ [Z (<Vft<><t>,><t,i*> 2 e ) - 1 <<Vft(Xt),X*> 2 et - Xt||2)]

=1
T Now L 1z
o T R DL XCTO R O B A}
t=1 =1 =

META-REG Base-REG
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The first step follows from Dy, (x*,x;) > 5 ||x; — x*||? since f;(+) is A-strongly convex, and it
preserves the Bregman divergence linearization-induced negative term for UniGrad.Bregman.
The second step uses the definition of the best base learner (indexed by i*): Aix < A <
2)\;+. The third step inserts an intermediate term ’\jf S F 1% — %44+ ||? and reorganizes the

equation. The last step rewrites the equation by defining the following surrogate loss:

500 2 (Y fulxe), %) + 2 - (51)

Note that the meta regret here is nearly identical to that in the multi-gradient setup, which
can be optimized via algorithms with second-order regret guarantees, as demonstrated in
Section 3 and Section 4, making it as flexible as Zhang et al. (2022a). Furthermore, the
surrogate loss function in Eq. (5.1) requires only one gradient V f;(x;), making it as efficient
as van Erven and Koolen (2016).

Similarly, for a-exp-concave and convex functions, we define the surrogates

hid (%) £ (V fi(xt), %) + %(Vft(Xt),x —x1)?,  h{(x) £ (Vfi(xe),%). (5.2)

In Section 5.2 and Section 5.3, we propose one-gradient improvements of UniGrad.Correct
and UniGrad.Bregman, respectively, and demonstrate that additional novel analyses are
required to achieve gradient-variation guarantees for the base regret, defined on surrogates.

As a byproduct, we show that this regret decomposition approach can be used to recover
the minimax optimal worst-case universal guarantees using one gradient with a simple
approach and analysis, with proof provided in Appendix C.2.

Proposition 2. Under Assumptions 1 and 2, using the surrogate loss functions as defined
in Eq. (5.1) and Eq. (5.2), and running Adapt-ML-Prod as the meta algorithm (by choosing
m; = 0 in Eq. (4.5)) guarantees O(5logT), O(glogT) and O(VT) regret bounds for
strongly convex, exp-concave and convexr functions, using one gradient per round.

Remark 3. This result demonstrates that our surrogate optimization framework not only
enables one-gradient universal algorithms but also provides a unified approach to recover
classical minimax optimal bounds. The simplicity of the analysis compared to existing
approaches highlights the power of the surrogate loss technique. <

5.2 UniGrad++.Correct: One-Gradient Improvement of UniGrad.Correct

To begin with, we recall the base regret definition with surrogates (we still take A-strongly
convex functions as an example):

T T
Ai
BASE-REG = | 3 5% (x040) — 3 b (x*)] . where J5,() £ (V fy(x0), %) + ~llx — x|
t=1 =1

For strongly convex gradient-variation regret minimization, the best known algorithm runs
an initialization of the OOMD:

xti = M [Xei — neiMeil Xi+1,i = Iy [it,z‘ - nt,thifi(Xt,i)} ;
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Algorithm 4 UniGrad++.Correct: One-Gradient Improvement of UniGrad.Correct
Input: Base learner configurations {B;}ie(n) = {B5 bicini U{B; ™ }ie[Ne, U B algorithm
parameters YMP ~TOF “and C
1: Initialize: M — meta learner MoM as shown in Algorithm 1
{Bi}ic[n) — base learners as specified in Section 2.3
{35 () Yie|n) — strongly convex surrogate losses as defined in Eq. (5.1)
2: fort=1to T do
3:  Submit x; = Zfil DriXt,i, suffer f;(x;), and observe V fi(+)
1 B YN {B7 P ieNuy)> and B update their own decisions to {x¢41,}{, using
surrogate losses of {h35(-)}x,ense (5.1), {hiy (1) ayenee (5.2), and h“( ) (5.2)
5. Compute { %I;D,mﬁ?]}Ml via Eq. (3.17), send to M, get {qﬁ?] j=1 € (An)M
6:  Compute £/°7, m;P} via Eq. (3.16), send to M, and obtain g7 € Ay
7. Aggregate the final meta weights p;+1 € Ay via Eq. (3.12)
8: end for

where 7;; represents the step size. With appropriately chosen step sizes, the base learner
achieves an optimistic bound of O(log(} "< VA (%t:) — %)) (e.g., Theorem 15 of
Chiang et al. (2012)). Therefore, choosing the optimism as M;; = VA, (x¢-1,) leads
to an empirical gradient-variation bound (’)(% log VC,SF,L) defined on surrogates, where VTSCZ =
Sr, VA (x¢) — VA ;(x¢-1)]|*. To handle this term, we decompose it as

2

J(thl,i - thl)

VAuxe) + 5 (i~ x) — Vfialen) —

B T

V=)
t=2

T T T

Z IV fe(x¢) vft—l(th—1)||2 + A7 Z llx: — Xt—1H2 + A Z %t — Xt—l,iH2 ;

=2 = =

where Vhi(x) = Vfi(xt) + %(x — x¢) because of the definition of the strongly convex

surrogate function (5.1). Notice that the above decomposition not only contains the desired

gradient variation, but also includes the positive stability terms of base decisions ||x;; —

x¢—1]|? and final decisions ||x; — x;—1||?. Fortunately, same as UniGrad.Correct in Section 3,

these stability terms can be effectively addressed through our cancellation mechanism within

the online ensemble, by adjusting the correction coefficients accordingly.

This efficient version is concluded in Algorithm 4, where the only algorithmic modifi-
cation from Algorithm 2 is that in Line 4, base learners update on the carefully designed
surrogate functions, not the original ones. A more detailed description of base learners’
update rules are deferred to Appendix C.1 for self-containedness. We provide the regret
guarantee below, which achieves the same guarantees as Theorem 1 with only one gradient
per round. The proof is in Appendix C.3.

Theorem 3. Under Assumptions 1, 2, 4, by setting
Cp = max {1, 8D, 47" 4D?Cy1,16D2Chp, SOD3L2 + 4D201} : (5.3)
ATOP — max {2D2011, 8D2Cho, 40D3L2 + 2D201} AMP = max {C’H, 4010, 20D L2 + 01} ,
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where C1 = 128(D?L? + G?), Cyo = 4L? 4 32D?G?L? + 8G*, and C11 = 128G?(1 + L?),
UniGrad++.Correct (Algorithm 4) achieves the following universal gradient-variation regret
guarantees using only one gradient per round:

@) (% log VT) . when {fi}L| are \-strongly convex,
T
Z fi(xy) — Eélg{lz filx) < <O (g log VT) . when {f;}_, are a-exp-concave,
t=1 t=1

O(/VrlogVr), when {fi}]_| are conver.

5.3 UniGrad++.Bregman: One-Gradient Improvement of UniGrad.Bregman

In this part, we leverage the same idea of surrogate losses to improve the gradient query
efficiency of UniGrad.Bregman. However, this becomes more challenging than that in Sec-
tion 5.2, because the meta-base regret decomposition of Eq. (2.6) (we restate it below)

T

T
RECr = > fi(xe) = > felxev)

t=1 t=1

T T

> filxeir) = > fi(xY)

is not suitable anymore because this decomposition would require each base learner to
access its own gradient V fi(x; ;) per round, which is not allowed in the one-gradient setup.
Therefore, the decomposition in Lemma 6 becomes invalid, since the negative Bregman
divergence term Dy, (x¢4+,%¢) in Eq. (4.4) becomes vacuous.

Empirical Gradient Variation Decomposition. To address this issue, we need to find
a new regret decomposition that allows us to use only one gradient V f;(x;) per round. Re-
call that the negative Bregman divergence term from linearization is algorithm-independent.
Building on this observation, we propose a new decomposition for the empirical gradi-
ent variation by inserting algorithm-independent intermediate terms such as V f;(x*) and
V fi_1(x*), where x* € arg mingcy > 1 f¢(x) and a more detailed derivation with constants
is provided in Eq. (C.14).

T
Vr<y (HVft(Xt) = VAEN?+ IV f(x) = V frma )P+ [V foma (xF) = Vft—l(Xt—l)Hz)
t=2
T T T
LZth X, x¢) + Vr+ LY Dy (x*,x-1) <2L> Dy, (x*,x¢) + Vr, (5.4)
t=2 t=2 t=1

Consequently, to cancel the additional Dy, (x*,x;) while using only one gradient V f;(x;)
per round, we use the overall regret linearization below:

T T T T
ST Rx) =D filx) =Y (Vixe), % — x5) = Y Dy (x5, ). (5.5)
t=1 t=1 t=1 t=1

Surrogate Empirical Gradient Variation. Furthermore, we show that additional novel
analysis is required to handle the empirical gradient variation defined on surrogates. Again,
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Algorithm 5 UniGrad++.Bregman: One-Gradient Improvement of UniGrad.Bregman

Input: Base learner configurations {B;}icin) = {B; }icineg U {B; " Yie [N U B
1: Initialize: M — meta learner Optimistic-Adapt-ML-Prod with Wy; = + for all i € [NV]
{Bi}ic|n) — base learners as specified in Section 2.3

2: fort=1to T do

3:  Submit x; = Zi]\il Pt,iXe,i, suffer f;(x;), and observe V fi(-)

4 B Yiein 1B Yie[Noy,), BC update their own decisions to {x¢114}Y, using surro-
gate losses of {hj5(-)}x,erse (5.1), {h5° () ayemee (5.2), and hi(-) (5.2)

5. Calculate my;y; (4.6) and r; using {Xt’i}fil, x¢, V fi(x¢), and {Xt+1,i}fi1, send them
to M, and obtain p;11 € Ay

6: end for

we take A-strongly convex functions as an example and provide the following decomposition
of the empirical gradient on surrogates:

Z IVAEG (xe0) = VA 1 3 (x-1,0) |12
t=2

D

~

2

i i
Vii(xe) = Vfio1(x4—1) + ?(xt,i —X¢) — E(Xt—l,i — X¢-1)

o+
||
N

A
NE

[V fi(xt) =V fi1(x¢-1) +Z||th_xt|| +ZHXt 1, — X¢— 1H

I
[}

Mﬂ

|V fe(xt) = V fi1(xt-1) +Z||th_xt||

-
[|
N

In the third step, instead of controlling (x¢; —x¢) — (x¢—1,; — X¢—1) per round, which requires
analyzing the stability term ||x; — x;_1||? directly, we deal with the additional surrogate-
induced terms by aggregation over the time horizon, using a similar idea in our unifying
optimism design in Lemma 3. Consequently, this term can be canceled out by the curvature-
induced negative term from the meta regret, as shown in Eq. (2.8). For this cancellation
to occur, appropriate coefficients are needed, which are provided in the detailed proofs and
are omitted here for clarity.’

The empirical gradient variation defined on the original functions, i.e., ||V fi(x:) —
Vfi—1(x¢-1)|?, can be decomposed as shown in Eq. (5.4) and canceled by the negative
Bregman divergence terms from linearization as presented in Eq. (5.5).

This simple and novel analysis eliminates the need to control the overall algorithmic
stability ||x; —x;_1||? required by UniGrad.Correct, and is essential for achieving the optimal
regret guarantees, as provided in the following, where the proof is deferred to Appendix C.4.

Theorem 4. Under Assumptions 1, 2, 5, by setting the learning rate of meta algorithm
as Eq. (4.7), UniGrad++.Bregman (Algorithm 5) achieves the following universal gradient-

6. For strongly convex functions, a simpler choice would be M, ; = V f;_1(x:—1) to allow simpler surrogate-
induced terms. We choose the gradient of the last round as the optimism since this is the the only choice
at present to achieve a gradient-variation regret for exp-concave functions (Chiang et al., 2012).
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variation regret guarantees using only one gradient per round:

O (% log VT) ., when {fi}_, are A-strongly conver,
T
Z fe(xt) — xmel/fvlz filx) <O (g log VT) ., when {fi}]_, are a-exp-concave,
t=1 t=1

OWVr), when {f;}—, are convex.

6. Implications, Applications, and Extension

In this section, we demonstrate the effectiveness of our methods through their implications
for small-loss and gradient-variance regret in Section 6.1, as well as their applications to
the Stochastically Extended Adversarial (SEA) model (in Section 6.2) and online games (in
Section 6.3). Finally, in Section 6.4, we establish optimal universal regret without requiring
prior knowledge of the time horizon T' through an anytime variant of our method.

6.1 Implications to Small-Loss and Gradient-Variance Bounds

In this subsection, we demonstrate that our universal gradient-variation regret bounds nat-
urally yield other problem-dependent quantities such as small-loss (Srebro et al., 2010;
Orabona et al., 2012) and gradient-variance (Hazan and Kale, 2008, 2009) regret bounds
directly through the analysis without any algorithmic modifications. This demonstrates
that our methods can capture the complexity of the online learning problem from multiple
perspectives, providing a more comprehensive understanding of the problem’s behavior.
Specifically, the small-loss and gradient-variance quantities are formally defined as:

T T
A _ Y G .
FT—xmel)rcltht(x) tz::lmm fi(x), X4 {x—i—z\xez‘(,ze 7 IB%} o

T T
1
Wr & IV fi(x¢) NTHz} . Mr = T E V fi(xt),
1 =1

{x1,.. ,XT}GX {t_

where X is a superset of the original domain X defined in Assumption 5 and p7 represents
the average gradient.

In what follows, we demonstrate that both the small-loss and gradient-variance quan-
tities can be derived from the empirical gradient variation through standard analytical
techniques. Specifically, for the small-loss quantity, we utilize the self-bounding property
IV f(x)[3 < 4L(f(x) — mingex, f(x)) for any L-smooth function f : X} — R and any
x € X, which yields

T T T
Vr < 22 IV fi(xe)|I” + 22 IV fimr (1) [P < 4 IV fi(x) P
t=1

<16L (th Xt - mln ft( ))

t=1

7. This more restricted self-bounding property can be derived using the arguments in Appendix B.2.
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Note that the right-hand side of Eq. (6.2) can be directly transformed to the small-loss
quantity using standard techniques (Srebro et al., 2010; Orabona et al., 2012).

Next, we demonstrate that the gradient-variance quantity can be derived from the em-
pirical gradient variation through a standard analytical technique:

T T T
Ve =Y IV filxe) = Via(xe-0) P <2 IV filxe) = prl® +2 Y [V i1 (x-1) — por?
t=2 t=2 t=2
T
<4 | Vfilxe) = pr|® < 4Wr. (6.3)
t=1

To conclude, our universal gradient-variation regret can directly imply universal small-
loss and gradient-variance guarantees without any algorithmic modifications. We present
the corresponding guarantees for UniGrad++.Correct and UniGrad++.Bregman below. The
proofs are deferred to Appendix D.1 and Appendix D.2.

Corollary 1. Under Assumptions 1, 2, 5, by setting

C) = max {1, 8D, 47" 512D?G2, 128D2G4} :

(6.4)
~TOP — max {256D2G2, 64D2G4} . AMIP = max {128G2, 32G4} ,
UniGrad++.Correct (Algorithm 4) achieves the following universal regret quarantees:
- f1 1 T
o (mln {X log Frr, 5 log WT}> ) when {fi}i—, are A-strongly convex,
REGTr < 1O (min {g log Frr, glog WT}> , when {f;}1_, are a-exp-concave,

O (min {/Frlog Fr, /WrlogWr}), when {fi}]_, are convexr.

Corollary 2. Under Assumptions 1, 2, 5, by setting the learning rate of meta algorithm as
Eq. (4.7), UniGrad++.Bregman (Algorithm 5) achieves the following universal regret:

O (min {% log Frr, }log WT}) ., when {fi}Y_1 are \-strongly convex,
REGT <O (min {g log Frr, 4log WT}) ., when {fi}]_, are a-exp-concave,

O (min {/Fr, vVWr}), when {f;}}_, are convex.

We would like to emphasize that the hyper-parameter configurations in Eq. (6.4) is em-
ployed only for the small-loss and gradient-variance regret. To achieve best-of-three-worlds
guarantees in terms of min{Vp, Fp, Wr}, the hyper-parameters of Cp,v™", M should be
set as the union of configurations in Eq. (5.3) and Eq. (6.4). Furthermore, because the
hyper-parameter setups of UniGrad++.Bregman for this problem are the same for those for
the gradient-variation regret (in Theorem 4), UniGrad++.Bregman directly enjoys best-of-
three-worlds guarantees.
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Table 2: Comparisons of our results with existing ones. The second column presents the regret
bounds, where 02, and 2 ;. represent the stochastic and adversarial statistics of the SEA problem.
The last column indicates whether the results can be achieved by a single algorithm (i.e., suitable
in the universal setup). UniGrad++.Correct suffers and additional logarithmic factor compared with
the best known guarantees of Chen et al. (2024), while UniGrad++.Bregman achieves exactly the
same state-of-the-art guarantees using one single algorithm.

Regret Bounds Single

Method Algorithm?

Strongly Convex Exp-concave Convex

Sachs et al. (2022) o (i (020 +22,,) log T) N/A o (Q/U']Z:T + Z?:T)
Chen et al. (2024) ()\ 02 o+ 220x) log <%)> o (% log (024 + E%T)) o (\/U%:T + Z{T)
O (4 (0 ax + S2ax + D2L2) 10g? T) N/A O (VTTogT)

O (5 (0Rax + Shhas) log (o1.p + T, ) o ( log (oF7 + XF, T)) o (\/(‘712:T +3p) log (o + Z%:T)) 4
i
by

7)
5
Ohax + Shax) log <%L%l>> 2log (o7 + 21, T)) O(\/ ot +3ir) v

Sachs et al. (2023) ‘

UniGrad++-.Correct

UniGrad++.Bregman O (

6.2 Application to Stochastically Extended Adversarial (SEA) Model

Stochastically extended adversarial (SEA) model (Sachs et al., 2022) interpolates between
stochastic and adversarial online convex optimization. Formally, it assumes that the on-
line function fi(-) is sampled stochastically from an adversarially chosen distribution Dj.
Denoting by Fi(-) £ Ef,~p,[fi(-)] the expected function, two terms capture the essential
characteristics of SEA model:

T
oty £ maxEsp, [IVA(x) - VE®)?], Str2E [Z sup ||V F(x) - vamnﬂ,
t=1

where 07,7 is the variance in sampling f;(-) from D;(-) and ¥2,;, is the variation of {Fy(-) }e[r)-

Accordingly, we define the per-round maximum versions of the above quantities as

2 2 2 . 2
T & s max B, [IV1%) = VEIP] - i & masup [VF(x) = VF-1 (0

For the SEA problem, Sachs et al. (2022) pioneered the study of the SEA model. For

smooth expected functions {F;(-)}1_,, they established the optimal O(y/0?. + £2.,) re-

gret for convex expected functions and (’)( (02 + 2. ) logT) in the strongly convex

case. Subsequently, Chen et al. (2024) enhanced the strongly convex regret to (9( (02, +
max) log((al T + E )/( O max + E?nax))) and derived a new O(a 1Og(o-l:T + E1:T)) regret
bound for exp-concave individual functions {f;(-)}{_;.
The gradient variation is essential in connecting the stochastic and adversarial optimiza-
tion in the SEA problem (Chen et al., 2024, Lemma 3). To see this, we can decompose the
empirical gradient variation as:

T
E | > IVfilxe) = Vfeor (1) +80t.p+451p+0(1), (6.5)
=2

< 4L2E lz HXt — X¢— 1”

t=2

which not only consists of the stochastic variation o, and the adversarial variation 2.,
but also the algorithmic stability ||x; —x;_1||>. And the last term can be perfectly handled
by UniGrad++.Correct as introduced in Section 3 and Section 5.2.
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For UniGrad++.Bregman to solve the SEA problem, since it cannot directly deal with
the stability terms of ||x; — x;_1]|?, we provide it a different decomposition of the empir-
ical gradient variation to let negative Bregman divergence terms in the analysis of Uni-
Grad++.Bregman to take effect. Specifically, we decompose it as

T T
E D IVAkx) = Vfici(xe-1)|?| < 10075 + 5537 + 20LE [Z Dp, (X*,Xt)] ,  (6.6)
t=2 t=1
where the positive Bregman divergence terms can be canceled accordingly. A detailed
derivation of this inequality is deferred to Eq. (D.25) in Appendix D.4.

Therefore, universal gradient-variation regret can be applied to in the SEA problem,
therefore solving a major open problem from Chen et al. (2024) about whether it is possible
to get rid of different parameter configurations and obtain universal guarantees. In the
following, we show that our approaches of UniGrad++.Correct and UniGrad++.Bregman
can be both directly applied and achieve almost the same guarantees as those in Chen et al.
(2024), with a single algorithm. We conclude our results in Theorem 5 and Theorem 6
below and the proofs can be found in Appendix D.3 and Appendix D.4.

Theorem 5. Under Assumptions 1, 2, 4, by setting
C() = max {1, 8D, 4’71‘01), 8D2024, 8D2023, 8D2025} s
~TOP = max {4D26‘24, 8D%Cy3, 4D? (20DL2 +64G2 + 128D2L2)} ,
AMD — max {2024, 4Cy3,20DL2 + 64G2 + 128D2L2} :
where Cog = 8L? 4 64D*G?L? + 8G*, Coy = 64D?*(1 + L?)?, and Co5 = 20DL? + % +
128D2L2, UniGrad++.Correct (Algorithm 4) achieves the following universal regret:
O <}\(012nax + 32 ) log (%)) ., when {F}L| are A-strongly conver,

REGT < (O (g log(a?. 1 + E%:T)) , when {f;}_, are a-exp-concave,

O (\/(J%:T + 32 ) log (027 + E%T)) . when {F}_, are convex.

Theorem 6. Under Assumptions 1, 2, 5, by setting the learning rate of meta algorithm
as Eq. (4.7), UniGrad++.Bregman (Algorithm 5) achieves the following universal gradient-
variation regret guarantees:

2 2
Umax+2max

2 2
O <§\(Ufnax + %2 ) log (‘WZlT>) ., when {Fy}L, are A-strongly conver,

REGr < O (g log(a?. 1 + Z%:T)) , when {fi}_, are a-exp-concave,

O (\/O’%:T + E%:T) ) when {Fy}E, are convex.

Remark 4. Sachs et al. (2023) also considered the problem of universal learning and
obtained an O(y/Tlog T) regret for convex functions and an O((o2,,, + %2, +D?*L?)log? T)

max max
regret for strongly convex functions simultaneously. We conclude the existing results in
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Table 2. Our results are better than theirs in two aspects: (i) for strongly convex and
convex functions, our guarantees are adaptive with the problem-dependent quantities 1.7
and Y1.7 while theirs depends on the time horizon T'; and (i) our algorithm achieves an
additional guarantee for exp-concave functions. <

Remark 5. Theorem 5 and Theorem 6 require the exp-concavity of the individual function
f+(+) rather than the expected function Fi(-). This assumption is also used by Chen et al.
(2024) and common in the studies of stochastic exp-concave optimization (Mahdavi et al.,
2015; Koren and Levy, 2015). <

6.3 Application to Faster-Rate Convergence in Online Games

Multi-player online games (Cesa-Bianchi and Lugosi, 2006) is a versatile model that depicts
the interaction of multiple players over time. Since each player is facing similar players like
herself, the theoretical guarantees, e.g., the summation of all players’ regret, can be better
than the minimax optimal (’)(\/T) in adversarial environments, thus achieving faster rates.

The pioneering works of Rakhlin and Sridharan (2013b) and Syrgkanis et al. (2015)
investigated optimistic algorithms in multi-player online games and illuminated the impor-
tance of the gradient variation. Specifically, Syrgkanis et al. (2015) showed that optimistic
algorithms, such as OOMD or optimistic follow the regularized leader (Shalev-Shwartz and
Singer, 2007; Shalev-Shwartz, 2007), possess a specific property known as “Regret bounded
by Variation in Utilities” (RVU) property.

Definition 3 (RVU Property). An algorithm with a parameter n > 0 satisfies the RVU
property if there exist constants «, 5,7 > 0 such that the regret REGT on decision sequence
{x;}]_, and gradient sequence {g;}}_; is bounded by

T T
Rear < %+ 403 llg — g1l — - 3 I — xi 3 (6.7)
n t=2 =

To illustrate the usefulness of the RVU property, we consider a simple bilinear zero-sum
game of x| Ay where x,y € Ay and max; jec(q) |Aij| < 1. In this case, the gradients of the
x-player are given by g¥ = Ay, for t € [T], which implies 37, |lgX —gX 112, = Yoy || Ay: —
Ay 1% < ZtT:Z |yt — ye—1]/?. Similarly, for the y-player, we have Z?zg ey — g’ 1% <
ST, ||x; — x¢_1]|?. By setting both learners’ learning rates to n* = ¥ = \/7/3, the sum
of the two players’ regrets can be bounded by

(0% (8]
REGT + REGY < 0+ 5+ (B = n%) I — ;112

M= L=

+ (B — ly: — yi1]lf < O(1).

)

=
~~
0

This bound, in turn, enables the efficient computation of Nash equilibria.

The above results assume that the players are honest, i.e., they agree to run the same
algorithm. In the dishonest case, where there exist players who do not follow the agreed
protocol, the problem degenerates to two separate online adversarial convex optimization
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Algorithm 6 UniGrad+-+.Correct for x-player
Input: Base learner configurations {B;}icin) = {Bi}icqn,) U B¢, algorithm parameters
AMID TP and Cl
1: Initialize: M — meta learner MoM as shown in Algorithm 1
{Bi}ic[n) — base learners as specified in Section 2.3
2: fort=1to 1 do
3:  Submit x; = Z?;l PriXe,i, suffer fi(x,y), and observe gf
4 {B{}ie[n.) and B¢ update their own decisions to {x411,}{, using surrogate losses
of {hfS(Vhaerse (5.1) and B() (5.2)
5. Compute {£}}°, my5 ; j]\/il via Eq. (3.17) with gradients of V f;(-) = g¥, send to M,
get {@}1 ;1751 € (An)Y
6:  Compute £{°", m{P} via Eq. (3.16), send to M, and obtain g7 € Ay
7. Aggregate the final meta weights p;+1 € Ay via Eq. (3.12)
8: end for

problems. At a high level, online games can be regarded as a special instance of adaptive
online learning. The goal is to ensure robust performance on hard problems (e.g., when
facing a dishonest opponent) while achieving superior performance on easy problems (e.g.,
when the opponent is honest). In particular, the adaptivity (e.g., gradient variation) can
yield faster-rate convergence as a direct consequence of the RVU property.

Since the faster-rate convergence requires the RVU property, in this part, we validate the
effectiveness of our proposed UniGrad++.Correct in a simple two-player zero-sum game as
an illustrating example. The game can be formulated as a min-max optimization problem
of minyex maxycy f(x,y), in which the x-player aims to minimize and the y-player aims
to maximize the objective. To validate the universality of our method, we consider the case
that the game is either bilinear, i.e., f(x,y) = x ' Ay, or strongly-convez-strongly-concave,
ie., f(x,y) is A-strongly convex in x and A-strongly concave in y. We denote the two
players’ gradients by g¥ = Vxf(x,y) and g} = Vy f(x,y). Besides, to validate the RVU
property of our method, we investigate the players can be either honest or dishonest. We
proceed under the following standard assumptions concerning the strategy domains and
the gradients of the two players, following previous works (Farina et al., 2022). The second
assumption, known as the smoothness assumption, is classical in online games.

Assumption 6. We make the following assumptions:

(i) The x-player’s strategy set is the simplex Ay, , and the y-player’s strategy set is the
simplex Ay, . Moreover, the gradients of both players are uniformly bounded by G, i.e.,
lgX|l < G and ||gY|| < G for all t € [T.

(ii) For t € [T), both players’ gradients satisfy max{||g¥ — gX |, llgl — g’ 1|I} < |lxt —
xi—1]| + [yt = ye-1l-

In Algorithm 6, we present the online game variant of UniGrad++.Correct for the x-
player, which ensures regret summation guarantees in the honest case and individual re-
gret guarantees in the dishonest case, without requiring prior knowledge of the game type.
Compared with the algorithm for the single-player setup, Algorithm 6 leverages additional
problem structures for effective learning. Specifically, x-player uses g instead of the general
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Table 3: Comparisons of our results with existing ones. In the honest case, the results are measured
by the summation of all players’ regret and in the dishonest case, the results are in terms of the
individual regret of each player. Bilinear and strongly-convex-strongly-concave games are considered
inside each case. * denotes the best result in each case (row).

Games Syrgkanis et al. (2015) Zhang et al. (2022a) Ours
bilinear O(1)* OWT) O(1)*
Honest strongly-convex
strongly-concave o) O(logT) o)
bilinear OWT)* OWT)* O(WTlogT)*
Dishonest strongly-convex
- * *
strongly-concave O(\/T) O(logT) O(logT)

V fi(x:) as the feedback. The analogous variant for the y-player follows the same design
and is omitted for brevity. Here, the total number of base learners for both the x-player
and the y-player is N = 1+ |H*| = O(logT). We conclude our results in Theorem 7 and
defer the proof to Appendix D.5.

Theorem 7. Under Assumption 6, by setting

Cp = max {1, 8D, 497" 16Cs51, 16C30, 471°F 47“’"}
MID __ _MID __ 2 TOP TOP 2
YID = AMID = 128 + 128G2 + 40V2, % = 13" =512+ 512G7 + 160V/2,

where

32 4+ 64G2% 32 32 + 64G? 32
e Ty T20V2, G =+ o 20V,
Z _maX{GD+,yMIDD2 1+ MIDD2+2,Y OP}

7Y :maX{GD—&—’yMIDDQ 14+ MIDD2+2 TOP}

31 =

for bilinear and strongly-convez-strongly-concave games, Algorithm 6 enjoys O(1) regret
summation in the honest case, and achieves O(y/TlogT) and O(logT) regret bounds for
bilinear and strongly-convez-strongly-concave games respectively in the dishonest case.

Table 3 compares our approach with Rakhlin and Sridharan (2013b) and Zhang et al.
(2022a). Specifically, ours is better than Rakhlin and Sridharan (2013b) in the strongly-
convex-strongly-concave games in the dishonest case due to its universality, and better than
Zhang et al. (2022a) in the honest case since our approach enjoys gradient-variation bounds
that are essential in achieving fast rates for regret summation.

6.4 Extension to Anytime Setting: Dynamic Online Ensemble

We start by observing that previous methods require the knowledge of the time horizon
T in advance, which is often unavailable in practice. To this end, we propose a dynamic
online ensemble — an anytime framework that avoids dependence on the time horizon T
and adjusts its candidate pools dynamically during the online learning process.
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As established in Section 2.2, all base learners are OOMD-type algorithms with adaptive
step sizes, which means the base learners are inherently anytime given the choice of the
curvature parameter. Therefore, we consider the dependence on the time horizon T' within
the meta algorithm design as well as the scheduling of the curvature parameter.

Scheduling. To begin with, to make the curvature parameter scheduling suitable for the
anytime setting, we consider maintaining infinite candidates of the curvature coefficient
and only activating a finite set of them at each round. This idea is inspired by Mhammedi
et al. (2019). Specifically, we define two candidate coefficient pools for the exp-concave and
strongly convex cases, respectively:

HOP 2 L, =27 forie {0} UN}, H*2{\;, =277 foriec {0}UN}. (6.8)

Intuitively, if the time horizon T is known, we only need to discretize the possible range
of [1/T,1] to get the candidate pool, as in Eq. (2.5). In contrast, when T is unknown, it
may grow arbitrarily large, causing the lower bound of the feasible range to converge to
zero. Therefore, we deploy 27 for all i € {0} UN as all possible candidates of the curvature
coefficient. For convex functions, we still maintain a single base learner B° as there is no
unknown-curvature-coefficient issues.

Furthermore, as we cannot implement infinite base learners in the actual running of the
algorithm, we define two active versions (denoted by H;*" and H;®) of them which indicates
that when \; € H;¢, the i-th base learner is active. Formally,

) ; 1
H;Cé{)\i:2_Z and t > (sfcé/\>, foriE{O}UN},
i
, 1
HP 2 {ai =2"and t > <s‘?)q°é a)’ for i € {O}UN}.

(2
7

(6.9)

We denote their sizes by N3¢ = |H5| and N, = |H;*P|. This means that the base learner
with «; is only activated from ¢ = s{P. For example, the base learner with o; = % is
activated from ¢ = s = 8.

Meta Algorithm. Subsequently, we consider making the meta algorithm anytime. Note
that when the aforementioned infinitely many base learners, the meta algorithms such as
MoM (used in UniGrad.Correct and its one-gradient version) and Optimistic-Adapt-ML-Prod
(used in UniGrad++.Bregman and its one-gradient version) are not applicable because they
only support a fixed and number of base learners.

Fortunately, Xie et al. (2024) proposed a variant of Optimistic-Adapt-ML-Prod that can
handle the case of infinite base learners, which is perfectly suitable for our anytime setting.
Specifically, let A; be the set of active experts at round ¢ and let N, = |A;| denote its
size. We initialize Ag = {B°, B¢, By’ }, where Bf® and By are associated with the initial
coefficients Ag and «yg, respectively. At ¢t-th round, a newly added expert ¢ is initialized with
weight Wy ; = 1 and learning rate e;; = % The meta algorithm submits p; € Ay, as

D — et,iWiiexp(es,imy ;)
ti =
Y X e EtiWejexp(erme ;)

, for all i € [IV]. (6.10)
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Algorithm 7 Anytime Variant of UniGrad++.Bregman
1: Initialize: M — meta learner Optimistic-Adapt-ML-Prod variant
{B;} — base learners as specified in Section 2.3 (new scheduled in Eq. (6.8))
Ao = 0 — active set
2: fort=1to T do
3:  Activate the base learners with \; € H° or a; € Hy' ", initialize weights and learning
rates as Wi ; = 1 and ¢;; = %, and add them to A;_q to obtain A;
4: Receive {Xy;}ic|n,) from {B;}ic|n, and p; € Ay, from M via Eq. (6.10)
: Submit x; = ;¢ N PtiXt i, suffer f;(x;), and observe V fi(x;)
6 {Biticnzep {87 ey and B update their own decisions to {41, }ie[n,] using
surrogate losses of {hg(-)}xenze (5.1), {hte,);p(‘)}aieyj"f’ (5.2), and h{(-) (5.2)
7. Calculate myq (6.11) and 7; using {Xt,i}ﬁ\ip x¢, V fi(x¢), and {xt+17i}£\;tl, send them
to M, and obtain (Wij11,..., Wiy n,) via Eq. (6.13)
8: end for

The optimistic vector m; € RVt is designed as
me; = (V fe—1(%¢—1), Xt — X¢3) for ¢ =1, and my; = 0 for ¢ > 1. (6.11)

After receiving the loss vector r = (r¢1,...,7tN,) € RNt where Tt 2 (€, p; — e;) and
Lei = (V fr(x¢t),X¢i), for i € [Ny], it chooses the learning rate as

1
Et4li = , for all i € [IVy]. (6.12)
A \l 5 =+ Zzzs{exp,sc} (TS,’L' - ms,i)2 [ ]

Finally, for each i € [N¢], the meta algorithm updates the weights as

St41,i

Wit1: = (Wtﬁiexp (z-:t,irm- - 5%71'(7%,1' - mm)z)) i for all i € [IVy]. (6.13)

The corresponding guarantee is deferred to Lemma 9 in Appendix D.6.

Note that the meta algorithm required here does not enjoy stability-induced negative
terms as it falls in the Adapt-ML-Prod family. Therefore, this extension cannot be applied to
UniGrad.Correct and UniGrad++.Correct because correction-based methods require stability-
induced negative terms for effective cancellations. On the contrary, UniGrad.Bregman and
UniGrad++.Bregman can be made anytime by replacing their original meta algorithm, i.e.,
Optimistic-Adapt-ML-Prod, with this anytime variant in a straightforward manner algorith-
mically. For simplicity, we only present the anytime extension of UniGrad++.Bregman here,
where the algorithm is concluded in Algorithm 7 and the corresponding guarantee is pre-
sented in Theorem 8. The proof is deferred to Appendix D.6.

Theorem 8. Under Assumptions 1, 2, 5, and without the knowledge of time horizon T,

by setting the learning rate of meta algorithm as Eq. (6.12), UniGrad++.Bregman in Algo-
rithm 5 achieves the following anytime universal gradient-variation regret guarantees using
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; Corollary 1 & 2 Corollary 1 & 2 Theorem 5&6 !

: Small-Loss Gradient-Variance E

Theorem 7 Theorem 8
Game Anytime

Figure 2: The summary of the theoretical results in our work. Specifically, we propose two methods
named UniGrad.Correct and UniGrad.Bregman (Theorem 1 and Theorem 2) to achieve gradient-
variation universal regret. Both methods can be strengthened to the one-gradient feedback scenario
(Theorem 3 and Theorem 4). Besides, our results find important implications in small-loss and
gradient-variance problem-dependent regret (Corollary 1 and Corollary 2), stochastically extended
adversarial (SEA) model (Theorem 5 and Theorem 6), and game theory (Theorem 7). Furthermore,
our results can be extended to the anytime setup (without knowing the time horizon T') in Theorem 8.

only one gradient per round: for any T € [T], we have

O (% log VT) ., when {fi}_, are \-strongly conver,
T T
REG, £ Z fr(xe) — Hélgz fr(x) <10 (g log VT) ., when {fi}]_, are a-exp-concave,
t=1 ==l

OWV;), when {f;}]_, are convex.

7. Discussions

This section provides further discussions to better understand our proposed methods, which
is organized along two directions: (i) a comprehensive comparison between our two proposed
methods (UniGrad.Correct and UniGrad.Bregman; as well as their respective one-gradient
variants), and (%) a detailed technical comparison of UniGrad.Correct with its previous
conference version (Yan et al., 2023).

7.1 Comparison of UniGrad.Correct and UniGrad.Bregman

To achieve the desired gradient-variation universal regret in online learning, we propose two
different methods called UniGrad.Correct and UniGrad.Bregman, each with its own merits and
characteristics. Here we provide a systematic comparison along several key dimensions.
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Table 4: Comparison of the algorithmic structures of different methods. UniGrad.Correct
and UniGrad.Bregman are two different methods to achieve the gradient-variation universal
regret, and UniGrad++-.Correct and UniGrad++.Bregman are their one-gradient variants.

Method Meta Algorithm Base Algorithm Remark
three layers;
UniGrad.Correct MoM (2-layer) OOMD with {Vfi(x:)}¥; N = ©O(logT) base learners,

N gradient queries per round

three layers;
UniGrad++.Correct | MoM (2-layer) OOMD with V fi(x¢) N = O(log T) base learners,

1 gradient query per round

two layers;

UniGrad.Bregman Optimistic-Adapt-ML-Prod  OOMD with {V fi(x;;)}¥; N = 0(logT) base learners,
N gradient queries per round
two layers;

UniGrad++.Bregman | Optimistic-Adapt-ML-Prod OOMD with V f;(x;) N = O(log T') base learners,

1 gradient query per round

Overview of Results. The theoretical contributions of this paper can be organized into
two distinct methodological approaches. As demonstrated in Figure 2, we introduce two
principal algorithms: UniGrad.Correct and UniGrad.Bregman, both of which achieve gradient-
variation universal regret bounds (see Theorem 1 and Theorem 2). Each method can
be further extended to the one-gradient feedback setting (Theorem 3 and Theorem 4),
requiring only a single gradient query per round. Beyond these core regret guarantees,
both methods support a range of important implications and applications. These include
problem-dependent bounds for small-loss and gradient-variance settings (Corollary 1 and
Corollary 2), adaptive guarantees for the SEA model (Theorem 5 and Theorem 6). Un-
iGrad.Correct is particularly well-suited for faster convergence in online games as it can
preserve the its RVU property (Theorem 7). In contrast, UniGrad.Bregman features a sim-
pler structure and is more amenable to extension to the anytime setting, where the time
horizon T is unknown in advance (Theorem 8).

Regret Bounds and Algorithmic Structures. While both methods achieve gradient-
variation universal regret, they differ in the regret bound for convex functions. UniGrad.Correct
provides an O(y/Vrlog V) regret bound for convex functions, while UniGrad.Bregman can
achieve the optimal O(y/Vr) bound for convex functions, matching the lower bound estab-
lished in Chiang et al. (2012). A concrete comparison of the regret bounds can be found in
Table 1. The most fundamental difference lies in algorithmic structures due to their differ-
ent methodologies. As summarized in Table 4, UniGrad.Correct employs a three-layer online
ensemble with N = O(logT) base learners, while UniGrad.Bregman uses a more stream-
lined two-layer structure with the same number of base learners. For both UniGrad.Correct
and UniGrad.Bregman, they require N gradient queries per round, and their one-gradient
variants successfully reduce the number of gradient queries to 1 per round.
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(a) Method of Yan et al. (2023) (b) UniGrad.Correct

Figure 3: Comparison of the three-layer online ensemble structures between the conference
version (Yan et al., 2023) and UniGrad.Correct. The key difference lies in how base learn-
ers are managed: Yan et al. (2023) maintain a separate group of base learners for each
MoM-Mid, whereas UniGrad.Correct employs shared base learners across all MoM-Mid’s,
thereby reducing the total number of base learners from O((log T')?) to O(log T').

Technical Differences. The two methods differ significantly in their core technical ap-
proaches, particularly in how they convert the empirical gradient variation term V to the
gradient variation term Vr (see Lemma 1 and Lemma 6).

¢ UniGrad.Correct: The most important technical feature of UniGrad.Correct is the can-
cellation argument based on the (positive and negative) stability term and the curvature-
induced negative term. By carefully exploiting these negative terms together with the
cascade correction scheme, UniGrad.Correct attains the desired universal regret with a
three-layer online ensemble structure. The development significantly advances the adap-
tivity of the online ensemble framework, providing a principled basis for analyzing the
stability of multi-layer online ensembles.

e UniGrad.Bregman: The key innovation of UniGrad.Bregman is to eliminate the meta
level stability term when converting empirical gradient variation to the desired gradient
variation (see Lemma 6). This is achieved by extracting the negative Bregman diver-
gence arising from the linearization of the regret from the beginning. This mechanism
greatly simplifies the algorithmic analysis and design and provides a useful tool for future
research in adaptive online learning.

7.2 Comparison of UniGrad.Correct with Conference Version

The design of UniGrad.Correct builds upon and significantly improves the correction-based
method presented in our conference version (Yan et al., 2023). While both share the funda-
mental idea of using correction terms to handle positive stability terms, our current methods
achieve superior theoretical guarantees and computational efficiency.

Conference Version. The algorithm of Yan et al. (2023) employs a three-layer online
ensemble, with the final output at each round computed as:

M N
- TOP . L MID ..
Xt = Z Qi Xtj, Xtj= Z 4y.,iXt,5,i-
j=1 i=1
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Here, qf°" is the decision of MoM-Top, which connects with M = O(logT) MoM-Mid.
Similarly, g;";” denotes the decisions of MoM-Mid, which further connects with N = O(log T)
base learners As a result, the algorithm requires maintaining O(MN) = O((logT)?)
base learners in total, as illustrated in Figure 3(a). To handle the positive stability term
l|x¢ — x4—1|%, Yan et al. (2023) leveraged the following cascaded stability decomposition:

e = xe-1l® Sl ® = @1 IT + D2 ary" e — xe—1411%, (7.1)
=1

x50 — xe—1,5112 S M@ 2 — @™ - 17+ D a2 allxe e — X150l (7.2)

According to the second term in the right-hand side of Eq. (7.1), the top-layer correction
term is set as ¢; 7" [|x¢j —X¢—1,5 |2, which generates additional positive term |x¢ j» —x¢—1;+ ||
This term is further decomposed using Eq. (7.2), whose second term in the right-hand side
motives the injection of the middle-layer correction term qé\g-?’iHXtJ*J — thl,j*,iHQ to 7*-th
MoM-Mid to ensure a property cancellation. While this three-layer ensemble and correction
scheme is intuitive and conceptually straightforward, it has a limitation: each MoM-Mid
in the middle layer requires maintaining its own set of base learners, leading to a total
complexity of O(logT) x O(logT) = O((logT)?) base learners. This design introduces

redundancy and unnecessary complexity.

Improved Version in Current Paper. UniGrad.Correct reduces the number of base
learners to O(log T') by carefully restructuring the framework, though the three-layer struc-
ture and cascade corrections are still necessary. As shown in Figure 3(b), the proposed
UniGrad.Correct algorithm produces the final output at each round as:

N M
TOP _ MID
Xt - Zpt,ixt,i7 pt - Z qtj qt,] 9

where {x;;}}¥, are the local decisions returned by the base learners, with N = O(log T').
The meta combination weight p;; is calculated based on a two-layer MsMwC. In fact, this
update can be equivalently understood as follows:

N M M

N M
xi = pixei = (4l as ) xes = ngp(z i) 23 a9 R, (7.3)
i=1 j=1 j=1

i=1 j=1

where the last equality defines new hidden aggregation nodes X;; = N, q' 5%t Com-

pared with the aggregation of x; = ZM 1415 Xt,j and x¢ j = ZN 1 45 Xt,5,i in the conference

version (Yan et al., 2023), it can be seen that hidden aggregations {X; ;}} j=1 use the shared
base learner group, namely, x; ;; = x;; for any j € [M]. This “base learner sharing” design
is the key improvement over the conference version: by requiring the middle-layer meta
algorithm to use a shared set of base learners across all MoM-Mid, UniGrad.Correct reduces
the number of base learners from O((log T)?) to O(log T'), significantly enhancing efficiency.
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The new understanding in Eq. (7.3) can also benefit and simplify the stability analysis
for UniGrad.Correct in a similar cascade way to the conference version (Yan et al., 2023):

M
e =31 l® < llgi®" = @51 + D g 1%y — X141,
j=1

Xti — thl,iHQ-

N
1Rese = Reorge I S @i — @ o I1F + > @i
i=1

This decomposition not only provides a conceptually more straightforward proof for Lemma 5,
but also establishes a principled framework for analyzing even deeper online ensemble struc-
tures. We believe these insights could be of interest to the community.

8. Experiments

This section provides empirical studies to validate the effectiveness of our algorithms.
Through empirical evaluations, we aim to answer the following three questions:

e Universality: Can our methods automatically adapt to the unknown curvature of online
functions and achieve comparable performance with the optimal algorithm specifically
designed for each problem instance?

e Adaptivity: Can our methods adapt to the gradient variation Vp and achieve better
performance than the methods that are not fully gradient-variation adaptive, e.g., the
method of Zhang et al. (2022a), when Vp is small?

o Efficiency: Can our one-gradient improvements UniGrad++ (Correct/Bregman) achieve
comparable performance to their vanilla versions UniGrad (Correct/Bregman) while with
significantly reduced gradient query cost?

Contenders and Configurations. To validate the universality, we compare our meth-
ods with the optimal algorithm specifically designed for each problem instance, as specified
in Section 2.3. For the adaptivity validation, we compare our methods with the USC
algorithm (Zhang et al., 2022a), which enjoys the universal regret of O(v/T) for convex
functions, (9(% log V) for exp-concave functions, and (’)(% log V) for strongly convex func-
tions, respectively. Finally, for efficiency validation, we compare the one-gradient methods
(UniGrad++.Correct and UniGrad++.Bregman) with their vanilla versions (UniGrad.Correct
and UniGrad.Bregman), which require O(logT') gradient queries per round.

In all experiments, we set the total time horizon to 7" = 10,000 and choose the decision
domain X as the unit ball. All hyper-parameters are set to be theoretically optimal.

e All algorithm hyper-parameters are set to be theoretically optimal. To validate the
universality of our approach, we conduct experiments on three datasets from the LIBSVM
repository (Chang and Lin, 2011): ijcnn1, svmguidel, and skin_nonskin. All of these
are binary classification datasets, and we transform the labels to {—1,1}. At each round
t € [T], we randomly sample a data point (a;,y;) from the chosen dataset to construct
the loss function fi(x). Specifically, for the convex setting, we choose the linear loss
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Figure 4: Universality: comparisons on three problem classes—convex, exp-concave, and strongly
convex—across three datasets (ijcnn1, svmguidel, skin_nonskin). Rows correspond to datasets,
columns correspond to problem classes. Our methods are evaluated against the optimal algorithm
specifically designed for each class, showing comparable regret performance.

function f;(x) = max(0,1 — y; - a,; x). For the exp-concave setting, we use the logistic

loss function f;(x) = log(1 +exp(—y; -a/ x)). For the strongly convex setting, we choose
the loss function f;(x) = max(0,1 —y; - a; x) + 1||x/|3.

e To validate the adaptivity of our approach, we first compare our method with USC
(Zhang et al., 2022a) on the ijcnn1 dataset, where the gradient variation satisfies Vp =
O(T). We then construct an online function sequence with Vp = O(1) and perform
the same comparison on this sequence. Specifically, we choose the loss functions as
fi(x) = a/ x + b;,, where ag = [0.2,0.2]", by = 0, and iy = [10t/T]. The parameters
evolve gradually as a; = a;_1 + 0.1 - ¢; and b; = b;_; + 0.1 - & for i € [10], with noise
gi ~ N(0,I) and & ~ N(0,1), such that the total gradient variation of the online
functions sequence can be treated as a constant.

o For efficiency evaluation, we compare the total running time of the one-gradient variants
UniGrad++.(Correct/Bregman) with their vanilla counterparts UniGrad.(Correct/Bregman)
across all three datasets (ijcnn1, svmguidel, and skin_nonskin) in the exp-concave case.
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Figure 5: Adaptivity: comparisons on the adaptivity of our methods against USC of Zhang et al.
(2022a). Our methods outperform USC when the gradient variation Vr is small, e.g., Vo = O(1) in
Figure 5(a), and show comparable performance when Vr = O(T) in Figure 5(b).
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Figure 6: Efficiency: comparisons on the efficiency of our one-gradient improvements UniGrad++
(Correct/Bregman) against their vanilla versions UniGrad (Correct/Bregman). Our one-gradient im-
provements are more efficient than their vanilla versions in terms of the time complexity.

We report the average cumulative losses with standard deviations of 5 independent runs to
obtain convincing results. Only the randomness of the initialization is preserved.

Numeric Results. Figure 4 shows the universality comparison results. Our methods are
compared with the optimal algorithm specifically designed for each problem instance, vali-
dating the universality of our methods, and show comparable performance across different
problem classes and datasets.

Figure 5 presents the adaptivity comparison results. Our methods outperform the USC
algorithm (Zhang et al., 2022a) when the gradient variation Vp is small, e.g., Vo = O(1) in
Figure 5(a), and show comparable performance when Vr = O(T) in Figure 5(b).

Figure 6 shows the efficiency comparison results. Our one-gradient variants are more
efficient than their vanilla multi-gradient versions in time complexity, while maintaining
comparable performance, as shown in Figure 4 and Figure 5.

9. Conclusion

In this paper, we addressed the fundamental challenge of achieving both universality and
adaptivity in online learning by introducing UniGrad, a new approach that obtains gradient-
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variation universal regret guarantees. We proposed two distinct methods, UniGrad.Correct
and UniGrad.Bregman, each with its own technical innovations. UniGrad.Correct employs
a three-layer online ensemble with cascaded correction terms, achieving regret bounds of
O(5 log V) for A-strongly convex functions, (’)(g log V) for a-exp-concave functions, and
O(\/Vrlog V) for convex functions, while preserving the RVU property crucial for fast
convergence in online games. In contrast, UniGrad.Bregman leverages a novel Bregman
divergence analysis to achieve the same bounds for strongly convex and exp-concave func-
tions, but improves upon the convex case with the optimal O(y/Vr) regret. Both methods
maintain O(logT') base learners and require O(log T") gradient queries per round.

Building on these results, we further developed UniGrad++, which preserves the same
regret guarantees while reducing the gradient query cost to just one per round via a surrogate
optimization technique. We also extended our method to an anytime variant that removes
the need to know the horizon 7" in advance, using a dynamic online ensemble framework that
adjusts the number of base learners based on monitoring metrics. Importantly, our results
lead to broader implications and applications, including optimal small-loss and gradient-
variance bounds, novel guarantees for the stochastically extended adversarial model, and
faster convergence in online games.

There are several interesting future directions worthy investigating. The first is to
explore whether the computational overhead can be further reduced by requiring only 1
projection per round for gradient-variation universal regret (Zhao et al., 2022; Yang et al.,
2024). A second direction is to extend our results to unconstrained domains in order to
achieve parameter-free online learning (Cutkosky and Orabona, 2018), thereby broadening
its applicability. Finally, current universal online learning methods assume a homogeneous
setting where all online functions share the same curvature class (convex, A-strongly con-
vex, or a-exp-concave). A more challenging and realistic goal is to handle heterogeneous
environments where the curvature may vary over time. One possible starting point is the
recently proposed contaminated OCO setting (Kamijima and Ito, 2024), which assumes that
the objective functions are mostly uniform but may be contaminated by a small fraction of
rounds — up to some unknown k — where the curvature class differs.
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Appendix A. Omitted Proofs for Section 3

In this section, we provide the proofs for the results in Section 3, including Lemma 2,
Lemma 3 and Lemma 4. For simplicity, we introduce the following notations denoting
the stability of the final and intermediate decisions of the algorithm. Specifically, for any
j € [M],i € [N], we define

T T
SE 23 e = xee 2 S% 2 Y e — Xl
t=2 t=2 (A1)

laf" ~ ai°fIR, and MIDAznqﬁgD—qzﬂajnl.

M=

TOP A
St =
t

I|
¥

A.1 Proof of Lemma 2

In this part, we analyze the negative stability terms in the MsMwC algorithm (Chen et al.,
2021). For self-containedness, we restate its update rule in the following general form:

py = argmin {(my,p) + Dy, (P, Pt)}, DPey1 = argmin {(€ + by, p) + Dy, (P, Pr)}
PEAy PEAy

where Ay denotes a d-dimension simplex, ¢ (p) = Zl 166 i log p; is the weighted negative
entropy regularizer with time-coordinate-varying learnlng rate €;4, and the bias term a;; =
1624 (¢ ; —my ;). Below, we give a detailed proof of Lemma 2, following a similar logic flow
as Lemma 1 of Chen et al. (2021), while illustrating the negative stability terms. Moreover,
for generality, we investigate a more general setting of an arbitrary comparator u € Ay
and changing step sizes €; ;. This was done hoping that the negative stability term analysis
would be comprehensive enough for readers interested solely in the MsMwC algorithm.

Proof [of Lemma 2] To begin with, the regret with correction can be analyzed as follows:

M’ﬂ

T
Z<£t + b, pr —u) <

T
(Dy, (w, Pr) — Dy, (w, Peg1)) + > _ (€ + by — My, py — Prs1)
t=1 t=1

~+

-

(Dy, (Dt+1,Pt) + Dy, (Pt, Pt))

I
—

t

T T
. 1 .
<> (Dy, (u,pt) — Dy, (w, Prs1)) + ( (€ +by —my, pp — Pre1) — QDTJJt(thrlvpt))
t=1 t=1

TERM (A) TERM (B)

—_

T
~3 Z Dy, (Pt+1,Pt) + Dy, (Pt Pt)),
t=1

TERM (C)

where the first step follows the standard analysis of OOMD, e.g., Theorem 1 of Zhao et al.
(2024). One difference of our analysis from the previous one lies in the second step, where
previous work dropped the Dy, (p¢, p;) term while we keep it for negative terms.
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To begin with, we require an upper bound of &;; < 3—12 for the step sizes. To give a lower
bound for TERM (C), we notice that for any a,b € Ay,

d d
1 b/ a:
Dy, (a,b) = (azlog —GH‘bi)—ZZ(Zl Z——i—l)
t i1 Gt bi = eti \bi bi b;
> mmli(wlo aia~+b-) > 32KL(a, b) (A.2)
= oy ra 1 108 bz i N ;0), .

where the first inequality is due to zlogz — x4+ 1 > 0 for all x > 0 and the last step is by
Eti < % Thus, we have

T
TERM (C) > 322 (KL(Pr+1, pt) + KL(pe, Pr)) Z (Hﬁt+1 — il + llpe —ﬁtH%)
t=1 2

T
>16" (1B — P13+ 11 —@H%) > 83 e~ pral?
t=2 t=2

where the first step is from the above derivation, the second step is due to the Pinsker’s
inequality (Pinsker, 1964): KL(a,b) > ﬁ”a — b2 for any a,b € A,.

For TERM (B), the proof is similar to the previous work, where only some constants
are modified. For self-containedness, we give the analysis below. Treating p;11 as a free
variable and defining

p*e arg;nax(ﬂt +b; —my,py —p) — %Dwt (P, p1),
by the optimality of p*, we have
L +by —my = %(th(pt) — Vi(pY)).
Since [Vii(p)]i = %(logpi + 1), it holds that

pt i
lri—my;+ by =

5 S pf = priexp(—2e4i(bei — mui + bei)).
51&, z

Therefore we have

N 1 - 1
(€ +b, —my, pr — Pr1) — ipwt (Pi+1,P) < (€ + by — my,py — p*) — ipwt (P*,pt)

1 1 1 ..
= §<V1/Jt(Pt) - V¢t(P*)aPt - P*> - ipwt (P*J?t) = §D'¢)t (Ptap*) (by deﬁmtlon)
d
1 1
==> —|p i+
1 d Dt i
=3 Z ?(2& i(Cei — i+ bei) — 14 exp(—2e4; (b — my i + bei)))
i=1 "t
1<, d
< 3 > 1,45?,7;(@@' — g+ bei)? =2 eripei (b — mui + bii)?,
i=1 "t i=1
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where the first and second steps use the optimality of p*, the last inequality uses e™* —

1+ 2 < 2? for all z > —1, requiring 1261,i(Lri — myi + bes)| < 1. It can be satisfied by
et < 1/32 and |l;; — my; + bei| < 16, where the latter requirement can be satisfied by
setting by ; = 16e (4 — mt,i)Q:

[ri —mui+ bl <2+16- (2€ +2m7;) <4 < 16.
As a result, we have

2 2)2 2
(brj—my;+ b)) = (ft,i —my; + 1664 (i — M) ) < Al —mu)”,

where the last step holds because |¢;;|, |m ;| < 1 and ;; < 1/32. Finally, it holds that

T d T d
TERM ( ZthPtzftz me; + by)” <8 ZZmPtzftz me;)”.

As for TERM (A), following the same argument as Lemma 1 of Chen et al. (2021), we have

TERM (A) < Z

T d
i D1i) + ZZ (1 N ) JxL(wi; Pri),

Etyi Et—1,

where fkr,(a,b) £ alog(a/b) — a + b. Combining all three terms, we have

¢ d T a1 1
Z<£t + b, pr — u) < Z (Uiyﬁl,i> + ZZ < — ) fKL(ui,ﬁm)
t=1 i=1 Lt =2 =1 \Sti  Et—14
T d T
+ SZ Zﬁt,ipt,i(ﬁt,i —myi)? — 42 |lp: — P13
t=1i=1 t=2

Moving the correction term Y.+, (b, ps — u) to the right-hand side gives:

4 (1 1
> (b, — Z REHED I ( - ) fxr(ui, D)
=1 t—2i—1 \Eti Et—1,

T d T d T
- 82 ZSt,z'pt,z‘(ft,i —myi)? + 16 Z ZEt,z’Ui(ft,i —my)? — 42 Pt — P17
=2

t=1i=1 t=1i=1

Finally, choosing u = e;» and ¢;; = ¢; for all ¢ € [T'] finishes the proof. [ ]

A.2 Proof of Lemma 3

Proof For simplicity, we introduce the notation g; = V f;(x¢) to denote the gradient at
each round. Below we consider the three function families respectively.
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For exp-concave and strongly convex functions, we have

T T
D (reir — mee)? = > ({86 % — Xpie) — (81—1, %1 — X¢—1,+))°
=1 t=1
T T
<2 Z g1, Xy — X i+)2 + 2 Z<gt71> Xpo1 — Xp—1,4+)°
t=1 t=1
<4y g, x —xp40)° + O(1).

~
[y

For strongly convex functions, using the boundedness of gradients, we further obtain

T T T
D (e —mu)® =4 (g% — Xp0)? + O(1) <4G? Y |Ixp — xp0]” + O(1).

t=1 t=1 t=1
For convex function, it holds that
T

T 2
Z(Tt,z‘* - mt,i*)2 = Z ((guXt - Xt,z'*> - <gt—17Xt—1 - Xt—l,z‘*>)

t=1

t=1
T T

<2 Z(gt — 8t—1,Xt — Xt,i*>2 +2 Z<gt71, Xt — X¢—1 + X ir — thl,i*>2
t=1 t=1

T T
<2D*) g — gi—1l? + 2G7 ) Ik — xem1 + Xeir — Xe— 10| (A.3)
t=1 t=1

< 4D*Vp + A(D*L? 4+ G*)SF + 4G*SF .,

where the fourth step is by Assumption 1 and Assumption 2 and the last step is due to the
definition of the gradient variation, finishing the proof. |

A.3 Proof of Lemma 4
Proof By (A.2), the regret of MoM-Top can be bounded as

T 1 M (/jlrop T
TOP TOP __ 5J TOP TOP TOP\2 TOP
> (8", q ej+) < | Zror 108 =rop + D —rop | + 165577 D (G —myi3¥)* — min 4e TOPS ’
=1 53 Lj* =15 =1 JE[M] 4€

where the first step comes from fky,(a,b) = alog(a/b) —a + b < alog(a/b) + b for a,b > 0.
The first term above can be further bounded as

M ~ToP M TOP\2 M _Top
1 Gy 1 j=1(57") =155 1 1
1o %8 Grop +]ZI c1or = Z1on %8 (ror ) zj, (1o = 17 8 353 (eTon)e 2 T4,

where the first step is due to the initialization of 41" = (e TOP) /E]_ (e TOP) . Plugging in
the setting of J°” = 1/(Cp - 27), the second step holds since

= £ . =
402 &= T L2430 — Co 2 = Cy’

60



ADAPTIVITY AND UNIVERSALITY: PROBLEM-DEPENDENT UNIVERSAL REGRET FOR OCO

Since 1/£°" = Cp - 27 > 2C), the regret of MoM-Top can be bounded by

N

a C
+ 162107 S (47 —migh)? — =

t=1

1 1
ZthOP? qgop - ej*> < £TOP IOg 302( TOP) STOP " O( )
t=1 ]

MID __ 2€TOP

Next, using Lemma 2 again, the regret of the j*-th MoM-Mid, whose step size is €}’

for all t € [T'] and i € [N], can be bounded as

d MID MID log N TOP d MID MID 2 CO MID
DGR A —eir) < 5oar + 326577 Y (B e — iR )" — ST
t=1 J t=1
TOP MID I\/HD MID \ 2
165 qum s tJ i~ M, z) )
t=11i=1

where the first step is due to the initialization of pi"’; = 1/N. Based on the observation of

TOP TOP\2 __ /pMID MID MID MID MID mMID 2
( _mt]) *<£t,j mt]7qt] <§:qt,] ’Le,jl_ t,j,i)?

where the last step uses the Cauchy-Schwarz inequality, combining the regret of MoM-Top
and the j*-th MoM-Mid finishes the proof. |

A.4 Proof of Theorem 1

Proof The proof proceeds in three steps: we first decompose the total regret into meta and
base regret, then analyze the meta regret and base regret separately, and finally combines
them to achieve the final regret guarantees.

Regret Decomposition. For simplicity, we let x* = argminy f;(x) and g; = V fi(x¢).
For A-strongly convexr functions, we decompose the regret as

T

\ T T
REGT < Z(gt,xt — Xy ir) — 5 Z llx¢ — Xt,i*H2 + th(xt,i*) -
=1 =1 =1

1M
=

META-REG BASeE-REG

where Ajx < A < 2+, For a-exp-concave functions, we decompose the regret as

T T T T
(6%
REGT < Z<gt,Xt — X)) — 9 Z<gt,Xt - Xt,i*>2 + th(xt,i*) - Z fe(x7),
t=1 t=1 t=1 t=1
META-REG BASE-REG

where a;+ < a0 < 2ai+. For conver functions, we decompose the regret as

T T T
RECr = Y filxe) = D frlxeir) + > felxeir) = > fr(x*
- =1 =1

t=1 t=1

~

META-REG BAse-REG
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Meta Regret Analysis. Recall that the normalization factor Z = max{G D+~ D? 1+
AMIP D2+ 24TOPY We focus on the linearized term ZtT:1<gt,xt — x¢+) and let Vi, =

Z%FZQ(@IJIDZ —m}'2 .)?. Specifically,

T T T T
S gt xt — X)) =2 Y (l,pr—ex) =2 (be,pr — q)')2) + Z L, g2 — ex)
1 =1 =1 =1

~+

T T
-7 <£;rop’ thOP _ ej + ZZ eMID, lltw]m . TOP Z Z q OPHq}:\,[;D _ qy“i]”%
t=1 t=2j=1
N
+ ,YTOPsMID _ ,YMID Z Z th’;)P Z qllfv,[;z HXt,i o Xt—l,i”z + VMIDS%J*
t=2 j=1 i
T N T N
YD @R s = xemnal® = MDY R e — xe-vll?
t=21=1 t=21i=1
Z N o o ,
< 8}9})1 302( TOP) 32Z5T PV* ST P (’Y ) MID NIIDs%’i*

T M
7 Z Z Gy Z Qi e = xe-1all® =" 30 arg" lar” — a1

t=2j=1 i=1 t=2 j=1
< 4 log N
— grop 303( TOP)

]*
LA Z Z G Z a1 = xi—1l” = 9" Z Z ais" gy — @y 117, (A4)

t=2j=1 t=2j=1

C
+ 3227V, — 705%013 + PMP ST (requiring Cp > 4~4™°7)

where the first step is due to x; = Zi]\il prixe,i and defines ¢4 ; £ 7<Vft(xt) x¢4). The third
step is due to the definition of £;°F and €}"" as defined in Eq. (3.16) and Eq. (3.17). The
fourth step uses the analysis of MoM as show in in Lemma 4.

For A-strongly convex functions, applying Eq. (A.4) and omitting the stability and
curvature-induced negative terms, we bound the meta regret by

T T
A
META-REG < > (g, % — X¢,+) — 3 > ke — X0 12
t=1 —
Z N TOP MID QX A a 2
< —o5 log 3C3ET)? + 82257 Ve 4+ ST = 5D I = x|
J* =
Z N (128G26T0p . )\> XT: th — X4 H2 4 ’)/MIDS%S
= * ,7,* ,'*
j 300( TOP) zZ 7 2 Pt ¢
AN  512ZG?* . 229G2N
<2ZCpylog — + log + MPSYE i, (A.5)
3 A 3(3’3}\2 "

where the third step leverages the property of our universal optimism design as given in

Lemma 3 and the last step again follows from Lemma 13 and requires £;0" < ¢,°" = = 25’\6%2
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For a-exp-concave functions, applying Eq. (A.4) and omitting the stability and curvature-
induced negative terms, we bound the meta regret by

T
META-REG S Z<gt7 Xt — Xy, Z* — — Z i, Xt — X, Z* 2
t=1 23
Z N aL
< 1 327T0%Y MIDGX . — —
= SJT?P 0g 300( TOP) + € * T,i* 2 ; 8, Xt — th
Z N 128¢707 a) T
gt>Xt _ Xt * _|_ ’}/MIDS%E .
R G R YRR :
AN 5127 220y
< QZC 1 - MIsz - A6
010g 3 + 0og 3030(2 + T, ( )

where the third step leverages the property of our universal optimism design as given in
Lemma 3 and the last step follows from Lemma 13 and requires ;7" < e;°" = = %
For convex functions, applying Eq. (A.4) while retaining the crucial stability and curvature-

induced negative terms, the meta regret can be bounded by

T
META-REG < Z(gt,Xt — Xp+)
=1
(A4) 7 N C
< -2 log + 322V + M SF i — 51

£} 302( TOP)

N
Y Z Z aig" > a5 Ixei — xe-ral® — 4" Z Z sl — a3 1T (A7)

t=2 j=1 i=1 t=2j=1

N 128 D707 64G? 64(D%L% + G?)
< 1 MID Sx . SX
= gror %8 303@;9?) Tz T )t 7

Co M N ) T M
- oSSl s~ sl - YD i i =
t=2j=1 i=1 t=27=1
4N 4(D*L?% + G*
< 2ZCplog 5 32D\/2VT log (512N D2V /Z?) + ( 'yMID> ST+ 7 T >5§5
Co N ) T M
—_ 2 TOP _ MID Z Z thJOP Z qt,j,i i Xt—l,iH oP Z Z qTOP”qMID _ qivu]i i Hl
t=2 j=1 i=1 t=2j=1
(A.8)

64G?

AN
<2ZCplog - + 32D, /2Vy log (512N D2V /2?) + ( + 7M‘D> S i

|Xt,z' - thl,iHQ

N
(G ) eSS
=1

t=2 j=1

2D2C;  C 2D2C L

f (22 DY s (B2 ) S -
t=2 j=1

(denoting Cy = 128(D%L? + G?))

i
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AN 64G2
< 22Chlog —- + 32D\/2Vr log (512N D2V /Z2) + (Z + vM’D> ST

(requiring y*°" > 2D2C1/Z,yM® > C1/Z, and Cy > 4D?C1/Z)

where the third step is due to Lemma 3, and ;°" < 1/2 under the requirement Cop > 1.

The fourth step is by Lemma 12 and requiring Cy > 8D and the fifth step is by Lemma 5.

Base Regret Analysis. For A-strongly conver functions, the i*-th base learner guaran-
tees the following;:

G2 2 Qx 1 2 1 X
log (1 + 2 Vi + 20 L2S%,. ) + 2kD? — S5SF . + O(1)

BAseE-REG <
- 4 8

Z*

1 1
log (14 2A\Vr) + (32L2G2 - Sn) SF i + ZRDQ +O(1),
where the first step is due to Lemma 19 and Y7, |V fy(x¢4+) — Vfi1(xe—1.00)||> < 2V +
2LQS§SJ* and the last step follows from log(1 + ) < x for x > 0 and Ajx < A < 2\+.
For a-exp-concave functions, the i*-th base learner guarantees the following;:

32G?
<

" L2 1 1
% VT + azS%%ﬂ) + §I‘$D2 — ZHS/?,,L'* =+ 0(1)

16d
BASE-REG <

Z’*

1 1
8 < + 4rkd 4rd

32d a 412 1 1
= —_—log{l+ — —— — =k | S p+ =D+ 0(1
< og< +4/<chT)+< - 4n> ST +2/<a + O(1),

where the first step is due to Lemma 20 and Y7, |V fi(x¢4+) — Vifio1(xe—1.00)||> < 2V +
2LQS§SJ* and the last step follows from log(1 + z) <z for x > 0 and a;+ < a < 2.
For convex functions, by Lemma 21, the ¢*-th base learner guarantees the following:

1
BAsE-REC §5D\/1 +2Vp + 20283 ;1 + kD* — 75T +0(1)

4
where the first step is due to Zthz |V fe(xeiv) — V]“,5,1(><t,17i*)H2 <2Vp + 2LQS%J*.

1
< 5D+\/1+2Vy 4+ kD?* + <1ODL2 — ru) SFi +0(1),

Overall Regret Analysis. For A-strongly convex functions, the overall regret can be
bounded by

AN 512ZG? . 2G?N  32G?
REGT < 2ZChlog — log (1 + 2\V;
7 2200 log —= + i log gy - los (14 2017)
D2
+ <,7MID + 32L2G2 _ ’Z) S%(“,i* + KVT

1
Lo <0 (A log VT) ,

where the last step requires x > 4y 4 128 L2G?2.
For a-exp-concave functions, the overall regret can be bounded by
4N 5127 22N 32d
REGr < 2ZC)log — 1 —1
T> oog3+ o 0g30§a2+a og(

+ <,_YMID + 471/2 1

1o
14—
+ 4/£dVT>

k4"

1 d
) S’?,i* + EKZDQ + O(].) S O (a log VT) 5
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where the last step requires x > 4yMP 4 8L2.
For convex functions, the overall regret can be bounded by

AN
REGr < 2ZC)log — + 32D\ /2Vy log (512N D2Vy/Z?) + 5DV/1 + 2Vy

4G? 1
+ (65 +AMIP 4 10DL2 — 4H> ¥+ wD? +0(1) < O (VVrlog Vi) ,

where the last step requires x > 4™ 4+ 40D L? + 256G2/Z.

TOP

At last, we determine the specific values of Cy, v™F, and v™P. These parameters need

to satisfy the following requirements:
Co>1, Cy>8D, Cy>4y™", Cy>4D?Cy/Z, 4™ > C1/Z, and 4™ > 2D?C,/Z.
As a result, we set
Cp = max {1, 8D,4VT0P,4D201} L ATOP = Oy, AMIP = 2D2(, (A.9)

where Z = max{GD + y™MP D2, 1 4 AMPD? 4 2471 and C; = 128(D?L? + G?). [ |

Appendix B. Omitted Proofs for Section 4

In this section, we provide the omitted details for Section 4, including the proofs of Lemma 6,
the correctness of Lemma 6 under Assumption 5, and Theorem 2.

B.1 Proof of Lemma 6

Proof By inserting intermediate terms, we have

T T
Vr <4 IV filxe) = Vi) I + 4 [V filxei) = Vfeor (xea) I

=2 t=2
T T
+4Y |V i) = Vo1 (1) [ 443 [V frmt (e-10) = V fom1 (x-1) |12
t=2 1=2
(4.2) T ) T ) T
< 8L Zth (x¢ 4%, %¢) +4Vp + 4L Z l|x¢,i+ — X¢—1,+]|° + 8L Z Dy, (X¢—1,%,X¢-1)
t=2 t=2 t=2
T T
< AVp + 161 Dy, (xei0, %) + 4L D [1x¢0 — X1+ |, (B.1)
=1 t=2

where the first step introduces intermediate terms V fy (x¢ 4+ ), V fi—1(x¢4+), and V f;_1(x—1,4+),
the second step uses Proposition 1 and the standard smoothness Assumption 3, and the last
step combines two summations into one by shifting the indexes of t. |
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B.2 Proof about Relaxed Smoothness

In this part, we show that Lemma 6 also holds under the relaxed Assumption 5. To
begin with, we present the following lemma, which shows that Assumption 5 is a sufficient
condition for Eq. (4.2) on X. Using Lemma 7, we can see that Lemma 6 also holds under
Assumption 5.

Lemma 7. Under Assumption 5, for any online function f(-) satisfying Assumption 5, it
holds that ||V f(x) — V f(y)||* < 2LDy(y,x) for any x,y € X.

Proof To begin with, we present the self-bounding property (Srebro et al., 2010), which
is useful in proving our result — if a function f : R¢ — R is L-smooth and bounded from
below, then for any x € R%, it holds that

IVFx)I? < 2L (f(X) - y@ﬂ{j(ﬂ) : (B.2)

Next, we aim to prove that if we only need (B.2) on a bounded domain X, we require
smoothness only on a slightly larger domain than X. To see this, we delve into the proof
of the self-bounding property. Specifically, for any x, v € R?, it holds that

L .
(=VF(x),v) = SIVI* < F(x) = fx+v) < f(x) = inf f(y),
yERd
where the first step requires smoothness on x and x 4+ v. Consequently, by taking maxi-
mization over v, it holds that

: L, o 1 2
£69 = inf f(y) = sup (=Y. v) = 5IvIP = IV
which leads to the self-bounding property (B.2) by taking v = —%V f(x). The above proof
is from Theorem 4.23 of Orabona (2019). This means that for the self-bounding property, we
only require the smoothness to hold for any x € X and x — %V f(x). Under Assumption 4,
this can be satisfied by requiring smoothness on a slightly larger domain than X', namely,
X 2 {x+b|lxeX,beG/L B}

Now we are ready to prove the final result. To begin with, we define a surrogate function
of g(x) £ f(x) — (Vf(x0),x) for any x € X', where xo € X. Due to the above property we
have just proved, by requiring smoothness on Xy, we have

IVg(x)|* < 2L (g(X) — inf g(Y)) :
yER4
Denoting by y* € argminycga g(y), the above inequality equals to

IVf(x) = Vf(x0)|I> < 2L (f(x) = (Vf(x0),%) = f(y*) + (V[ (x0),¥"))
=2L(f(x) = f(y") = (Vf(x0),x = ¥7)),
due to the definition of g(-). The proof using the self-bounding property is from Theorem

2.1.5 of Nesterov (2018). Finally, we note that g(-) is minimized at y* = xq, leading to
|V f(x) = Vf(x0)||* < 2LDy(x¢,x) for any x,xo € X, which finishes the proof. [ |
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B.3 Proof of Theorem 2

Proof For simplicity, we denote by g; £ Vfi(x;). We start by decomposing the total
regret into the meta regret and the base regret. We then analyze the meta regret separately,
followed by tailored proofs for different classes of loss functions.

To start with, the meta empirical gradient variation V3 can be bounded as

T
Ve =Y IV fi(xe) = V foot (xe-1)||

t=2
T T
<4 (Vi) = Ve |2 + 4D IV fi(xei) = Vo1 (x0) |12
=2 =2
T T
+4Y |V femr(xe) = Vi (xem1,0) |12+ 43 IV fem1 (%e-1,0) = V fimr (xe1) |12
i=2 1=2
T T T
< SLZ Dy, (Xt,i,%t) + 4V + 4L Z %2 — %¢—1.4|* + 8L Zth (X¢—1,6, X¢—1)
t=2 t=2 t=2
T
< AVp +4LSF,; + 161 Dy, (Xei,%1). (B.3)
t=1

Similarly, we denote by ‘_/T,i = Zthg v ft(Xt,z) -V ftfl(xtfl,i)||2 the empirical gradient
variation of the i-th expert, for i € [N]. Then V7 ; can be bounded as

T
Vi <33 IV filxeq) = V()P + 32 IV fu(x*) = V fia ()]
t=2 t=2
T
+3) IV fim1(x*) = V fro1(xe—1,0)|?
t=2
T T
<6LY Dy (x*,x43) +3Vr +6L> Dy, (x*,x4-1,)
t=2 t=2
T
<3Vp+12L) Dy, (x*, x¢). (B.4)
t=1

Regret Decomposition. For A-strongly convex functions, we decompose the regret as

T T
A
RECT < ) (8¢, %t — Xp,ir) — 5 D llxe — x4+
t=1 =1

MEeTA-REG

T T T
Py 1
+ E (V fr(Xg,i%), Xp 0 —X*) — i E ||x* — XM*HQ ) g Dy, (x*, x1+), (B.5)
t=1 t=1 t=1

Base-REG
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where A\« < A < 2\;«. For a-exp-concave functions, we decompose the regret as

T T
Q
REGy < Z(gtaxt — Xt i*) — b) Z 8t Xt — Xt ,i+) )
t=1 t=1
META-REG
T o L
+Z<vft(xt,i*)7xt,i* - Ve Z V (%) — X¢,i*) —*prt X", X0+
t=1 t=1 t=1

BASE-REG

(B.6)

where a;+ < a < 2a4+. For conver functions, we decompose the regret as

T T T T
REGr = ) fi(xi) — Z fe&eie) + 3 filxeir) = Y fi(xY) (B.7)
t=1 t=1 t=1
T T T T
= Z<gt7 Xt — Xt i + Z Vft Xt K Xt,i* - X*> - Z ,th (Xt,i* ) Xt) - Z th (X*v Xt,i*)
t=1 t=1 t=1 =

META-REG BAse-REG

Meta Regret Analysis. We adopt Optimistic-Adapt-ML-Prod (Wei et al., 2016) as the
meta learner, and present its regret analysis below for self-containedness.

Lemma 8 (Theorem 3.4 of Wei et al. (2016)). Denote by p; € Ay the algorithm’s weights,
L, € [0,V the loss vector, and my; the optimism. With the learning rate in (4.7), the
regret of Optimistic-Adapt-ML-Prod (4.5) with respect to any expert i € [N] satisfies

T T
Z L, pt — €;) <CO$1+Z (rei —me;)? + Ca,
t=1 t=1

where e; is the i-th standard basis vector, Cy = /log N—}—log(l—}—%(l—i—log(T—i— 1)))/vl1og N,
and Cy = 1(log N +log(1 + ¥ (1 +log(T +1)))) + 2y/Iog N + 16log N.

Here we adopt 4;; = w%(gt, Xt i) —i—% € [0,1] such that (£, p, —e;) = 20%<gh Xt — Xt ).
Besides, since the number of base learners N = O(logT') as explained in Section 2, the
constants Cp and Cy are in the order of O(loglogT') and can be ignored, following previous
convention (Luo and Schapire, 2015; Gaillard et al., 2014).

For A-strongly convez functions, according to Eq. (4.6), we have my ; = 0 where \; € H®.
By Lemma 8, the meta regret in (B.5) can be bounded as

T T

A
META-REG = 2GD Z<£t’pt — 67;> — 5 Z th — Xt7i*H2
t=1 t=1
T T
< C'o\ 4G?D? + Z<gt,xt —Xy+)% — = Z |5, — %4+ ||* + 2GDCq
t=1 t=1
S C() G2D2+GQZ|’X7§—X7§Z H - *ZHXt —th H2+2GDCQ
t=1 t=1
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CoG? A

- > > e = x|, (B.8)

< 0(03) + (

where the last step omits the ignorable additive Cy or Cs terms and is due to AM-GM
inequality (Lemma 18). Cj is a constant to be specified.

For a-exp-concave functions, according to Eq. (4.6), we have m;; = 0 where o; € H™P.
By Lemma 8, the meta regret in (B.6) can be bounded as

T T
«
META-REG < CO\J 4G?2D? + Z;(gt, Xt = Xti0)° = 5 ; 81, Xt — Xt i+ ) 2 4 2GDC,
Co a\ < 9
< 0(04) + ﬁ - 5 Z<gt7xt - Xt7i*> , (B.Q)

t=1

where the last step omits the ignorable additive Cy or Cy terms and is due to AM-GM
inequality (Lemma 18). Cj is a constant to be specified.

For conver functions, according to Eq. (4.6), we have my; = (g:—1,%¢ — X¢,;)/(2GD) for
the convex base learner. As explained in Section 4, although x; is unknown for now, we
only require the scalar value of (g;_1,x;). Denoting by z = (g;_1,%;), it actually forms a
fixed-point problem of z = (g;_1,%:(2)), where x; is a function of z since x; depends on
Dt,i, Pty relies on my;, and my; depends on z. Such a one-dimensional fixed-point problem
can be solved with an O(1/T') approximation error through O(logT') binary searches, and
aggregating the approximate error over the whole time horizon will only incur an additive
constant to the final regret. As a result, such an optimism setup is valid. Consequently, the
meta regret in (B.7) can be bounded as

T
META-REG < C’o\ AG2D? 4+ gy — ge—1, Xt — X¢i+)2 + 2GDCa < Co\/1 4+ D2V + Cs
t=1

(B.3) T
< Coy|4G?D? + 4DV + 412D2S% . + 16LD? Y Dy, (X1,i%,X1) + 2GDCs
t=1

T
S O( \V VT) + CO\J 4L2DQS§SJ* + 16LD2 Z th (Xtﬂ'*,Xt)
t=1

Co & L LG

8C’ ST i%> (B.10)
where the second step adopts Assumption 1. Note that Cs is used to ensure the positive
Bregman divergence term to be canceled and will be specified in the end.

Base Regret Analysis. For A-strongly conver functions, according to Lemma 19, the
base regret can be bounded by

G* log (1 + Ai*G2VT7,~*) +0(1)

Z‘*

BASE-REG <
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2
S iG IOg (1 + 3)\Z*G2VT + 12)\2*LG Zth x* , Xt Z*)) + 0(1)

> t=1
192LG2

1
<0 <)\ log VT> + O(log Cﬁ prt x* , X¢ z* (B.ll)

where the last step uses log(1 + z) < z for any = > —1.
For a-exp-concave functions, by Lemma 20, the base regret can be bounded by

16d =
6 log (1 + adVTﬂ»*> +0(1)

16d 30+ 12 z*L
log <1+ ZZ Vr + a Zth x* x“*)>+(’)(1)

BASE-REG <

<
d 192L
<O (oz log VT) + O(logC7) + —— Zth X", X i+) (B.12)

where the last step is by log(1 + z) < x.
For convex functions, by Lemma 21, the base regret can be bounded by

BAse-REG §5Dm - ZS%J-* +0(1)

T
§5D\l 1 + 3VT =+ 12LZ th (X*7 Xt,i*) — ZSEIE,Z'* + 0(1)
t=1

5DL
< O(L/Vr) + O(Cs) + 20 ; Zth (X%, Xp.0) — Zs;s (B.13)

Overall Regret Analysis. For A-strongly convexr functions, plugging Eq. (B.8) and
Eq. (B.11) into Eq. (B.5), we obtain

T
— = Zth x* \ Xt i)

1 192LG? 1
REGr <O ()\ logVT) + O(CS +10g06) + ( 92LG )
t=

CoD? N\ & )
_ = E _ L7 < —
+ ( 203 2) 2 ”Xt Xtﬂ, H S O ()\ log W) y

by choosing C3 = 2Cy/\ and Cg = 384LG>.
For a-exp-concave functions, plugging Eq. (B.9) and Eq. (B.12) into Eq. (B.6), we obtain

1920 1
REGTr <O (Z log VT> + O(C4 + log C?) + (9 - ) prt x* ) Xt, 1*

204 b T e
by choosing Cy = 200/@ and C7 = 384L.
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For conver functions, plugging Eq. (B.10) and Eq. (B.13) into Eq. (B.7), we obtain

5DL LC
REGr < O(VVr) + O(Cs + Cs) + ( - 1) ZDﬁ (x*, Xy,i%) (800 Z) T
Co d
+ (500 =1) P x) < OV,

t=1

by choosing C5 = Cy, Cs = 5DL, and k > L/2.
Note that the constants C3, Cy, Cs5, Cg, C7, Cg appear only in the analysis, and hence our
choices of them are feasible. |

Appendix C. Omitted Proofs for Section 5

In this section, we provide the proofs for the regret guarantees of the efficient algorithms
presented in Section 5, including the details of base learners’ updates on surrogates, the
proofs of Proposition 2, Theorem 3, and Theorem 4.

C.1 Details of Base Learners’ Update

Base Learners. To begin with, we duplicate the candidate coefficient pool (2.5) for both
the exp-concave coefficient o and the strongly convex coefficient A, denoted by H®*P £ H and
H*¢ £ H. Consequently, denoting by NP = N¢ £ |7{| the size of candidate pool, for each
a; € HOP and \; € H*, where i € [N®*P] and j € [N®*¢], we define corresponding groups
of base learners for optimizing exp-concave and strongly convex functions. Specifically, for
a-exp-concave functions, we define a group of base learners {Bpr}ie[ ~1, Where the i-th base
learner runs the algorithm below:

Xt; = arg min {(Vhffljl7i(xt_17i), x) + Dy, (%, 2“)} ,
xEX

(C.1)

R¢41,; = argmin {(Vhtef;p(xt,i),@ + Dy, , (x, )A(“)} ,
xeEX

where 1 ;(x) £ %XTUMX, Ui = (1+ O” )I—l— gy VheXp( )heXp(xs )7, a; is the i-th
element in H*P, and 3" (-) is a surrogate loss functlon for Bpr, defined as

BT fu(xe), x — x1)2.

hei (%) 2 (V fi(xt), %) + 1

Similarly, for A-strongly conver functions, we define a group of base learners {B{°};c(ysc),
where the i-th base learner runs the algorithm below:

Xei = Mx[Reg — 0, VA1 (ke—10)], Rewr = O [Rei — 0, VAT (%4,4)], (C.2)

where 1 ; = 2/(1+ \it), A; is the i-th element in H*¢, and hi“z() is a surrogate loss function
for B;¢, defined as

Ai
hi5(x) £ (V fi(xe), x) + ZHX —x*.
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For convex functions, we only have to define one base learner B¢, which updates as

Xei = xR — i Vifimi(xi—1)]s XKoo = O [Xei — 06,V fe(x1)], (C.3)

where 7;; = min{D/\/l + 2;12 |V fe(xti) — V feo1(x¢—1,4) %, 1}. Finally, we conclude the
configurations of base learners. Specifically, we deploy

{Bi}iein) = By Yiepvexs) U {B5 }icqvee) U {B°}, where N £ NP 4 N* 1, (C.4)
as the total set of base learners.

C.2 Proof of Proposition 2

Proof For simplicity, we use g = Vfi(x;). For the meta regret, we use Adapt-ML-
Prod (Gaillard et al., 2014) to optimize the linear loss £ = (f1,...,4 N), Where £;; =
ﬁ(ghxtﬁ + % € [0,1], and obtain the following second-order bound by Corollary 4 of
Gaillard et al. (2014),

T
> (g x — Xpix) = QGDZ L, pt — ei)
=1 =1

T T
< \|loglog Ty (8, pr — €i)? < JloglogTZ@t,xt — Xy 40) 2.
t=1 t=1

For a-exp-concave functions, it holds that

T

T
META-REG 5 IOg 10gTZ<gt, Xt — Xt,i*>2 — O;l* Z<gt’ Xy — Xt,i*>2
t=1 t=1

< loglogT < loglogT

Qai* - o ’ (by Qly* S (6% S 2@7;*)

where the second step uses AM-GM inequality (Lemma 18) with @ = ay«. To handle the
base regret, by optimizing the surrogate loss function h P using Online Newton Step (ONS),

it holds that

dDG ey 2dD D
BASE-REG S ﬁ ].OgT < M
Qy* (6

log T,

where Gexp = maxye v se(r],ic(N] I Vhe; (X)| < G + GD represents the maximum gradient
norm the last step is because a < 2q;«. Combining the meta and base regret, the regret
can be bounded by O(dlogT).

For A-strongly conver functions, since it is also @ = A\/G? exp-concave under Assump-
tion 2 (Hazan et al., 2007, Section 2.2), the above meta regret analysis is still applicable.
To optimize the base regret, by optimizing the surrogate loss function A5, using Online
Gradient Descent (OGD), it holds that

2 2 D 2
BASE-REG < g\;fc(l +1ogT) < <G_;)(1 +logT),

72



ADAPTIVITY AND UNIVERSALITY: PROBLEM-DEPENDENT UNIVERSAL REGRET FOR OCO

where Gy £ maxyey rerr]ic(v] || VA5 (X)]] < G+ D represents the maximum gradient norm
and the last step is because A\ < 2)\;x. Thus the overall regret can be bounded by O(logT)).

For convex functions, the meta regret can be bounded by O(y/T loglogT), where the
loglog T' factor can be omitted in the O(-)-notation, and the base regret can be bounded
by O(V/T) using OGD, resulting in an O(v/T) regret overall, which completes the proof. W

C.3 Proof of Theorem 3

Proof Recall that we denote by g; = V fi(x;) for simplicity. We first give different regret
decompositions, then analyze the meta regret, and finally provide the proofs for different
kinds of loss functions. Some abbreviations of the stability terms are defined in (A.1).

Regret Decomposition. For A-strongly convex functions, we have

T T T T
Aie
REGT < E fr(xe) — E fi(x*) < E (g, xt — x*) — 5 E (B —X*”2
t=1 t=1

t=1

T
= Z<gt7xt — X)) — A ||Xt — X i ’ +th o (Xt,i%) th o (
t=1

t=1

META-REG BASE-REG

where the first step is by A < A < 2)\;» and the last step holds by defining surrogate loss
functions hy(x) 2 (g, x) + %Hx — x;||2. Similarly, for a-exp-concave functions, the regret
can be upper-bounded by

T

Qjx
REGT < Z(gt,xt — Xt i) — —
=1

7 <gt7 Xt — X ‘l‘ Z h?zg Xt z* Z h?zg

META-REG BASE-REG

by defining surrogate loss functions hyy" (x) £ (g, X) + % (g, x — x¢)*.
For convex functions, the regret can be decomposed as:

T T

REGT < Z<gt7 Xt — Xg) + Z<gt7 Xp i —X7) .
t=1 t=1

META-REG BASE-REG

Meta Regret Analysis. The structure of the meta regret analysis in this part parallels
that in Appendix A.4. Recall that, we let V, = ZtTZQ(@“;D o — MR .)? for simplicity.
For A-strongly convex functions, applying Eq. (A.5) with the stability and correction-

induced negative terms, the meta regret satisfies

(A.5) 4N 512ZG? . 220G2N — Co
META-REG < 2Z0010g?~|— N og Cg)\g +7MIDST,z‘*— D T
T M
LI Z a3 %es — Xe—vll* =" Z Z ay"lar” - a1,01 (C9)
t=2 j=1 t=2j=1
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using Lemma 13 and requiring €707 < &7 = a 2)% G*Z

For «-exp-concave functlons applying Eq. (A.6) with the stability and correction-
induced negative terms, the meta regret can be similarly bounded by

(A.6) AN 5127 220 , Cy
META-REG < 2ZCplog 5 +— log 30702 +MPST e — —STOP
T M T M
YIS T Z @ 1% — xi—1ll> = YN g — @b 13 (C6)
t=2j=1 t=2 j=1

TOP TOP A apxZ
using Lemma 13 and requiring €jx <& = Fa

For convex functions, according to Eq. (A.8) in Appendix A.4, the meta regret satisfies

T
META-REG < ) (g, % — X,ir)
t=1

4N 64G> C

CO T M N )
STOP _ MID Z Z qZ?P Z q?gg th,i _ Xt—l,z‘H _ ,yTOP Z Z q OPHq}t\i]ID _ q}fvmi] ”1,

t=2 j=1 i=1 t=2j=1
where Cy = 128(D?L? + G?).

Base Regret Analysis. In this part, we first provide different decompositions of the
empirical gradient variation defined on surrogates for strongly convex, exp-concave, and
convex functions, respectively, and then analyze the base regret in the corresponding cases.
For A- stmngly convez functions, we bound the empirical gradient variation on surrogates,
ie., Vi £ S VRS (xein) = VB i (Xem10) %, b
T

Vise = 3 I8 4 Air (X0 — x1)) = (@11 + i (%10 — x1-1)) 12
t=2

T T
<2 g — g ll® 4+ 205 ) (ke — x¢) — (xe—1,i0 — x¢—1) ||
< AVp + (4+4AL%)SF + 45F ., (by A € [1/T,1])

where the first step uses the definition of VA5 (x) = gt + \i(x — x¢). For a-exp-concave
functions, we control the V;if AT, VAR (x,i0) — VA o (xi-140) || as

T
ViR = (g + cirgegy (ke — x1)) — (81 + 181 (Xi— 1,00 — %¢-1))||?
t=2
T T
g — g1 + 202 > llgeg) (xeir — x¢) — 818/ 1 (Xe—1,ir — x¢—1)]|”
t=2 t=2
T
<AV +4L2SF + 4D gigl — &gl (by (3.2))

t=2
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T
4GS (ke — %) — (Re-10 — X011 (by a € [1/T,1])
t=2

< CyVr + C1oS7F + 8G*SF v,

where the first step uses the definition of VA P(x) = g + igig) (x — x;) and the last
step holds by setting Cy = 4 4+ 32D?G? and Cyg = 4L? + 32D?G?L? + 8G*. For convex
functions, the empirical gradient variation Vj‘iﬂ-* 2 5T IV Fi(xt) = Vio1(x¢-1)||? can be
bounded by VTCJ* < 2Vr + 2L25%. To conclude, for different curvature types, we provide
correspondingly different analysis of the empirical gradient variation on surrogates:

AVr 4 (4 +4L%)S¥ 4 4S% ., when {f:}_, are A-strongly convex,
Vf{;i’eXp’c} < CoVr + CroSF + 8G4S§Z~*, when {f;}1_; are a-exp-concave, (C.8)
2V + 2L2 5%, when {f;}_; are convex.

In the following, we analyze the base regret for different curvature types. For A-strongly
convex functions, by Lemma 19, the ¢*-th base learner guarantees the following:

G2 [ 7SC 1 2 1 X
Base-REG < ——— log (1+ 2 V55 ) + 1AD” = grSE +0(D) (C.9)
16G? 1 1
< o log(1+ 4NV + (44 AL?) A ST 44X ST 30) + ZFUD? — gHSTr
32G2 2 2 Qx 2 Qx 1 2 1 X

where the constant O(1) is omitted from the second step and the last step is due to log(1+
x) <z for x > 0.
For a-exp-concave functions, by Lemma 20, the ¢*-th base learner guarantees:

16d Apx = 1 1
BASE- < —log (1+ ==V ) + ~kD* — ~kS¥ ;. 1 11
ASE-REG < o og < + S&dVT” ) + 5 4/£ST,1 +0O(1) (C.11)

16d Oéi*Cg Oéi*clo Qpx G4 1 2 1
< 1 1 % F o —kD* — —kST .« 1
<o og < + Sred Vr + Srd ST+ — St | + 51 4’€ST,1 +0(1)

32d aCy 2010 . [(16G* K\ . 1
< — — - = = .
< log (1 + Srd VT> + - ST + - 1 ST+ + 2/<cD +0(1), (C.12)

where the last step is due to log(1 + z) < z for > 0.
For convex functions, by Lemma 21, the convex base learner guarantees the following:

= 1
BASE-REG < 5D1/1+ V§ . + kD? — 155;2»* +0(1)

1
< 5D\/1+ 2Vy +2L28% + xD? — [FSE i +O()

1
< 5D\/1+ 2Vr 4+ 10DL*S% + kD?* — 11557 +0(1). (C.13)
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Overall Regret Analysis. For \-strongly convexr functions, combining Eq. (C.5) and
Eq. (C.10) and denoting Cy; = 128G?(1 + L?), we obtain

1 1 1
REGT < O (A log VT> + (64 + 64L%)G?SF + (646‘2 4 AMID 8/<a> SF i + Zmzﬂ

CO T T M
gy 35 S g el Y Y i

t=2j=1 i=1 t=2 j=1

1 1 1
<0 ()\ log VT> + (64G2 + AMP — SH) ST+ *HDQ

T M N
2 CO TOP MID TOP MID 2
+ (2D%*Cy; — 22 ) SK ZZ > a i Il — x4l

t=2j

=1

T
+ (20200 ) S s - %t < 0 (Logvr),

=2 j=1

where the second step follows from Lemma 5 and the last step requires y™°° > 2D?Cyy,
M > Oy, k> 512G? 4 8yMPand Cy > 4D?Ch;.

For a-exp-concave functions, combining Eq. (C.6) and Eq. (C.12), we obtain

d 20 16G* 1
REcr <O <a log VT> 10 ST + ( - oA Z) S’iz’* i i’fDQ

STOP _ MID Z Z qTOP Z qxﬁ th,i _ thl,i”2 _ ,YTOP Z Z qEQPqulf\,I]ID _ q}tm? S ||1

t=2j=1 i=1 t=2 j=1

d 16G* , 1
S O ( log VT) + 6G + ﬂ)/MID — E S’? i* -+ 7/€D2
« K 4 ’ 2

8D2C1y  Co 4Cho o
+ < - 5 STOP <l‘<v MID) Z Z qE?P an{ylg HXt,i . thl,i||2
=1

t=2j=1

8D2C1g Ll
+ < - o ,.YTOP Z Z quPqule\iI;D o qé\mi]’ %

=2 j=1

<QO (dlogVT> ,
a

where the second step follows from Lemma 5 and the last step requires v > 8D?Cy,
AMIP > 40, k > 64G* 4+ 44MP and Cy > 16D?Cp.

For conver functions, combining Eq. (C.7) and Eq. (C.13), we obtain

24 Ci 64G* vp K x 2
Recr < O (VVrlogVr) + (10012 + L) S5+ (1 +9"° = &) 55, + kD

G
OSTOP _ MID Z Z qTOP qul&\iljlt)l HXt,i _ Xt—l,i”2 TOP Z Z qTOPqul&\?I]ID _ qgmfg||1
t=2j=1 i=1 t=2 j=1
64G* . K 2D*C, G
<0 (\/VT log VT) + < o+ - 4> ST i + <4OD3L2 + L 0) SFor
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C T M
# D%+ (20D 4 T =) S35 3 e

=2j=1 =1

2D?C T M
(100222 20 o) S5 psriai g < © (VYRR

t=2j=1

Wh2ere the second step follows from Lemma 5 and the last step requires2 ~TOP > 40D3L2 +
2DZC'17 ,YMID > 20DL2 _|_ C1 K> 256G2 + 4’7MID’ and CO > 80D3L2 + 4DZCI .

At last, we determine the specific values of Cp, v7°F, and yMP. These parameters need
to satisfy the following requirements:

4D*C
Co>1, Co>8D, Cy >4y, Cy > 4D?Cyy, Cy > 16D*Cyo, Cy > 80D’L* + 71’
2D*C
AT > 2D2Cy, Y™ > 8D%CYg, ™" > 40D3L2 + 71, Y > O,
,YMID > 40, and ,.YMID > 20DL2 sz1

As a result, we set

O = max {1, 8D, 44" 4D2C41,16D%Cho, SODPL2 + 4D201} ,
ATOP — max {2D2011, 8D2Cho, 40D3L2 + 2D201} AMP = max {011, 4C10,20DL2 + cl} ,

where Z = max{GD + yM°D? 1 4 yMP D2 4 24T} Oy = 128(D%L? + G?), C19 = 4L% +
32D%*G?L? 4+ 8G*, and Oy = 128G?(1 + L?).

C.4 Proof of Theorem 4

Proof Recall that, for simplicity, we denote by g; = V fi(x;). As shown in Section 5.3,
the empirical gradient variation can bounded as

T
Vr < BZ”Vft(Xt) V fi(x H2+3Z||Vft — Vi1 (x¥)|?
t=2 =
T T
+3) IVAim1(x*) = Vi1 (xe—1)]? < GLZth (x*, %) +3Vp +6LY Dy, (x*,x¢-1)
t=2 t=2 t=2
T
< 3Vp+12L) Dy, (x*, xy). (C.14)
t=1
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Regret Decomposition. For A-strongly convex functions, we decompose the regret as

T T
Py
REGT S Z<gt,Xt — Xt,i*> — i Z ||Xt — Xt,i*||2 (by )\i* S )\ S 2)\1*)
t=1 t=1
META-REG
T
+ thcl* (X¢4) — Zhiﬁ* ) Zth (x*,x¢), (C.15)
t=1
BASE-REG

due to the definition of the surrogate h$S(x) 2 (g, x) + %HX —x4||?, where \; € H in (2.5).
For a-exp-concave functions, we decompose the regret as

T T
1
REGT = Z(gt,xt —x*) — = Zth X", X¢) ~3 Z (x*, %) (by (5.5))
t=1 2.5 =
T a T 1 T
<Y gex —x) — = (g, x — x*)? *prt X", x¢)
4 2
t=1 t=1 t=1
T - T
< Z<gt7Xt — Xp*) — 4 Z (8t, Xt — X¢,i+) 2 (by aix < a < 2a;x+)
t=1 t=1
META-REG
T
+ Z hed (xeie) — Db (x%) =5 Zth X*, X¢), (C.16)
t=1
Base-REG

where the second step is due to the definitions of exp-concavity and Bregman divergence and
the last step is due to the definition of the surrogate h;’;”(x) £ (gt,x) + %V fil(xe), x —x¢)?,
where a; € H, defined in (2.5). For convez functions, by defining Af,;(x) £ (g;,x), we have

T T
REGT Z (gt xe —x*) = > Dy (x*, %) (by (5.5))
T T T
= > (&6 xt — Xe0) + Y hf g (xt40) th (X)) =) Dy (x*, x¢). (C.17)
t=1 t=1 _
META-REG BASE-REG

Meta Regret Analysis. For strongly convexr functions and exp-concave functions, we
adopt a similar meta regret analysis as used in Appendix B.3.
For convez functions, similar to Eq. (B.10), we obtain

T
META-REG < CQJ 4G2D? + Z(gt — 8t—1,X¢t — Xt,i*>2 + QGDCQ
t=1
T
< Coy/1+ D2Vp +2GDCy < COJ AG2D? + 3D?Vp + 12LD? > " Dy, (x*,%¢) + 2GDCo
t=1
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t=1

T T
C «
<O(VVr)+ Co\l 12LD?Y "Dy, (x*,x;) < O(V/Vr) + O(Cha) + f; > Dj(x*, %),
t=1
(C.18)

where the second step adopts Assumption 1 and the third step is by Eq. (B.3). Cj2 is used
to ensure the positive Bregman divergence term to be canceled and will be specified finally.

Base Regret Analysis. Following the analysis structure of Appendix C.3, we first pro-
vide different decompositions of the empirical gradient variation defined on surrogates for
strongly convex, exp-concave, and convex functions, respectively, and then analyze the base
regret in the corresponding cases.

For - strongly convex functions, we bound the empirical gradient variation on surrogates,
Vi = Zt 2 HVhtz*(XtZ*) Ve 11*(Xt lz*)HQa by

T

Aix 2
Tz* - Z Xt) — -1 — 21 (thl,i* — X¢—1)
=2
T 2
Xt ix Z Xt 1,0% — Xt_l) (Clg)
< 9Vr +36L Zth (x*, %) + 2M% Z e, — x| (by (C.14))
t=1 t=2

where the first step is due to the property of the surrogate: VA (xs;) = gt + % (Xt i — Xt),
and the second step is due to the Cauchy-Schwarz inequality. For a-exp- concave functions,
we control the V7 £ S50 VAR (xp) — VA 1 (xi-10) || as

T 2

X Q> (0723
Vfi ZE = Z gt + égt<gtyxt — Xp4+) — Gt—1 — QZ 8- 1(8t—1,Xt—1 — Xy—1,4+)
t=2
2 T Qe 2
Xy — Xgi0)|| +3 Z 7gt—1<gt—1a Xi—1 — X¢—1,4%)
t=2
T 2
_ (6773
<3Vr+6> Tthth, Xt — Xt,i*) (C.20)
t=1
(C.14)
< 9Vpr+ 36L Zth X, X¢) + 205 2G? Z g, Xt — Xm'*>2, (by Assumption 2)
t=1 =1

where the first step is due to the property of the surrogate function: Vhij;-p(xm) =g +
Srgi(gt, X¢—X¢i), the second step is by the Cauchy-Schwarz inequality. For convexr functions,

the empirical gradient variation ‘_/7971-* 25T IVfi(x¢) = Vfi_1(x¢-1)||? can be bounded by
V;‘%i* < 2VT+2LQS:’F. To conclude, for different curvature types, we provide correspondingly
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different analysis of the empirical gradient variation on surrogates:

IV +36L 7, Dy, (x5, %) + 205 2o [|xpix — x¢||?, (A-strongly convex),
VT{SZi expel < Vr +36L S, Dy, (x*, %) + 202.G? S (ge, % — x1+)%,  (a-exp-concave),

3Vr + 12L YL Dy, (X, xt), (convex).
(C.21)
In the following, we analyze the base regret for different curvature types. For \-strongly
convex functions, when using the update rule (C.2), according to Lemma 19, the base regret

can be bounded as
2

1
BASE-REG < 6G

,L'*

log (1+ AZ-*V;;*) +0(1)

16G?
< T log <1+9)\ VT+36L)\Z*Zth (x*,x¢) +2)\ ZHth*_XtH )
* t=1

1 16G?
<0 ()\ IOg(CmVT)) + o\ <36L/\Z* Zth X", x¢) + 2)\ Z lIx¢.i+ — x| >
13 A

3262 L

576G2L
Zth x*, %) + o ZHth*—xtH + O(log C13), (C.22)
t=1

<0 <i log VT>

where the third step requires C13 > 1 by Lemma 15 and uses the property of the best base
learner, i.e., A < A < 2\;«. The last step is due to A; < 1. For exp-concave functions,
when using the update rule (C.1), by Lemma 20, the base regret can be bounded as

16d
Base-REG <

log <1 + O‘“V;ﬁj;&’) +O1)

Quix 8d
16d 9ai* 90&1*L 3*G2 £l 2
< o log (1 + 3d Vr + prt x*, X¢) z4d 2 1<gt7Xt — X¢i*)
d 16d 9041*1} G2 d )2
<0 alog(C’MVT) + Crrc, Zth X", X¢) (81, Xt — Xy %)
i* t=1
72L G2 d

d
< O < IOg VT> + a Zth X Xt) Cl Z(gt,xt — Xt,i*>2 + O(lOg 014). (023)

The third step requires C14 > 1 by Lemma 15 and uses the property of the best base learner,
ie., ap < a < 2a;+. The last step is because of a; < 1. For convex functions, when using
the update rule (C.3), by Lemma 21, we obtain

BASE-REG < 5D1/1+ Vf ;. + O(1)

=5D\1+Vr+0(1) <OKVr) + 5DJ 12L2T:th(x*,xt) (by (C.14))
t=1
< OWVr) +0O(Cy5) + 5DL Zth X", X¢), (C.24)
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where the second step is due to the property of the surrogate function: Vhai(xt,i) = g,
and the last step uses AM-GM inequality (Lemma 18). (5 is a constant to be specified.

Overall Regret Analysis. For A-strongly conver functions, plugging Eq. (B.8) and
Eq. (C.22) into Eq. (C.15), we obtain

1 2L 1\ &
REGT <O ()\ log VT) + O(Cs +1og C43) + (576G >

- = ZDf(x*,Xt)
Cis 2) =5

CoD? 3262 N\ & ) 1
_2 —xaP<o(=1 ,
+ ( ey ey 1) Dl < o(A ogVT>
by choosing C5 = 4CyD?/\ and C13 = max{1,256G?/\,1152G?L}. For a-exp-concave
functions, plugging Eq. (B.9) and Eq. (C.23) into Eq. (C.16), we obtain
2L 1

d T
REcr <O ( log VT) + 0(04 + log 014) + ( — ) Zth(X*,Xt)
[0 014 2 =1

Co 4G% o\ <& ) d
- - — . < —
+ (204 + 014 4> t:E 1<gt,xt Xtﬂ > S O (a logVT) y

by choosing Cy = 4Cy/a and Cy4 = max{1, 144L, 32G?/a}. For convez functions, plugging
Eq. (C.18) and Eq. (C.24) into Eq. (C.17), we obtain
5DL Co

20 20,

T
- 1) Zth (X*7Xt) < O(W)v

REGr < O(v/Vr) + O(Ci2 + Ci5) + (
t=1
by choosing C12 = Cy and C5 = 5DL.
Note that the constants Cs, Cy4, C12, Ci3, C14, C15 only exist in analysis and hence our

choices of them are feasible. [ |

Appendix D. Omitted Proofs for Section 6

In this section, we present the formal proofs supporting the theoretical implications of our
methods, specifically regarding the small-loss and gradient-variance bounds discussed in
Section 6.1. We also provide complete proofs for the applications of our results to the
SEA model (Section 6.2) and to online games (Section 6.3), including detailed proofs of
Corollary 1, Corollary 2, Theorem 5, Theorem 6, and Theorem 7. Finally, we provide the
proof of the extension to anytime variant (Section 6.4).

D.1 Proof of Corollary 1

We prove the small-loss regret guarantees of UniGrad++.Correct in Appendix D.1.1 and the
gradient-variance regret guarantees of UniGrad++.Correct in Appendix D.1.2.

D.1.1 Small-Loss Regret
A

Proof For simplicity, we define F¥ £ Y/, fi(x) — S mingex, fi(x). We adopt the
same regret decomposition strategy as utilized in Appendix C.3.

81



ZHAO, YAN, YU, ZHOU

Meta Regret Analysis. Recall that the normalization factor Z = max{G D+~ D? 1+
AMIP D2 4 24TOPY - For strongly conver and exp-concave functions, we follow the same meta
regret analysis as used in Appendix C.3.

For conver functions, we give a different analysis for V, = S>7 (£ W =R )2

Lemma 3, it holds that

. From

2D2 262 &
Ves 2 e gt_luz+ﬁZth,i*—xt-17z~*+xt_1—xtu2

8D2 4G% . 32D?L . 4G* 4G?
< —5 ZH gell” + ST1*+ QSTS 72 Fr+ 72 ST,i*"i'?STv (D.1)

where the last step is by the self-bounding property of ||V f(x)||3 < 4L(f(x)—minxex, f(x))
for any x € X. Thus, the meta regret is bounded as

COSIOP

Z
META-REG < 0P log + 32Z€10PV* + ,YMIDSii*
]

N
302( TOP)

CO T M
STOP . I\IID Z Z qE?P Z qgljl'?i ”xt,i o Xt—l,i”z . ,yTOP Z Z q;f’;)PHqé\’I]ID _ qzlf\mij H%

t=2j=1 i=1 t=2 j=1
1024D2L 64G*
SH (

64G2
MID S N
3C2E0 T 7 A ) T+

VA

log ——ST

<
= gTop

€5 Z

Co r M N , T M
2 SET =AM S s ke = xeenl® =0 X Xl s - a1
t=25=1 =1 =2 j=1
Z N 1024D?L 64G?
< cgTor lOg 302( TOP) + 7 5;?PF% + ( + MID) Sx
J*
256 D2G2 CO 1928G2
" <Z 2 )5\ quzgpzqgﬁ||Xt7i—xt71,i|!2
t=2j=1 i=1
256D°G*
f (BT ) S ata -t
t=2j=1

7Z N 1024D2%L
< log

+ ETOPF + 64G2 + MID Sx (D 2)
gTor 3C2 (£57)2 A U 7 " Tixs :
j

where the second step is by Lemma 12 and requiring Cy > 8D, the third step is by Lemma 5,

. 22 p 2 22
and the final step requires y™°" > %, AMIP > %, and Cy > %.

Base Regret Analysis. We first provide different decompositions of the empirical gradi-
ent variation defined on surrogates for strongly convex, exp-concave, and convex functions,
respectively, and then analyze the base regret in the corresponding cases. For A-strongly
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convez functions, Vf‘ﬁ 25T, VRS (xt,i+) — VA ;(X¢—1,4+)||? can be bounded by

T
ViSe = > I(ge 4 Ais (xe,0 — x1)) — (81-1 + Air (Ke— 1,0 — x-1)) ||
t=2
T T
<2) g — g1l + 205 > (xeir — x4) — (x¢-1,60 — x01) |12
P =2
< 32LFF + 485 + 4S5, (by A € [1/T,1])

where the first step uses the definition of VA5 (x). For a-erp-concave functions, V;ﬁg £

ST, VAR (xei0) = VAT (x¢—1.4+)||? can be bounded by

T
Vﬁf?f = Z (g + Oéi*gtgtT(Xt,i* —%¢)) — (81 + az’*gtflgzj—l(xtfl,i* - thl))||2
t=2
T T
<2 e — g ll® + 200 D llgig (i — i) — G181 (Xe— 150 — x¢1) ||
t=2 t=2

T T
<B2LFF +4D%) " |lgig! — geo1g 1P 4G [[(xer — x¢) — (xe1.0 — x¢21) |
t=2 t=2
(by o € [1/T,1])

< CooFF + 8G ST + 8G*S% -,
where the first step uses the definition of VA3 (x) = g; + aigg, (x —x;) and the last step
holds by setting Cog = 32L + 256 D*G?L.
For conver functions, V§ ;. can be bounded by Vi . £ >/, |lg: — gi-1]|* < 16LF}. To

conclude, for different curvature types, we provide correspondingly different analysis of the
empirical gradient variation on surrogates:

32LFF +45F + 45T i+, when {f;}1; are \-strongly convex,
Vf{ii’exp’c} < § Oy FX +8GASE + 8G4S§i*, when {f;}1; are a-exp-concave, (D.3)
16LFF, when {f;}1_; are convex.

In the following, we analyze the base regret for different curvature types. For \-strongly
conver functions, by Lemma 19, the i*-th base learner guarantees the following;:

2 1 1
i*
32G2 hd 2 ox 2 ox 1 2 1 X
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where the last step is due to log(1 + z) < z for x > 0. For a-exp-concave functions, by
Lemma 20, the i*-th base learner guarantees the following:

16d OJZ'*CQQ (0734 G4 Ozi*G4 1 2 1
BASE-REG < 1 1 ¥ S% ST —kD* — —kST . +O(1
FrRBG S Qi og( + 8kd T+ Kkd T wd T + 2/{ 4/{ T (1)
32d aCag 16G* 16G* K\ . 1
< 7 lOg ( + 8 d FT) + ST K —_ Z ST,i* + §I€D2 + 0(1), (D5)

where the last step is due to log(1 + z) < z for z > 0.
For convex functions, by Lemma 21, the convex base learner guarantees the following:

= 1
BASE-REG < 5D1/1+ V§ . + kD? — Znsii* +0(1)

1
< 5D\/1+16LF¥ + kD* — 158 +O(1). (D.6)

Overall Regret Analysis. For \-strongly convex functions, combining Eq. (C.5) and
Eq. (D.4), we obtain

1 1 1
REGT <O ()\ log F%‘) + 64G%S% + (64G2 + AMP — 8&) ST + ZKDQ
Co T M ) T M
oo S S el Y S a1
t=2j=1 i=1 t=2 j=1
X 2 MID 1 X 1 2
<O Xlog F7 )+ (64G° +~"" — 3" ST, + Z/@D
) T M N
i <256D2G2 > Sror 4 (128G2 - fyM‘D) SN @M ki — x|
=2 j=1 i=1

T M
1 X
+ (250076 —977) S i lattP - @I < 0 (S log FF) < 0 (S log Fr )

=2 j=1

where the second step follows from Lemma 5, the third step requires 4™F > 256D2G?,
AMP > 128G2, k > 512G? + 8yMP, and Cy > 512D?G?2, and the last step uses Lemma 16
by choosing a, b, ¢ as some T-independent constants and setting

T T
T = th(xt Z HllIl fi(x), and d = min th Zxrg? fi(x
t=1

L |

For a-exp-concave functions, combining Eq. (C.6) and Eq. (D.5), we obtain

d 16G* 16G* , K 1
REGT S O <a 10g F%) ST + < - + ,YMID o 4) Séi,i* + §I{D2

CO T M ) T M
e SR D h Z a5 e ol =37 S0 S a1

t=2 j=1 t=2 j=1
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d « 1 K\ ax 1
<0 (alog FT> + (/@ AMID 4) SE i+ iﬁDQ

AD2GHA 32G* S
+ <6,£G - C;) ST + ( MID) ZZ%T,?P Z‘J?fﬁ i =

t=2 j=1

64D2G4 Iy d N d
+ (H . 7TOP> ZZQYZJO'PH(I?SD . qé\II?JHl <O (@ logFT> <0 (a logFT> ,

=2 j=1

where the second step follows from Lemma 5 and the third step requires v™°" > 64D?G*,
AMIP > 392G, Kk > 64G+44MP and Cy > 128D%G*. Similar to the strongly conver case, the
final step follows from Lemma 16, where we choose a, b, ¢ as some T-independent constants,
and set  and d to the same values as in the strongly convex case.

For conver functions, combining Eq. (D.2) and Eq. (D.6), we obtain

Z N 1024 D2 Le™o"
REGT < o log e - 7 I F¥ +5D,/1+ 16LF%
]*

64G?
+ ( + ’YMID - Z) S;c"’i* + K/_D2

Z
Z N 1024 D2 Lelo" ,
< 5;91)1 30RO + " Ff +5D\/1+ 16LFf + 5D
Neb 1024 5 )
2Z N ; 2048
< o 198 352, eTOP) ( > 40) D?Lej" Pr + kD? + O(1) < O (VFrlog Fr) ,
J

where the second step requires x > % + 49yM™P " the third step follows from the AM-GM
inequality: vVab < § + % for any a,b > 0 with a = 1/(2DejP") and b = 2DejP" LEF, the
fourth step follows from

c(d—b)+e

r—d<clx—b+e=>x—d< e

(D.7)

for z,b,d,e > 0 and 0 < ¢ < 1 where we choose z = 3.1, fi(x), d = mingex 31—y fi(x),
b=>"T, minyex, fi(x), ¢ = (1024 + 20) D2L5TOP < 1/2, and e = O(1), and the final step
is due to Lemma 12. [ |

D.1.2 Gradient-variance Regret
Proof We adopt the same regret decomposition strategy as utilized in Appendix C.3.

Meta Regret Analysis. Recall that the normalization factor Z = max{G D+~ D2 1+
AMIP D2 4 24TOPY - For strongly conver and exp-concave functions, we follow the same meta
regret analysis as used in Appendix C.3.
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EMID MID )

£3% 0% T e ix . From

For convez functions, we give a different analysis for V, = 311 (
Lemma 3, it holds that

2 D? 262 L
ZHgt gt—1HQ+ ?ZHXM* — X 1,ir + X¢—1 —XtHQ
t=1

8D2 4G? 4G?

Similar to Eq. (D.2), the meta regret can be bounded as
Co

Z N ,
META-REG < Tor log 3C2(z TOP) + 32 ZETOPV* A MID SF o — STOP
J*
T M N T M
Y Z Py @ ke = xeal® =AY art e — a1
=2 j=1 i=1 =2 j=1

AN 1024 N D2W. 4G?
< 27Cylog - + 64D\/WT log (022T> + <GZG N MID) 55

256D%G% G 12862 .\ &KX N
+ (Z 0) STOP (Z _ ,}/MID Z Z qz(j)P Zq%ﬂ; HXt,i o Xt—l,z'H2
=1

t=2 j=1
256D°G® r Xy
+ (Z ) S @l — @™ 1
t=2j=1
AN 64G?
< 22Colog —5- + 0 (VWrlogWr) + (Z + 'YMID> S% 4o, (D.8)

. 22 ' 2 22
where the final step requires 7"°% > %, ~AMID > %, and Cy > %.

Base Regret Analysis. We first provide different decompositions of the empirical gradi-
ent variation defined on surrogates for strongly convex, exp-concave, and convex functions,
respectively, and then analyze the base regret in the corresponding cases.

For A-strongly convex functions, V3¢, & ST, | VRS G (Xpir) — VRS | e (x¢-1,4+)||? satisfies

Vi = Z (gt + Nix (X0 — X¢)) — (&1 + Nir (Xe—1,00 — x¢—1)) |
=2

< SWip + 4S5 + 4S5,
For a-exp-concave functions, Vb £ SE, VAR (xti0) — VAT o (%¢-14+)||* satisfies

T

yow <22Hgt g1l + 200> e (xeir — %) — o181 (xe1.00 — x¢-1) ||
t=2

T T
< 8Wr +4D? Z Igig) — gi-18/1 | +4G* Z (x50 — %¢) — (Xe—1,00 — Xe—1)|?
=2 t=2

(by a € [1/T,1])
< CorWr + 8G* ST + 8G*S% v,
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where the first step uses the definition of Vhff;p(x) = g + ;g (x — x¢) and the last
step holds by setting Cy7 = 8 + 64D?G?. For convex functions, ‘_/79’1-* can be bounded by

‘_/7‘371-* 25T llge — gi1]|> < 4Wp. To conclude, for different curvature types, we provide
correspondingly different analysis of the empirical gradient variation on surrogates:

8Wr + 45F + 45% ;. when {f;}1_; are A-strongly convex,
Vf{;i’exp’c} < § Oy Wy + 8GASE + 8G4S§SJ*, when {f;}1_; are a-exp-concave, (D.9)
AW, when {f;}1; are convex.

In the following, we analyze the base regret for different curvature types. For A-strongly
convex functions, by Lemma 19, the ¢*-th base learner guarantees the following:

2

1 1
BASE-REG < log(l + 8N W 4+ 4% S%S + 4\ S%,i*) + ZK,DQ — g/@Sﬁi* + O(l)
i*
32G2 2 ox 2 ox 1 2 1 X

where the last step is due to log(1 + z) < z for x > 0. For a-exp-concave functions, by
Lemma 20, the i*-th base learner guarantees the following:

16d 041'*027 Oéz'*G4 Q* G4 1 2 1
BASE- < 1 1 s X o —kD* — —kST . 1
ASE REG <S " og ( + 8,‘ﬁjd WT + Iid ST + ,‘{d ST,'L + 2/‘@ 4RST,Z + O( )
32d aCyr 16G* 16G* & 1,
< —1 1 s — = | SF .+ =kD 1 D.11

where the last step is due to log(1+ z) < z for z > 0. For convez functions, by Lemma 21,
the convex base learner guarantees the following:

= 1
BASE-REG < 5D\/1+ Vf . + kD? — 15T + O(1)
1
< 5D+/1+ 4Wr + kD? — 158 +O(1). (D.12)
Overall Regret Analysis. For \-strongly convex functions, combining (C.5) and (D.10),

1 1 1
REGT < O <A log WT) + 64G%S% + (64G2 4 AMID 85) SF i + Zmzﬂ

CO T M N T M
SIS S el 0 Dl — i
t=2 j=1 i=1 t=2 j=1

1 1 1
<0 <)\ log WT) + (64G2 + AMP — /<;> ST i+ + ~xD?

8 1
Co T M N
- (256D2G2 - 2) 17+ (128G% = ") 303" g9 S0 @l e — X1’
t=2 j=1 i=1
T M 1
1 (256D2G2 _ ,Ymp) SN G — g3 <o (/\ log WT> ;
t=2 j=1
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where the second step follows from Lemma 5 and the last step requires 4™ > 256D2G?,
AMIP > 128G?, Kk > 512G? + 8yMP and Cy > 512D2G>.
For a-exp-concave functions, combining (C.6) and (D.11), we obtain

d 16G* 16G* 1
REGT S O <a 10g WT) ST + ( - _|_ ,YMID _ Z) S’}E’i* + §K/D2

STOP _ MID Z Z qTOP Z qggtz ||Xt,i _ thl,i”2 _ ,YTOP Z Z Q;F,?Pquli\,I]ID _ q}tm? J ||1

t=2 j=1 i=1 t=2j=1
d 16G* , 1
< @ ( log WT) + + "}/MID - E S%{" i* + 7:‘QD2
« K 4 ’ 2

64D2G4  C, 32G4 T M N
+<m 20)5““’ ( ““D)qu?zq%;fzu&,i—

=2 j=1 i=1

64D2G4 ry d
I (K _ 7TOP) qugQPHq%ID _ q?mfj”l <0 (a log WT> ,

t=2j=1

where the second step follows from Lemma 5 and the last step requires 4™ > 64D?G4,
M > 392G, Kk > 64G* + 49MP | and Cp > 128D?G*.
For convez functions, combining (D.8) and (D.12), we obtain

4 2
REGy < O (\/WT log WT) + <6G AP ’Z) S+ D> <O (\/WT log WT) ,

Z

where the second step requires k > % + 44MP,
At last, we determine the specific values of Cp, v™F, and y™P. These parameters need
to satisfy the following requirements:

TOP 22 512D2G2 24
CoZl,CoZSD,0024’}/ ,002512DG,0027,002128DG,
22
,YTOP > 256D2G27 ,YTOP > %7 ,YTOP > 64D2G4, ,.yMID > 128G2,

2
,YMID > 128G ’ and ,yMID > 32G4.

VA

As a result, we set
Cy = max {1, 8D, 47" 512D?G2, 128D2G4} :
~TOP — max {256D2G2, 64D2G4} . M = max {128G2, 32G4} :

where Z = max{GD + yMP D2 1 4 AMP D2 4 241071, [ |

D.2 Proof of Corollary 2

We prove the small-loss regret guarantees of UniGrad++.Bregman in Appendix D.2.1 and
the gradient-variance regret guarantees of UniGrad++.Bregman in Appendix D.2.2.
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D.2.1 Small-Loss Regret
Proof We adopt the same regret decomposition strategy as utilized in Appendix C.4.

Meta Regret Analysis. For strongly conver and exp-concave functions, we follow the
same meta regret analysis as used in Appendix C.4.

For convex functions, we give a different analysis for V, = EtTZQ(@t“;D i* mi’gD )2, From
Lemma 3, it holds that

T
META-REG < C $ AG2D? + SV fi(%t) = V fro1(Xe-1), X1 — Xp.0)2 + 2GDCy
t=1

< Co\/4G2D? + D2V + Cy < Co\[AG2D? + 16D LF} + 2GDCs, (D.13)

where the last step is by the self-bounding property of ||V f(x)||3 < 4L(f(x)—minxex, f(x))
for any x € A,.

Base Regret Analysis. We first provide different decompositions of the empirical gradi-
ent variation defined on surrogates for strongly convex, exp-concave, and convex functions,
respectively, and then analyze the base regret in the corresponding cases. For A-strongly
convez functions, VT 2T VRS e (Xp,i0) — VA | (%-1,4+)|* can be bounded by

d Air Air 2
VT@* = Z gt + %(Xt,i* —Xt) — 8t-1— 22 (X1, — X¢-1)
t=2
2 T Nix 2
<3Vp+ 32 (x¢i+ —%¢)|| +3 Z é(xtfl,i* —X¢1)
t=2
< ASLFF +2\% Z %00 — x|, (by (6.2))

where the first step is due to the property of the surrogate: VA (x¢;) = gt + % (Xt i — Xt),
and the second step is due to the Cauchy-Schwarz inequality. For a-exp- concave functions,
;};E 2yl VAR (Xti0) — VAT i (%¢-14+)[| can be bounded by

T 2
— ex (0753 (6753
Vﬁi‘f = Z gt + Tth<gt7Xt - Xm*) - 5 (-1, X1 — Xt—l,z‘*>
t=2
) T e 2 T 2
<3Vr+3 Z égdgt, X — Xeq)|| +3 Z Tlgt71<gt71a Xp—1 — Xg—1,4%)
t=2 t=2
Q* 2
9 Xt — Xt,i*>
T
< A8LF¥ + 202 G* Z(gt, Xy — Xp )2, (by Assumption 2 and (6.2))
t=1

where the first step uses the definition of VheXp( ) = gt + S ety T (x — x¢), and the second
step is due to the Cauchy-Schwarz inequality. For convex functions, the empirical gradient
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variation Vj‘iﬂ-* = ZtTZQ IV fi(x¢) — Vfi—1(x4-1)||*> can be bounded by Vﬁi* < 16LF¥. To
conclude, for different curvature types, we provide correspondingly different analysis of the
empirical gradient variation on surrogates:

T
ASLFX + 2)\2, Z ||x¢,i+ — x¢||%, when {f;}_, are A-strongly convex,
t=1
V{si7expzc} < T
Ty = ) 48LF} + 2a2.G? Z(gt, x; — X1i+)?, when{fi}/_; are a-exp-concave,
t=1
16LF%, when{f;}1, are convex.
(D.14)

In the following, we analyze the base regret for different curvature types. For A-strongly
convez functions, when using the update rule (C.2), according to Lemma 19, the base regret
can be bounded as

¢ log (1 + /\z‘*VTS‘fZ-*) +0(1)

Z*

T
log (1 + ABLAGHFF 4 200 ) [|xpix — xtH2> +0(1)
t=1

BAseE-REG <

16G?

i*

IN

IN

i+ 18A¢*

32G2 3262 L
log(1 + 48LE¥) + > e — xe|* + O(log Cis),
8 =1

16G2 16G2 R
log (018 (1 + 48L)\Z*F7>S)) -+ I <2A?* Z thﬂ'* — XtH2
t=1

<

where the third step requires Cig > 1 by Lemma 15 and uses the property of the best base
learner, i.e., Aix < A < 2)\;«. The last step is due to \; < 1. For a-ezp-concave functions,
by Lemma 20, the i*-th base learner guarantees the following;:

BASE-REG < fd log (1 + C;’;f/;j;lj) +O(1)
< 1052? log (1 + 6L§i* P+ aijQ i@uxt - Xt,z’*>2> +0O(1)
o 1)) ()
< % log (1 + 6;F;’p(> + 46?; tzT;(gt,xt — x¢,+)% + O(log Cho),

where the third step requires C'ig > 1 by Lemma 15 and uses the property of the best base
learner, i.e., oy« < a < 2q4«. The last step is due to «; < 1. For conver functions, by
Lemma 21, the base regret can be bounded as

BASE-REG < 5D1\/1+4 Vp + O(1) < 5D,/1 + 16LEX + O(1).
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Overall Regret Analysis. For A-strongly convex functions, by combining the meta and
base regret, it holds that

CoD?  32G2 M+ & )
REGT < — X+
re (SR - ) e+

2

G2
log(l + 48LF7)S) + O(Cg + log Clg)

< 3207 og(1 + 48LFF) < O (i log FT) ,
where the second step is by choosing C3 = 4CyD? /)i and C1g = max{1,256G?/\;«} and the
last step is due to Lemma 16 by choosing a, b, ¢ as some T-independent constants and setting
w =iy filxe) = X minye v, fi(x) and d = minyex Yoy fo(x) = 3 mingex, fi(x).
Note that such a parameter configuration will only add an O(1/X) factor to the final regret
bound, which can be absorbed.

For a-exp-concave functions, by combining the meta and base regret, it holds that

20y  Chg
< C))allog( 6;FT> 01) < (’)( logFT>
a

Co 4G2 L 32d 6L
REGT < <0+_a >th,xt_xtz* +71 (1+dF%()+O(C4+10g019)
t=1

where the second step chooses Cy = 4Cy/a;+ and Cig = max{1,32G?/a;+}. Similar to
the strongly convex case, the final step follows from Lemma 16, where we choose a, b, ¢ as
some T-independent constants, and set x and d to the same values as in the strongly convex
case. Meanwhile, such a parameter configuration will only add an O(1/«) factor to the final
regret bound, which can be absorbed.

For convex functions, by combining the meta and base regret, it holds that

REGT < Co\/4G2D2 +16D2LE¥ + 5D /1 + 16LF¥ + 2GDCy + O(1) < O(\/Fr),

where the final step follows from Lemma 17 by setting a,b as some T-independent con-
stants and choosing & = Y.L, fi(x;) — 321, minyex, fi(x) and d = minygecx ST fi(x) —
S mingex, fi(X). u

D.2.2 Gradient-variance Regret
Proof We adopt the same regret decomposition strategy as utilized in Appendix C.4.

Meta Regret Analysis. For strongly convex and exp-concave functions, we follow the
same meta regret analysis as used in Appendix C.4.

For convex functions, we give a different analysis for V, = 25:2(€§1;D e —mptR )2
Lemma 3, it holds that

. From

T
META-REG < C()J 4G2?2D? + Z(Vft(xt) — vft—l(xt—l)-; Xi — Xt,i*>2 4+ 2GDCy
t=1

< Co\/1+ D2Vr + 2GDCy < Cov/1 + 4D2Wr + 2GDCs. (D.15)
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Base Regret Analysis. We first provide different decompositions of the empirical gradi-
ent variation defined on surrogates for strongly convex, exp-concave, and convex functions,
respectively, and then analyze the base regret in the corresponding cases. For A-strongly
convex functions, VSC e VR (xt,ix) — VR (%1 i+)||* can be bounded by

T )\'* 2
1
Tz* = Z gt Xt) = 8t-1— 5 (X1, — X¢—1)
=2
2 T Miw 2
(2
<3Vr+ SZ (x¢,i+ —%¢)|| +3 Z 7(}(,5_171-* — X¢-1)
t=2
< 12Wr + 2X% Z % — x|, (by (6.3))

where the first step is due to the property of the surrogate: Vi (x¢4) =&+ % (xt i — Xt),
and the second step is due to the Cauchy-Schwarz inequality. For a-exp- concave functions,
Vig = ST, VAR (xt,i0) = VAT 4 (%¢-14+)[|> can be bounded by

T 2
X Q%
;ZE = Z gt Xt — Xt,i*) — 8t- 5 —1(ge—1,X¢—1 — Xt—l,z‘*>
t=2
_ Qi 2 T Q% 2
<3Vr+3 Z 7gt<gta X — Xeq)|| +3 Z 7gt—1<gt—1, Xp—1 — Xg—1,4%)
t=2 t=2
2
(6713
21 (&, x¢ — Xt,i*>
T
< 12Wr + 202 G? Z(gt, X; — Xpi0)%, (by Assumption 2 and (6.3))
t=1

where the first step uses the definition of VA" (x) = g + %gg (x —x¢), and the second
step is due to the Cauchy-Schwarz inequality. For conver functions, the empirical gradient
variation V.. & ST,V fi(xt) — Vfi_1(x-1)||> can be bounded by V.. < 4Wrp. To
conclude, for different curvature types, we provide correspondingly different analysis of the
empirical gradient variation on surrogates:

12Wr + 2)02% Z [P when {f;}1_, are A-strongly convex,
v{sp,exp,c} < T
T — | 12Wr + 20422* G? Z(gt, X — Xt,i*>27 when{f;}_, are a-exp-concave,
=1
AWr, when{f;}}_, are convex.
(D.16)

In the following, we analyze the base regret for different curvature types. For \-strongly
convex functions, when using the update rule (C.2), according to Lemma 19, the base regret
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can be bounded as

G2 4
log (1 + 120 W + 220 ) [Ixeix — xt||2> +0O(1)
t=1

BAsE-REG <

i*

16G? 16G? T
< log (Cg (1 + 12X W 223, o —xy?
S og (Cao (1 + T>)+C20/\i* < ; ;th, x|

G2 3262 L

< log(l + 12WT) + Z th,i* - Xt||2 + O(log 020),
t=1

where the second step requires Cyy > 1 by Lemma 15 and uses the property of the best base
learner, i.e., Ajx < A < 2\;«. The last step is due to \; < 1. For a-exp-concave functions,
by Lemma 20, the i*-th base learner guarantees the following:

16
BASE-REG <

log (1 + 22 Wr + % Z<gt7xt - Xt,i*>2> +O(1)

041’* 2d 4d =1
16d 3oy 16d [a3.G? &
< 1 1 : i — x40 )2
< og (021( + 5y WT)) + Corains ( i ;(guxt Xt i*)
<32y, (1+3W)+4G22Tj< xt — x3:)? + O(log Car)
=7, g 2d T Cor 8t, X¢ t,i* gL21),

t=1

where the second step requires Co; > 1 by Lemma 15 and uses the property of the best
base learner, i.e., a;x < a < 2ay+. The last step is due to «; < 1. For conver functions, by
Lemma 21, the base regret can be bounded as

BASE-REG < 5D\/1+ Vi + O(1) < 5D/1 + 4Wr + O(1).

Overall Regret Analysis. For A-strongly convex functions, by combining the meta and
base regret, it holds that

CoD?  32G% M+ ) & ,  32G2
< _ — Xy 4o log(1 + 12 ]
REGT < (203 + G ;th X ||* + \ og(1 + 12W7) + O(Cs + log Cap)

32G?
<

log(1+ 12Wr) <O (i log WT) ,

where the second step is by choosing C3 = 4CyD?/\;+ and Coy = max{1,256G2/\}. For
a-exp-concave functions, by combining the meta and base regret, it holds that
4G2 Ckp) T

> (gext — x¢0)” + = log
t=1 a

C
REGT§< 0 4

Co | 4G" 32d < SWr
2Cy Oy 4

14+ 2d) + 0(04 + log 021)

2d d
< 32d log (1 + 3WT> +0(1)<0 (log WT) ,
o 2d !

where the second step chooses Cy = 4Cy/a;+ and Oy = max{1,32G?/a;+}. For convex
functions, by combining the meta and base regret, it holds that

REGT < Co\V/4G2D? + 4D2Wrp + 5D\/AG2D? + 4Wr + 2GDCy + O(1) < O(vV/Wr).
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Finally, we note that the constants C3, Cy, C13.C19, Cog, Co1 only exist in analysis and and
hence our choices of them are feasible.

D.3 Proof of Theorem 5

Proof Recall that we denote by g; = V fi(x;) for simplicity. To begin with, we provide a
proof for Eq. (6.5):

T

E[Vr] =E lz IV fe(xt) — Vft—l@%—l)”%}
t=2

<4E

T
STV Fi(xe) = VE(x1)[|2| +4E

t=2

T
Y IVF(x) — th(Xt—l)’%]
t=2

T
S IVE(xi-1) — VF1 (xe-1)I3
t=2

+ 4E +4E

T
Y IVE a(xt-1) - Vftl(xtl)H%]
t=2

T
<8oip 4+ 453, +4LE [Z % — X¢—1 ”g] , (D.17)
t=2

where the second step is due to Cauchy-Schwarz inequality and the last step is because of
the definitions of 0%, and 2. (given in Section 6.2).

In the following, we present regret decompositions tailored to different curvature regimes,
proceed to analyze both the meta and base regret components, and finally combine these
results to derive the overall regret bounds.

Regret Decomposition. For A\-strongly convex functions, similar to the decomposition
in Appendix C.3, we have

T \ [T
E[REGr| <E lZ(VFt(xt),xt - x*>] - -E [Z ||x¢ — x*||2]

t=1 2 t=1
T A T
=E l2<gt,><t - x*>] —5E lZ [%¢ — x*HQ]
t=1 t=1
T Nis T T
<E [ <gt,Xt - Xt,i*>‘| - ; E [Z HXt - Xt,z‘*||2] +E lz hii‘* (Xt,i*) - hi,cz‘* (X*) )
t=1 t=1 t=1
META-REG BASE-REG

(D.18)

where the first and second steps rely on the expected loss function Fy(x) = E[f:(x)]; in
particular, the second step additionally requires that Fi(-) be strongly conver.

94



ADAPTIVITY AND UNIVERSALITY: PROBLEM-DEPENDENT UNIVERSAL REGRET FOR OCO

For «a-exp-concave functions, following the similar decomposition as in the proof of
Theorem 3 in Appendix C.3, we decompose the regret as

T T
E[REGT] = E [Z(gt, X; — x*)] - %E [Z(gt, X; — x*>2]

t=1 t=1

T an [T
> (g x — Xp 0 ] s Elz g, %t —X")

t=1 t=1

T
x FE |3 ) - 1 >],

META-REG BaAse-REG

(D.19)

where the first step is due to the exp-concavity and defining surrogate loss functions
hyP(x) = (g, x) + % (g, x — x¢)2. For convex functions, we decompose the regret as

REGT +E

T T
Z gty Xt — Xt,i*> Z h(t:,,-* (Xt,i*) - h(t:,i* (X*)] ) (D.20)
=1 t=1

META-REG BASE-REG

where we have h{ ;(x) = (g, ).

Meta Regret Analysis. Recall that the normalization factor Z = max{G D+~ D? 1+
AMIP D2 4 24TOPY - Our Algorithm 4 can be applied to the SEA model without any algorithm
modifications. As a result, we directly use the same parameter configurations as in the
proof of Theorem 3 (i.e., in Appendix C.3).

For strongly convex and exp-concave functions, the meta regret is bounded in a similar
way as (C.5) and (C.6), and thus omitted here.

For convex functions, by Lemma 3, the meta regret can be bounded as

A N 128D2%e1oP  _ 64G?
META-REG < log + I_E[Vr] + 7+WMID E[ST ;+]

]TOP 302( TOP) 7
64G? C , r N
+ O s3] - R[] - 4R [Z S a3 it e — il
t=2 j=1 i=1
T M
YR YD e e — @t T
t=2 j=1
Z N 512D2€TOP ) ) 64G2 ’
— ]TOP log 300( TOP) + 7 (201:T + Z]1:T) + 7 + ’YMID E[S&SJ*]
CO T M N )
— 5 E[ST] =7"VE SOSTEGE @ lIxes — xe—4l
t=2 j=1 i=1

64G?
+ + 128D*L? | E[S¥] — v"°°E
4 t=2 j=

T M
S a s - a3

1
64G2
<0 <\/(U%;T + E%:T) log (O’%:T + E%:T)) 4 ( MID) K| STl
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Co ol
_ 7}E[STOP . MID]E [Z Z qTOP Zqé\’qﬁ th,i o Xt—17iH2]
=1

t=2 j=1

, (D.21)

64G2 2712 TOP LI TOP || ,MID MID |2
+ (=5 +128D°L | ESF] - v"E | 37 > aif e — it
t=2 j=1

where the second step is due to the decomposition of V4, the third step is by Eq. (6.5) and
the final step follows from Lemma 12.

Base Regret Analysis. For \-strongly convex functions, we need to delve into the proof
details of the base algorithm, i.e., OOMD (C.2) for strongly convex functions with step size
e = 2/(k + Ait). For example, from Lemma 12 of Yan et al. (2023), the base regret can be
bounded as

Basi-REG < 42 [HV’I??* (x0i0) — VHE 1 oo (Re—1.00)

|- CRiss )+ 00
P | - £BIS3 + 001,

Subsequently, we analyze the empirical gradient variation defined on surrogates in each
round. Denoting by 07 £ maxxex Ef,~0,[||V fi(x)—VFi(x)[|?] and X7 £ E[supycy ||V Fi(x)—
VF;_1(x)]|?] for simplicity,

]

=E {Hgt + Nix (Xp 0 — Xg) — 8r—1 — Air (Xp—1,5% — Xt—l)”Q}
< 2F [l — gt l2] + 2 s (xeir = 30) + Nis (i 1,00 = x01)|
<4(207 4207+ (1+ 2L s — 301 |*] + B [[lxrie = 310 1] + 257) , (by (6.5))

|| V5 (ci0) = Vi1 (x110)

where the first step is due to the property of the surrogate: VA (%) = g + Ni(xti — Xt),
and the second step is due to the Cauchy-Schwarz inequality. Plugglng the above term back
into the base regret and omitting the ignorable O(1) term, we achieve

2
32 o2 +o2 , +02 T E|||lxe —xe—1]|
P =2 t=2 it
|th* — X¢— lz*H ]
16 .
+ Z ot

Using Lemma 14, we control the base regret as

1 2+ 32
BASE—REGS(’)()\(maX+Z2 >1g01T+1T>

e max+zﬁlax

32D2(L2% +1

L RDY(LP 4 1)
/\i*

so(i(mw+zgglg

U%T—i-ZQ
+ 23

max max

) +32D%(L? + 1) (1 + 2L E[SF] + B[S5])

(D.22)
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where the first term initializes Lemma 14 as a; = 07 + 071 + X7 (i€, amax = O(02,, +
$2.)) and b = 1/(02,. + ¥2..), the second term initializes Lemma 14 as a; = (1 +
2L%)E [th,l — x¢| } +E {me* —xt,u*”ﬂ (ie., Gmax = (2+2L?) D? due to Assump-
tion 1) and b = A\j». The second step is due to log(1 + z) < x for = > 0.

For a-exp-concave functions, the base regret is bounded by (C.11). Following (6.5), we

control the empirical gradient variation defined on surrogates as

2]
T
> Ellgig) (xrir — x¢) — 81801 (Xe—1,0 — X¢-1)
t=2

[Z HV}L?;E Xt 1* - Vhteilii* (thl,i*)

<2E + 20 &

Z gt — gi—1]?
=2

T
< 8203y + S3) + SLPE[S}] 4 AD’E [z e — gt_lgz_luﬂ
t=2

T
+ 4G4]E [Z ||(Xt,i* — Xt) — (thl,i* — Xt1)||2] (by o€ [1/T, 1])

=2
< Cy2(20%.1 + S1p) + CosE[SF] + 8G'E[SF ],

where the first step uses the definition of Vhfj;p (x) = g + igig) (x —x;) and the last step
holds by setting Cas = 8 + 64D%G? and Ca3 = 8L? + 64D?G?L? + 8G*. Then we obtain

BASE-REG

16d Ol* C22 2 2 (0734 023 G4
<
S o log (1 t S (2077 + X1.p) + Srd E[ST] + md E[ST ;+]

1 1
+ §/€D2 — ZH]E[S%("J*] + O(].)

32d OZCQQ
< e log <1 + W(QU%T + E%:T)) +

4
+ <16G = Z) E[SF ] + %KJDz +0(1), (D.23)
K b

2C3

E[ST]

where the last step is due to log(1 + z) < x for = > 0.
For convex functions, Lemma 21 guarantees the following:

= 1
Base-REG < 5D1/1+E[Vf .] + xD? — 1HEIST] +0(1)

1
< 5D\/1 +4(20% + £2,7) + AL2E[S}] + D — LRE[SF ] + O(1)

1
< 5D\/1+4(20% 1 + $2,7) + 20DL?E[SF] + D - JREISE ]+ 0(1),  (D24)

where the second step is due to Eq. (6.5).

97



ZHAO, YAN, YU, ZHOU

Overall Regret Analysis. For A-strongly conver functions, plugging Eq. (C.5) and
Eq. (D.22) into Eq. (D.18) and letting Coq = 64D?(1 + L?)2, we obtain

1 2r+ 2%,
REGr <O ()\ ( Omax T E?nax)l 0g (:;T+1T> + CQ4E[S’}S]

=z

1
+ (32D2(1 + LQ) _{_,VMID _ 81%) E[S%Ez MID]E

ZZqTOPZq?fJ? i = XtuHQI

t=2 j=1

1 C() T M
o rD% = EIST =TRSO S i et - a1
t=2 j=1
<0 1 ( . )1 gM + <32D2(1+L2)+7M‘D—1n> E[ST ;+]
= A O max max o2 + 21211 axc 8 it
2 Co TOP MID LI TOP MID 2
+ (4D*Cqy — 7 E[ST ] + (2024 -7 )E Z Z 4y ZQt]z thﬂ' - Xt—l:iH
t=2 j=1 i=1
1 T M
+Lep? 1 (1060, o) B {z > al g - 4t Hl]
t=2 j=1
1 2 U% T+ Z% T
<0 e+ 3t s FE )

where the second step follows from Lemma 5 and the last step requires y™°F > 4D?Cyy,
AMIP > 205, Kk > 256D%(1 4 L?) + 8yM™P, and Cy > 8D%Cay. For a-exp-concave functions,
plugging Eq. (C.6) and Eq. (D.23) into Eq. (D.19), we obtain

d 2023 16G4 K x
Recr <O (5 1og (oby + Shr) ) + = 2EISH) + (H M = EISE ]

1 C al
+ §I€D2 0 [STOP _ MID]E q

T M
TOP

20 It — 1]
=1

t=2 j=1

d 16G4 , K . 1
< O (a log (U%:T + 2%71)) + < o + "}/MID - 4> ]E[ST,’L'*] + §/€D2

+ 8D2C23 CO [STop] ( 4023 MID>
K 2 K

T M
VPR Y gy et — @t ”1:|

N
2
Z Z abg” D ai Ixei = Xevi ]

=2 j=1 i=1
8D2Cy S d
+ ( B\ ai e - @I | <0 (S os ok + ) ).

k =2 j=1
where the second step follows from Lemma 5 and the last step requires y™°° > 8D?(Cly3,
AP > 4Ch3, Kk > 64G* 4+ 49N and Cy > 16D?Ca3. For convex functions, plugging
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Eq. (D.21) and Eq. (D.24) into Eq. (D.20), we obtain

2 2 2 2 64G2 MID
REGr <O \/(01:T +Xi7)log (ofr +217) ) + Z T - Z E[ST ;]

C d N
+ CosE[ST] — *O]E[S%OP] — MR [Z M@ty @ ke — xi-14l1?| + £D?
=1

t=2j=1

VR lz S a g - iy, ul}

t=2 j=1

64G?
<0\l + ) log (0 + 1) ) + ( :) E[5%.0.]

C T M
<4D2025 o 0> E[S2F] + kD2 + <4D20 TOP) E [ZZqTOPHqMID . qzlf\ll?,j||%:|

2 t=2j=1

+ (2025 — ") E [Z > oar Z Gp i 1%ei — Xe—1 ||2}

t=2 j=1

<0 (\/(U%T +3%.7) log (0F 1 + Z%:T)) ;

where the first step is by setting Cos = 20DL? + % + 128D2L?, the second step follows
from Lemma 5 and the last step requires 777 > 4D%Cys, AMP > 2Css5, k > 256G2 + 44N,
and Co > 8D2025.

At last, we determine the specific values of Cy, v™F, and y™P. These parameters need
to satisfy the following requirements:

Co>1, Co > 8D, Cy > 4™, Cy > 8D*Cay, Co > 8D*Ca3, Coy > 8D*Cas,
YTOP > 4D?Coy, ¥ > 8D?Ch3, 4" > 4D?Cos, yMP > 2C0y,
,.)/MID > 4Chs3, and ,YMID > 20,

As a result, we set

Cp = max {1, 8D, 44" 8 D?Clyy, 8D%Chs, 8D2025} ,
~TOP — max {4D2024, 8D%Cy3,4D> (20DL2 1 64G2 + 128D2L2)} ,
AMD — ax {2024, 4C53,20DL? + 64G? + 128D2L2} ,

where Z = max{GD + yMP D2 1 + AyMPD2 4 24TOPY " Oy = 8L% + 64D2G?L? + 8G*,
Coy = 64D2(1 + L2)2, and Cys = 20D L2 + % +128D?L2. The proof is finished. [ |
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D.4 Proof of Theorem 6

Proof Recall that we denote by g; = V fi(x;) for simplicity. To begin with, we provide a
proof for Eq. (6.6):

T T
E[Vr] <5E | Y IV fi(xi) — VFt(Xt)IIQ] + 5K lz |V Fi(xt) — VFt(X*)IIQ]
t=2 t=2
T T
+5E | Y IVE(x*) — VFt_l(x*)HQ] +5E lz IVE_1(x*) — VFt_l(xt_l)IQ] (D.25)
t=2 t=2

T
Y IVE a(xt-1) = Vi () |?

t=2

+5E

T
< 10037 4+ 552 7 + 20LE lz D, (x*, xt)] ,
t=1

where the first step is due to Cauchy-Schwarz inequality and the last step is because of the

definitions of 0% and 2., (given in Section 6.2) and the analysis proposed in Section 5.3.
In the following, we first give regret decompositions for different curvature types, then

we analyze the meta and base regret, and combine them for the final regret guarantees.

Regret Decomposition. For A-strongly convex functions, similar to the decomposition
in Appendix C.4, we have

T 1 [z 1 [r
E[REGr| =E [Z (VFi(x¢),x x*>] — §E lz Dr, (x*,xt)] — iE lz Dp, (x*,xt)]
t=1

~+
—_

T A T T
<E Z<gt,xt—x*>] - 1F [ZHXt —x*nﬂ [Z (", ]
t=1 t=1 =1
T A T
< E D (g% — Xt,i*>] - —E [Z [t — Xt,z‘*HQ]
t=1 t=1
META-REG
T 1 T
E [Z hf{fi* (X¢,i) — hi’%* (x*)] —§E [Z Dr, (X*,Xt)] )
t=1 t=1
BASE-REG

where the first and second steps rely on the expected loss function Fi(x) = E[f;(x)]; in
particular, the second step additionally requires that Fi(-) be strongly conver. The third
step follows from the definition of the surrogate function h$(x) = (g, x) + 2% — x|,
where \; € H is defined in (2.5).

For a-exp-concave functions, following the similar decomposition as in the proof of
Theorem 4 in Appendix C.4, we decompose the regret as

T 1 T 1 T
E[REGT E [Z VFt Xt) X*>‘| — §E lz DFt (X*,xt)‘| — §E lz DFt (x*7xt)1
t;]. . t=1 . t=1
E|) (g% —x* ]—E[Z g, Xt — X ]—ElZDFtX Xt)]
t=1 t=1 t=1
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T T
(6723
<E Z(gt,Xt—th*]— ! E[Z gtaxt_xtz* 2‘|
t=1 t=1
META-REG
1 T
+E [Z hi (Xp,ie) — hie (x )] —5E lz Dr, (x*, xt)] ,
t=1
BASE-REG

where the first and second steps rely on the expected loss function Fi(x) = E[fi(x)]; in
particular, the second step additionally requires that fi(-) be exp-concave. The third step
follows from the definition of the surrogate function h}"(x) = (g x) + Gt (g, X — x¢)?,
where «; € H is defined in (2.5).

For convex functions, we decompose the regret as

E[REGT] = [Z Fy(x) Z i( *)1 =E [Z<VFt(Xt),Xt - X*>] -E [Z DFt(X*7Xt)1

t=1 t=1

T
=E [Z(gtaxt - X*>‘| — [Z DFt X, Xt ]

t=1 =1

T T

=K lz<gt7 Xt — Xt z* +E Z ht,z* Xt i ) ht 1* ‘| lz DFt X Xt ‘| s

t=1

META-REG BASE-REG

where the first and third step use Fi(x) = E[f;(x)], the second step uses the definition of
Bregman divergence, and the fourth step is due to hf,;(x) = (gt,x).

Meta Regret Analysis. Our Algorithm 5 can be applied to the SEA model without any
algorithm modifications. As a result, we directly use the same parameter configurations as
in the proof of Theorem 4 (i.e., in Appendix C.4).

For strongly convex and exp-concave functions, the meta regret is bounded in a similar
way as (B.8) and (B.9), and thus omitted here.

For convex functions, the meta regret can be bounded as

META-REG < E {00 \/ 4G2D? + D2V + 2GD02] < Cy \/ AG2D? + D2E[Vy] + 2GDC;

T
< Co\l 4G2?D? + 5D?%(20}. 1 + X%.) + 20D%LE [Z D, (x*,%¢)| + 2GDCy (by (6.6))

t=1

<O (\/U%T + E%T> + O(Cs) + 2026 lz Dr, (x*,x¢) ] )

t=1

where the second step is by Jensen’s inequality and the last step is due to AM-GM inequality
(Lemma 18). Cy is a constant to be specified.
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Base Regret Analysis. For A-strongly convexr functions, similar to the analysis in Ap-
pendix D.3, the base regret can be bounded as

1 2
E “)Vhifi* (x050) — VA 1 o (3e-1.0) } + o).

Subsequently, we analyze the empirical gradient variation defined on surrogates in each
round, i.e., [ VA% (X¢+) = VA | 4 (x¢-1,+)||*. Denoting by o7 £ maxxex Epmp, [|V fi(x)—
VF;(x)||?] and X7 £ E[supyey [|[VF(x) — VF_1(x)|?] for simplicity,

]

E [ VB () — VB (-0

Aix Nix 2
=K [ 5 (Xp,ix — X¢) — Br—1 — 5 (X¢—1,ir — X¢—1) 1
_ )\i* 2 )\ 2
<3E _IIgt - gt—lHﬂ + 3‘ T(Xt,i* —xy)|| + 3‘ — (Xp—1,% — X¢—1)
< 15(07 + 071 + 2LE [Dp, (x*,x¢)] 4 2L [Dp,_, (x*, x¢-1)] + £7) (by (6.6))

+ ALE [ — 3il?] + ARE [ — %012

where the first step is due to the property of the surrogate: VA (%) = gt + % (xt i — Xt),
and the second step is due to the Cauchy-Schwarz inequality. Plugging the above term back
into the base regret and omitting the ignorable O(1) term, we achieve

60 <~ 07 + 074 + X7 L E [Dp, (x*,%¢) + Dr,_, (x*,%-1)]

+120L)
() t t=2 Aist

ALE [[Ixei0 — xe[*] + ALE [[Ixe—1,0 — %01 ]1%]
+ 42 z o )

Using Lemma 14, we control the base regret as

1 2 U% 7+ 3
480LGD d N 8D? 5 [& )
. log (14 2\:E > Dp(x*x)| | + o log | 1+ 23K > lIxe i — x|
1* t=1 i* t=1

1 2 O'%T—i_E%T

max

960LGD

lz Dr, (x*,x¢)

16D2
[Z %+ — Xt||2]

where the ﬁrst term initializes Lemma 14 as a; = 074071 +X7 (i.e., Gmax = O(02 1+ 520x))
and b = 1/(02,, + ¥2..), the second term initializes Lemma 14 as a; = E [Dp, (x*,x;)] +

E [Dr, ,(x*,x¢-1)] (i-e., amax = 4GD due to Assumption 1 and Assumption 2) and b = A+,
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the third term initializes Lemma 14 as a; = E [A2 [|x¢iv — x¢]|? + A2 || xe—1,00 — x¢e—1]%] (ie.,
amax = 2D? due to \; < 1 and Assumption 1) and b = A=. The O(1) term contains
ignorable terms like O(1/A). The second step requires Ca7, Cog > 1 by Lemma 15.

For a-exp-concave functions, the base regret is bounded by (C.11). Following (6.6), we
control the empirical gradient variation defined on surrogates as

2

T
ex ex 2 [/
[} [ ASR i) = VAT (ki) ] < 3E[Vr] +63 (86, %1 — Xu0)
t=1

2

T
< 15(20%.7 + %2.7) + 60LE [Z Dr, (x*,%¢)
t=1

T
+ 20(12*G2]E lz<gt, Xt — Xt,i*>]

t=1

Plugging the surrogate’s empirical gradient variation back to the base regret, we obtain

16d 1500+ 15La i+
BASE-REG < an log (1 + 8dl (2027 + %2 1 t [Z Dr, (x*, x4 ]

3 2 T

oG

+ — El (g1, %¢ — Xp v )°
1

d
) <0 (a log (U%T + E%:T)> + O(log Cy9)

1d | &
120L 4 AG? )
D —E — X))
+ Coo LX; (X %) | + Coo LX;(gt,Xt Xt i*) ]

where the second step requires Cog > 1 by Lemma 15.
For convex functions, the base regret can be bounded as

T
Base-REG < 5D4/1+E[Vr] < 5D\l 14 100% + 552, + 20LE [Z Dr, (x*, xt)]

t=1
<O (\/O’%T + E%:T> + O(Cs0) + @E ZDFt x*, X4 1 ,
t=1

where the first step is by Jensen’s inequality, the second step is due to (6.6), and the last
step is because of AM-GM inequality (Lemma 18). C3 is a constant to be specified.

Overall Regret Analysis. For A-strongly convex functions, by combining the meta and
base regret, it holds that

O-%T_FZ%T
Ty

max max

CoD? 16D? A\ ) <960LGD 1) a
+ + - Xt — X¢ — E Dp, (x*,x
(o 0 - 2 VS ] + (2 3o

1 2 oty +3%r
so(A( 02+ 5200 ) 10 e

max

1
ReGr <O (A ( Omax + E?nax) log ) + O(C3 4 log Ca7 + log Czs)

by choosing Cy; = max{1,1920LGD}, Cog = max{1,128D%/\;x} and C3 = 4CoD?/\;.
Note that such a parameter configuration will only add an O(1/)) factor to the final bound,
which can be absorbed.
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For a-exp-concave functions, by combining the meta and base regret, it holds that

d 1200 1 &
29 t=1

Co  4G% an) . [& 2
o6 6 )[R

t=1

<(’)< log(alT—i-ZlT))

by choosing Cag = max{1,240L, 32G?/a;+} and Cy = 4Cy/c;+. Note that such a parameter
configuration will only add an O(1/«) factor to the final regret bound, which is absorbed.
For convex functions, by combining the meta and base regret, it holds that

Co 5D d
< 2 2 — E D *
ReGcr <O (V%:T + 1:T> + O(Cs6 + Cs0) + (2026 + 5Cm ) Lz; (X 7Xt)]
S o (\/ O—%:T + E%:T) ’

by choosing Cog = Cy and C3g = 5D.
Note that the constants Cs, Cy, Cog, Ca7, Cog, Cag, C3g only exist in analysis and and
hence our choices of them are feasible.
|

D.5 Proof of Theorem 7

Proof For the dishonest case, the two-player game degenerates to two separate online
convex optimization problems. Therefore, the results for both bilinear and strongly-convex-
strongly-concave games follow directly from Appendix C.3.

For the honest case, we focus on the convex-concave game, where f(x,y) is convex in
x and concave in y, which subsumes both bilinear and strongly-convex-strongly-concave
games. The proof begins by analyzing the regret of player-x, following the structure in
Appendix C.3. Leveraging the benign structure of the game, we upper bound the empirical
gradient variation by S¥ 2 ST, ||lx; — x;_1]|? and S¥ £ ST, ||y — y¢—1]|>. By symmetry,
we derive a corresponding bound for player-y, and combine the two via cancellation to

obtain the final result.
I\AID TOP STOP TOP D TOP
)

To start, we denote ~ .qr g Z for player-x and player-y by /™, 7%,

S;Op X qZ ?P X Z* and Ty, ’yTOP STOP’y, qz ?P’y, 7Y separately. We choose D = /2. For the
honest case, we starts Wlth the player-x. Following the analysis of the convex functions in

Appendix C.3, we decompose its regret by

T T
I%EG")Zi < Z<g1)t(’ Xt — Xt z* + Z gt y Xti*x — > . (D26)
t=1 t=1

META-REG* BASE-REG*
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For the meta regret, combining Eq. (A.3) and Eq. (A.7), we have
X

Z N ’ N C
META-REG® < TOP 302( TOP) + 32ZX6TOPV* + 'VEIDST,# _ ?Os;op,x

€5
T Z Z qg?r)x Z ?I]Isz %t — Xt—l,z‘H2

t= 2] 1
TOP, MID, MID, 2
TOPZZ%; “llag; ™ — a1 N1t
t=2j=1
A N 64€TOP T 64G2 CO
< lo _ + + Loy | gx o TO0 grorx
T et gSCO(sj‘-?P)2 ZX ZHgt 8- 1“ 7x 1 x T,i 5 °T
64G N )
TOPX IV[ID,X
7x MIDZZQ Qi 1%t — xe—1l
t=2 j=1 i=1
T M
TOP, MID, MID, 2
7;OPZ . xHqt,j - t71,}(||1
t=2 j=1
7% N 32 64G2 CO
lo S _|_7Sy 4 M ) gx *_7STOPX
= ST?P g3Cg(6jT9P)2 T 7% Tx Tyi
64G2
+ 7 MID Z Z q;l:OPqui\jl‘;]z,X ||Xt7i . Xt—17i||2
t=2j=1
) )X (2
TOPZZQTOPX a; ™ —a, I (D.27)
t=2 j=1

where the third step is by ||g¥ — gf,lHQ < 2%t —x—1]* + 2|yt — yi—1]|* and et <1/2.
For the base regret, by Lemma 21, we have

T
1
BASE-REG™ §5\/§\l 1+ g l|gr — gi‘_lﬂ + e — 4’YXOPST ~+0(1)
t=1

T
<5v2 3 |lgF — gl [P+ 0 — SRS+ O(1)
t=1

4

<10V25F + 10V28575% — —43°"S% i« + O(1), (D.28)

4
where the second step is by AM-GM inequality (Lemma 18) and the third step is by
|gr — gf71H2 < 2% — Xt—1H2 + 2|yt — }’t—1H2- Plugging Eq. (D.27) and Eq. (D.28) into
Eq. (D.26), we obtain

32 64G? 1 C
REGT < (Zx + 10\@) SY + < o 4 Ay 4/@) SF e + 26 — 7OSCTFoP,x

32 4 64G?
+ <Z 10[) ST MID Z Z qt’I"OP X Z qi\fjﬂz,x ||Xt,i _ thl,i||2

t=2 j=1
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P = g + o)

TOP TOP,X
PP

t=2 j=1

< @2 10x/>sy+2 —QSTOPX (

32 + 64G?

7 +1of>5T+0()

M
B Z Z a4y Z Grgs " Ixe = X1 =75 Z >4 e = @I

t=2 j=1 t=2 j=1
(D.29)

where the last step is by choosing x > 256G? + 49MP. Symmetrically, for player-y, we can
obtain a similar bound

32 64G* 1 C

32+ 64G?
+ ( 10\f> Sy — g™ Z Z e quﬁy yei — yi-ill®

zy t=2j=1

TOP Z Z q;r,gOEqu}fvf]I‘my q;\m;,;:ul + O(l)
t=2 j=1

2
< @y + 10@) SX + 2k — CO — 57"+ <

32 + 64G?

y
-+ 10x/§> S¥+0(1)

M N
- ’yé\,”D Z Z th;-)P’y Z qzlﬁy |yti— Y1, H2 Yo Z Z QZOP qux;D Y - i\mi;,H%;
t=2 j=1 i=1 t=2j=1
(D.30)

where the last step is by choosing £ > 256 + 475", Combining Eq. (D.29) and Eq. (D.30)
and letting C3; = M + % +20v/2 and Csy = M + % + 20+/2, we obtain

e
REGY + REGY. < O315% + C325% 5 —0(§roPX L 51O L O(1)
L0 9) ST R0 WFIEPNTEEE LS D v Pr R
t= 2; 1 i= 2] 1
Z Z g Y Z @Y Ny = yeerall? = 95" Z Z a5 e — a1
t=2j=1 t=2j=1
C, C,
< (8031 - 2°> SToPx 4 (8032 - 2“) S+ 0(1)
+ (2031 — 7" Z Z 4, Z Qs % — xi— 1)
t= 2] 1
+ (2039 — "™ qf,;?” Z a5 Iyes = yeevall?
t: j=1 i=1
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8 — 1) 33 g - g
t= 2] 1

+ (8C39 — TOP quzgp,y”qi\gmy q;_ 14 2 <O(1),
t=2j=1

where the first step is due to Lemma 5 and the second step is by choosing 1™ > 2C3,
’)/MID > 2C39, 7. O > 8C4s, ’)/TOP > 8C39, and Cy > 16 maX{Cgl, 032}

At last, we determme the specific values of Cp, 75", 7 s ¥y "5 Vy - These parameters
need to satisfy the following requirements:

Co>1, Co 28D, Cy > 4", Co > 47", Co > 16C31, Co > 16C32, 75~ > 2C31,
Yy > 2C39, 7" > 8C31, 1,7 > 8Cs2.

As a result, we set
Cp = max {1, 8D, 44" 16Cs51, 16C30, 472°F 47T0P} ,
MID MID __ 2 TOP TOP __ 2
TP =P =128 4+ 128G* +40v2, 15" =% =512+ 512G* + 160v/2,

where Oy = 3240467 | 32 4 90\ /5 (g, = 32404G% 4 32 4 90\/2 7% = max{GD+~Y"PD?, 1+
AMID H2 4 9~ T OP} and AR maux;{GD—VyMIDD2 14+~ D?+2~3°"}. The proof is finished. W

D.6 Proof of Theorem 8

Proof In this proof, note that we do not need to analyze the convex case because the
convex base learner is naturally anytime by using a self-confident tuning step size, as in
Lemma 21. Therefore, in the rest of the proof, we focus on the cases of A-strongly convex
and a-exp-concave functions.

Regret Decomposition. For A-strongly convex functions, recall that * denotes the index
of the best base learner whose strong convexity coefficient satisfies Ajx < A < 2X\;». We
consider two cases at the 7-round: (7) the i*-th base learner is not activated (i.e., 7 < s35);
and (7i) the i*-th base learner is activated (i.e., 7 > si¢). For case (%), we obtain

1 1
< —
w)=o(3)

where the third step follows from the fact that 7 < s¥ — 1, since the corresponding base
learner has not been activated at the 7-th round. The fourth step is due to the activation
condition of s} —1 < 1. For case (i), we first decompose the regret into two parts, where

REG, = zT:ft(Xt th < 7GD < ( 1)GD <0 (
t=1

the first part corresponds to case (i), and the second one refers to regret after the i*-th base
learner is activated:

SC __ sc __
S35 1 s 1

REG: = Y filx) = > fil(x)+ D filxt) = D fulx). (D.31)
t=1 t=1 t=s5¢ t=s3
TERM (A) TERM (B)
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TERM (A) can be bounded by O (1/)) as in case (7). We then decompose TERM (B) into the
following two parts:

T

TERM (B) < ) (81X — Xpt) — A Z % — X002 (by A= < A < 2X;+)
t=s3 =55
META-REG
-
+ Z RS (Xei0) — D hiSe( Z Dy, (x*,x;).  (D.32)
t= S,L* t=8*:.§ t S*
BAse-REG

For a-exp-concave functions, recall that i* denotes the index of the best base learner whose
exp-concave coefficient satisfies a;+ < o < 2a+. Similar to the strongly convex functions, we
consider two cases at the 7-round: (%) the i*-th base learner is not activated (i.e., 7 < sef Py;

and (i) the i*-th base learner is activated (i.e., 7 > s.7). For case (i), we obtam

-3 (&)= 2
REG, ;ft(xt th ) <TGD < (55 —1)GD < O o <O(=),
where the third step follows from the fact that 7 < s5; — 1, since the corresponding base
learner has not been activated at this time. The fourth step is due to the activation condition
of saP —1 < . For case (i), we first decompose the regret into two parts, where the first
part corresponds to case (i), and the second one refers to regret after the i*-th base learner
is activated:

exp -1 exp 1
REG, = Z fe(x¢) Z fo(x*) + Z fe(x¢) Z Je(x¥). (D.33)
t Sexp t Sexp
TERM (A) TERM (B)

We bound TERM (A) by O (g) as in case (7) and decompose TERM (B) into the following
two parts:

T T
(675

TERM (B) < Z (8, Xt — Xpir) — — Z (g1, % — xtﬂ-*>2 (by ap < a < 20+)

t=soP t=soP

META-REG
Z e (xe,iv) Z hyw (x*) =5 Z Dy, (x*,%;). (D.34)
t=s7P t= sefp t sefp
BASE-REG

Meta Regret Analysis. We adopt Optimistic-Adapt-ML-Prod variant as the meta learner,
and present its regret analysis below for self-containedness.

Lemma 9 (Simplfied Theorem 7 of Xie et al. (2024)). Denoting by A; the active expert
set at time t, py € A 4,| the algorithm’s weights, £; € RMl the loss vector, and my; € R
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the optimism. Assuming that the i-th expert participates in prediction during time |a,b] and
choosing the learning rate optimally as Eq. (6.12), the regret of Optimistic-Adapt-ML-Prod
variant with respect to expert i satisfies

b b
> (b, —€i) < CzaJ L+ (res — meg)?,
t=a t=a

where e; denotes the i-th standard basis vector, Cs3 = O(log Ny + log(1 + logb)), and Ny
represents the total number of base learners initialized till time b+ 1.

For A-strongly convez functions, the meta regret in Eq. (D.32) can be bounded as

T )\‘* T
META-REG < C33\l 1+ Z (81, Xt — Xy %)% — Tz Z [[x¢ — Xt,z'*“2

t:sjﬁ t:sfi
2 - o Nir - 2
<Ca |1+G? Y e — xpi0][? = 1 > It = xee|
t:sji t:sji
C33G? Air | & 2
< O(C — — Xy D.35

— oSC
tfsi*

where the first step follows from Lemma 9 by choosing a = si and b = 7, the last step uses
AM-GM inequality (Lemma 18) and omits the ignorable additive C33 terms. N, = O(log )
and we omit the O(loglog 7) term. Cs4 is a constant to be specified.

For a-ezp-concave functions, the meta regret in Eq. (D.34) can be bounded as

T T
(6753
META-REG < 033 1+ Z <gt’ X¢ — Xt,i*>2 — ; Z <gt, Xt — Xt,i*>2
t=s1P t=s1P
1 1

T

.
Oy *
<Caz |1+ Y (gnxe —Xpiv)? = i > (g x — xp30)”
—cs e
Cs33  oy= a 9
< O(Cs6) + - Z (8, Xt — X¢,i%)°, (D.36)
2C56 4 Mg

where the first step follows from Lemma 9 by choosing a = s, "

~ and b = 7, the last step uses
AM-GM inequality (Lemma 18) and omits the ignorable additive Css terms. It’s because

N; = O(log 7) and we omit loglog T terms. Csg is a constant to be specified.

Base Regret Analysis. Following the analysis structure of Appendix C.3, we first pro-
vide different decompositions of the empirical gradient variation defined on surrogates for
strongly convex and exp-concave functions, respectively, and then analyze the base regret
in the corresponding cases. For A-strongly convex functions, since the i*-th base learner is

activated at time sf5, we can directly bound the empirical gradient variation on surrogates,
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e Vi 0 2 S 1 [ VA (x1ie) = VAR o Ge00)[[2 by (C:21)

T T
Vise e € OWise ) +36L 3 Dy, (x*,x0) + 205 D [lxeir — x|,

— oSC — oSC
t=s% t=s7%

where Vige 1 = ZZ:s;gH suPxex | V.fi(x) — fim1(x)[1%.
For a-exp-concave functions, by (C 21), we can similarly bound the empirical gradient
variation on surrogates, i.e., V[S)e(fp £ Zt oy HVheXp(xt,p) — Vhtefqﬂ-* (x¢t—1.4+)|%, by

T T
Vieh g SOViewe 4+ 36L Y Dy, (x*, %) +205:G* Y (g1, xe — Xei0)%,

[s;x
t=s1P t=55P

where Vigexe =371 exo ) Supgey |V fi(x)— fi—1(x)||%. To conclude, for different curvature
types, we provide correspondingly different analysis of the empirical gradient variation on
surrogates:

IWisee 7] +36L Z Dy, (X%, %) + 202 Z Ix¢.4+ — x¢||*, (\-strongly convex)

{sc,exp} t=s% t=s%
Visgs e < - r
IVjsexw 7+ 36L Z Dy, (x*, %) + 202 G? Z (g1, % — x¢4+)%. (a-exp-concave)
t= sefp t= sefp

(D.37)
In the following, we analyze the base regret for different curvature types. Since the empirical
gradient variation shares a similar structure to that in Theorem 4, we can directly apply
the corresponding result. For A-strongly convex functions, according to Eq. (C.22), the base
regret can be bounded as

1 57602 i
BASE-REG < O <)\ log V[S?ﬁﬁo t%;c Dy, (x*, %)
32G2 T
+ Z %14+ — x¢]|* + O(log Css). (D.38)
t sSC

For a-exp-concave functions, according to Eq. (C.23), the base regret can be bounded as

d 2L
BASE-REG < O | —log Vi ex D
= (a 0og [sSXP 7] > 037 t_zexp ft x* ,X¢)
4G% C )
+ Cam Z (8, x¢ — X¢3+)° + O(log Cs7). (D.39)
t=s%P
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Overall Regret Analysis. For \-strongly convex functions, by combining Eq. (D.31),
Eq. (D.32), Eq. (D.35), and Eq. (D.38), we obtain

1 1 576G2L 1\ <& .
ReG, <O (}\) +0 <)\ log Ws?iﬁ]) + ( Css - 2) Z th(x 7Xt)

— oSC
t=s%

3262 C33G? A\
+< 33 _

T 2 1 >
o | ol
oo 4> > lIxeir — x| 4+ O (Caa + 0g035)_(9<)\ og Vo ),

— oSC
tfsi*

where we choose C3q = 4C33G? /A« and Cs5 = max{1,256G?/\;+, 1152G2L}.
For a-exp-concave functions, combining Eq. (D.33), Eq. (D.34), Eq. (D.36), and Eq. (D.39),

d d 2L 1 T «
Rec- <0 (£)+0(SoeViern) + (5o - 5) 2 D)

— &XP
751,*

Car * 2C36 4

4G? Cs: i* T d
+ ( B _2 ) > (g%t — X4,i2)” + O (Cs6 + log Cg7) < O (alog VT> ;
t

ex
:Sq.*p

where we choose C3g = 4C33/a;+ and C37 = max{1,144L,32G?/a;+}. Note that the con-
stants Css, C34, Css, C36, C37 only exist in analysis and and hence our choices of them are
feasible. |

Appendix E. Technical Lemmas

In this section, we present several supporting lemmas used in proving our theoretical results.
In Appendix E.1, we provide useful lemmas for the decomposition of two combined decisions
and the parameter tuning. And in Appendix E.2; we analyze the stability-based negative
terms of the base algorithms for different curvature types.

E.1 Useful Lemmas

In this part, we conclude some useful lemmas for bounding the gap between two combined
decisions (Lemma 10 and Lemma 11), tuning the parameter (Lemma 12 and Lemma 13),
and a useful summation (Lemma 14).

Lemma 10. Under Assumption 1, if x = Zﬁil DiXi, Y = Zf\il q;yi, where p,q € An,X;,y; €
X for any i € [N], then it holds that

N
Ix =yl <23 pillx; — yill” + 2D%(lp — qll%.
i=1

Lemma 11. If w = Zij\;l qipi,w' = f\il q,pl, where q,q' € An and p;,p;, € Ay for any
i € [N], then it holds that

N

lw —w'l* <23 gillp — Bl + 2llg — ¢'II3.
=1
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Lemma 12. For a step size pool of Hy = {nk}re[k), where n = ﬁ > > = ﬁ, if
Co > VX there exists n € H, such that

2T
1 Y 2
—log — +nX < 2Cplog(4Y Cf) + 44/ X log(4XY).
n n

Lemma 13. Denoting by n, the optimal step size, for a step size pool of H, = {Uk}ke[K];

where N = ﬁ > ... > = ﬁ, if Co > 277%, there exists n € H, such that
1 Y 2 4Y
—log — < 2C) log(4Y C3) + = log —5
n n M *

Lemma 14. For a sequence of {a;}1_; and b, where a;,b > 0 for any t € [T], denoting by
Umax = maxy a; and A = [b Zle at], we have

Lemma 15. For any a > 1,b > 0, it holds that log(a + b) < log(Ca) + & for some C > 1.

Lemma 16 (Corollary 5 of Orabona et al. (2012)). If a,b,c,d,z > 0 satisfy v — d <
alog(bx + ¢), then it holds that

2
r—d<alog <2ablogab —|—2bd—|—20) .
e

Lemma 17 (Lemma 9 of Zhao et al. (2024)). For any x,y,a,b > 0 satisfying © —y <

vax + b, it holds that
z—y<+ay—+ab+a+b.
Lemma 18 (AM-GM Inequality). \/zy < % + £ for any x,y,a > 0.

Proof [of Lemma 10] The term of ||x — y||? can be decomposed as follows:

2 2

N N N N N N
2 — R o S N o Y v N g
Ix = ylI> = D> _pixi = > aiyil| =|D_pixi— Y_piyi+ Y_piyi— »_GYi
i=1 i=1 i=1 1=1 =1 i=1
N 2 N 2
<23 pilxi —ya)|| +2(> (i — @)y
=1 i=1

2

N N
<2 (Zp:’”xi - W’) +2 (Z Ipi — Qi|HYi”>
i=1

=1

2

N
<23 pillxi — yill* + 2D%|lp — qli,
i=1

where the first inequality is due to (a + b)? < 2a? + 2b? for any a,b € R, and the last step
is due to Cauchy-Schwarz inequality, Assumption 1 and the definition of ¢;-norm. |
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Proof [of Lemma 11] The proof follows a similar flow as Lemma 10. Specifically, we first
decompose it as

2 2

N N
lw — w'|)? = 4—Zquz <23 ailpi — P))|| +2|>_(ai — @))p;
i=1 1 =1 1

TERM (A) TERM (B)

Pij — P
2 N
=> qilpi - Pilli-
i=1

2 N g 2
) < (Zzwiqﬂpé,j)

= i=1j=1

2

N d N 2
Dla—ald pij| = (in—qﬂ) = lg—qI3,
i=1 j=1 i=1

For TERM (A), we have

TERM (A) =

Z

(2

N d N
= (Z%Z pi,j—pé,j) SZ%(
=1 j=1 i=1

/
Dij = Pij

For TERM (B), we have

N

Z(Qi - q;)PQ

=1

TERM (B) = (¢ — ¢i)p};

1

d

1 =1 |j

where the second last step is due to Zg-lzl p;j = 1. Combining the bounds for TERM (A)
and TERM (B) finishes the proof. [ ]

Proof [of Lemma 12] Denoting the optimal step size by 7, = \/log(4XY)/X if the optimal
step size satisfies n < n, < 2n, where n < 7, can be guaranteed if Cy > then

1, Y 2 4Y
—log — + 17X < —log — + X < 34/ X log(4XY).
Ui Ui T Mk

Otherwise, if the optimal step size is greater than the maximum step size in the parameter
pool, ie, e > (n=m = ﬁ), then we have

2T’

1 Y 1 Y
;log 2 +nX < p log o + X <20y log(4Y C2) + /X log(4XY).
Overall, it holds that
—log — +nX < 2Cylog(4Y Cp) + 44/ X log(4XY),
n n
which completes the proof. |
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Proof [of Lemma 13] The proof follows the same flow as Lemma 12. [ ]

Proof [of Lemma 14] This result is inspired by Lemma 5 of Chen et al. (2023), and we
generalize it to arbitrary variables for our purpose. Specifically, we consider two cases:
A< T and A>T. For the first case, if A < T, it holds that

1

T A T a a T a 1
— + -t max + a S max (1 + log A) + 7’
; ; Az;l ; b(A+1) & Z t b b2

-+

gI&
gI&
S

where the last step is due to ZEH a; < S°F  a; < A/b. The case of A < T can be proved
similarly, which finishes the proof. |

Proof [of Lemma 15] The one-line proof is presented below:

log(a +b) < log(Ca+b) < log(Ca) + log (1 + CI')a> <log(Ca) + %,

where the first step is due to C' > 1, and the last step adopts log(1+z) < z for any x > 0. B

E.2 Stability Analysis of Base Algorithms

In this part, we analyze the negative stability terms in the optimistic OMD analysis, for
convex, exp-concave and strongly convex functions, respectively. For simplicity, we define
the empirical gradient variation below:

T
Vp & Z e — gt—1H2 where g; £ V f3(x;). (E.1)
t=2

Next we provide the regret analysis in terms of the empirical gradient-variation Vi, for
strongly convex (Lemma 19), exp-concave (Lemma 20), and convex (Lemma 21) functions.

Lemma 19. Under Assumptions 1, 2, and 3, if the loss functions are A-strongly convez,
OOGD (2.3) with my = Vfi_1(x¢—1) and ny = 2/(k + At), where K is a parameter to be
specified, enjoys the following empirical gradient-variation bound:

T T
th(xt) — miant(x) <
t=1 XX

Lemma 20. Under Assumptions2 1, 2, and 3, if the loss functions are a-exp-concave,
OOMD (2.4) with Uy = kI + 5~ + $ 7L Vfi(x5)V fs(xs) T, where k is a parameter

to be specified, enjoys the following empirical gradient-variation bound:

6C g (14 A7) + Lap? £ 2400
0g< + T)—FZK; —th:;th—xt_lH + O(1).

T T
16d 1 K
th(xt mmet ) < —log <1+8dVT> +§'L€D2_ZZ||Xt_Xt*1||2+O(1)'
t=1 t=2
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Lemma 21. Under Assumptions 1, 2, and 3, if the loss functions are convexr, OOGD (2.3)
with my = V fi_1(x¢-1) and n; = min {D/\/l + Vi, 1//{}, where k 15 a parameter to be

specified, enjoys the following empirical gradient-variation bound:

T T
> filk) —min}  fi(x) <5D 1+VT+nD2—fZ||xt—xt 1IP +0(1).
t=1 t=1 t=2

Proof [of Lemma 19] The proof mainly follows Theorem 3 of Chen et al. (2023). Following
the almost the same regret decomposition in Lemma 21, it holds that

T T T
Do felxe) = Y () < Y el Vfi(xe) mt||2+z Dwx s Xt) — Dy (x", Xe41))
t=1 t=1

t=1
ADAPTIVITY OpT-GAP
T 1 A T )
— > S (Dy(Rig1. %) + Dy, (x0, %)) — 53 [ — x|
=1 "t 2=
STABILITY NEGATIVITY

First, we analyze the optimality gap,

1 T /1 1
OPT-GAP < —Dy(x )+ ( — ) Dy (x*,X
mn w( Z Nt m w( t+1)

(k+A)D?* + 7 ZHX — X1

»Mr—‘

We handle the last term by leveraging the negative term imported by strong convexity:

1
OPT-GAP — NEGATIVITY < - ( + ND? 4+ = Z |x* — Rep1])? — = Z % — x*|?
t 1 t 1
1
< 45D 2+ 3 ZHXt—XtHH +0(1).

t 1

The second term above can be bounded by the stability of optimistic OMD:

)\ T R )\ T T
5 > llxe = Rega|? < 5 SOtV fi(xe) —my|® < mel|V fi(xe) — my
t=1 t=1 t=1

Finally, we lower-bound the stability term as

T H+)\t R 2 ~ 112 2
STABILITY = » 1 (I%e1 = x| + [Jxe — X¢]|%) (by N = T;+At)
t=1
K T
2 2% el e =) ZHXt—Xt i
t=
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Choosing the optimism as m; = V f;_1(x¢—1), we have

T

REGT <2 mil|Vful(xe) = Vfior (xe-)|* + 4I€D2 -3 Z e = xe1[|* + O(1).
t=1 8=

To analyze the first term above, we follow the similar argument of Chen et al. (2023). By
Lemma 14 with a; = ||V fi(x¢) — Vfio1(Xe—1)||?, amax = 4G, A = [AVr], and b = ), it
holds that

T 2 2
4G — 4G 1
2
z; gt — ge—1l|” < BY log (1 + )\VT) + By + 2
Since n; = 2/(k + At) < 2/(At), combining existing results, we have
16G? ~ 1 5 ke 9
REGT < log (14 \Vr) + D735 ; I — %12 + O(1),

which completes the proof. |

Proof [of Lemma 20] The proof mainly follows Theorem 15 of Chiang et al. (2012). De-
noting by x* € argminycy 1, fi(x), it holds that

T T T T
SOfelxe) =D fex) <DV felxe) — thQUt—l + ) (Dy, (x*, %) — Dy, (X", X441))
t=1 t=1 t=1

ADAPTIVITY OprT-GAP

T
Z Dwz Xt+1,X¢) + D¢z(xt7xt D) Z % —x HVft (x¢)V fe(xe) T
t=1 t=1

STABILITY NEGATIVITY

where the last term is imported by the definition of exp-concavity. First, the optimality
gap satisfies

T T
1 N 1 N
OPT-GAP = o > Ix* = eI, — 3 > xRl
t=1 t=1

- 1o - -
< gl =Rl + 5 20— el = I Tl
2712
o aG*D o
= iﬂD + 4 7 Zl HX - Xt+1”Vft(Xt Vfe(xe) T
t

We handle the last term by leveraging the negative term imported by exp-concavity:

OPT-GAP — NEGATIVITY
T

2 -~ 2
*/‘GD + — Z 1% = Re4111% f, 00y 0 fo ()T — 5 o lxe = XS e v o)™ T O
t 1 t=1

| /\

1 « ~
§HD2 + 2 Z et — XH'IHQVft(Xt)Vft(Xt)T +O(1),
t=1

IA
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where the local norm of the second term above can be transformed into Uy:

T 2

« aG

5 > 1%t = Ret 1137, )9 fu )T S E %t — R |” < E :HXt — %11l
t—

Using the stability of optimistic OMD (Chiang et al., 2012, Propos1t10n 7), the above term
can be further bounded by

T T
S llxe = Regallf, < DIV filxe) — th?]t-L
t=1 t=1

By choosing the optimism as m; = V f;_j(x;—1), the above term can be consequently
bounded due to Lemma 19 of Chiang et al. (2012):

T
Z 8d
2 IV fe(xt) = V feo1(x 1)HUt 1< log +8 dVT

The last step is to analyze the negative stability term:
T

1< _
STABILITY = Z(D"L’t (Xt+1, Xt) + D¢t Xt, Xt Z HXt.}rl XtHQUt + 5 Z th — XtHQUt
t=1 t=1

T

K

§Z|1Xt+1—xt|| + 5 Z||Xt—xt||22 ZHXt—Xt—lﬂz-
= 2= 45

Combining existing results, we have

16d 1 s
<1 — —kD?* - = — x| 1
Rucr < — og( + o dVT>+2n 4;:2 [x¢ = x¢—1[|7 + O(1),

which completes the proof. |

Proof [of Lemma 21] The proof mainly follows Theorem 11 of Chiang et al. (2012). Fol-
lowing the standard analysis of optimistic OMD, e.g., Theorem 1 of Zhao et al. (2024),

T T T
Do felxe) = D0 () < D mellV filxe) — | +Z Dwx ,Xt) — Dy (x*, Xe41))
=1 =1 =1

ADAPTIVITY OprT-GAP
G|
- Z 7(,D¢(§t+17 Xt) + D’LZJt (Xta it))v
=1 "Mt

STABILITY

where x* € argmingy i, fi(x) and 9(-) £ %H -||>. The adaptivity term satisfies

T
IV fe(xe) = V feo1 (xe—1) |2
ADAPTIVITY = Y ||V fi(x¢) — my||> < D
2 VA Z V1 S VA — Yt (a2

T
< 4D\l 1+ Z HVft(Xt) - Vft_l(Xt_l)Hz + 4DG2,
t=1
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where the last step uses Y1 a;/\/1+ X"  as < 4/14+ 35 ar + maxe(r) ar (Pogodin

and Lattimore, 2019, Lemma 4.8). Next, we move on to the optimality gap,

T
1 . . 1 ~ -
OPT-GAP = Z — (Dy(x*, Rt) — Dy (x*, Xy 11)) = Z (I = =12 =[x = R |?)
t 2y
t=1 " t=1 ="l
[x* =% T(l 1 ) .ol
<=0 4 — = X —X
2m tz; 2 2mi— | g
D L1 1 D 2
<~ + kD) + D? (— )<1+HD + —
2 ) ; 2ne  2mp-1 3 ) 207

D —
= rkD? + S V1+Vr+0(1).

Finally, we analyze the stability term,

~

1 ~
>3 (% = xi1 P + xe — %)

20y

(%o = xell? + [l = %¢ 1)
t=2

M=
F|-

~~
Il
—

STABILITY =

—||x — X1 E X: — Xt 1
477tH t t— H H t t— ”

A\
M=

i
[\o}

Combining the above inequalities completes the proof.
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