

One-Pass Bandit Learning for RLHF and Function Approximation

Peng Zhao

School of Al Nanjing University

Sept 22, 2025 @ CUHK-SZ

Outline

• Bandits Problem

• One-Pass Bandits

• RL Implications

• Summary

Outline

• Bandits Problem

One-Pass Bandits

RL Implications

Summary

Bandits: Interactive Learning

☐ Multi-armed bandits: a simplest formulation for bandit problems

At each round $t = 1, 2, \cdots$

- (1) player first chooses an arm $a_t \in [K]$;
- (2) environment reveals a reward $r_t(a_t) \sim \text{distribution } \mathcal{D}_{a_t}$;
- (3) player updates the strategy by the pair $(a_t, r_t(a_t))$.

The goal is to minimize the *regret*:

$$\mathbf{Reg}_T \triangleq \max_{a \in [K]} \mathbb{E} \left[\sum_{t=1}^T r_t(a) - \sum_{t=1}^T r_t(a_t) \right]$$

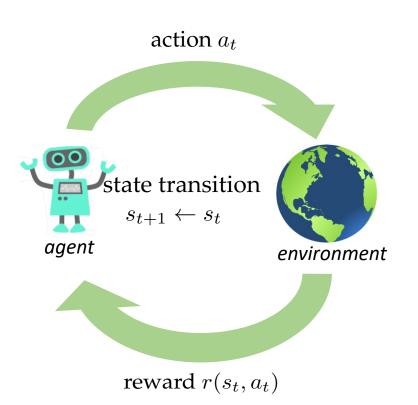
Exploration-Exploitation tradeoff

- Exploitation: pull the best arm so far
- Exploration: try other arms that may be better

i.e., difference between the cumulative reward of the best arm and that obtained by the bandit algorithm

Bandits: Interactive Learning

• Bandit is "single-step" decision version of Reinforcement Learning

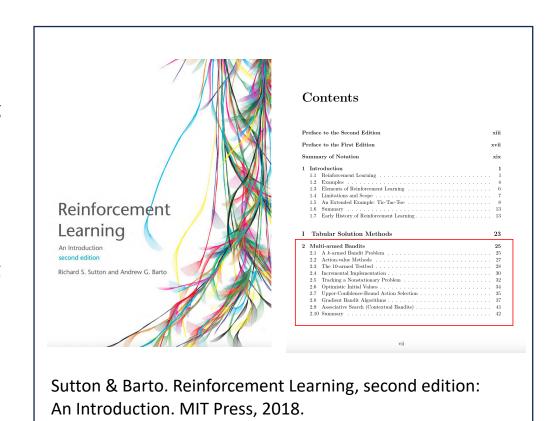


Reinforcement learning:

- Sequential decision making
- With state transition

Bandits:

- Single-step decision making
- No state transition



Linear Bandits: Context Matters

☐ Linear Bandits:

$$r_t(x) = x^{\top} \theta_* + \eta_t$$

- each arm is with a *feature (context)* vector *x*
- for some unknown parameter θ_* ;
- with unknonw noise: η_t is sub-Gaussian noise

• Regret measure:
$$\bar{R}_T \triangleq \sum_{t=1}^T \max_{\mathbf{x} \in \mathcal{X}_t} \mathbf{x}^\top \theta_* - \sum_{t=1}^T X_t^\top \theta_*$$

Example: <u>book recommendation</u>

- Each arm is a book with side information;
- Arm set could be very large or even infinite.

Rollout, Policy Iteratiand Distributed
Reinforcement Learn
Dimitri Bertsekas

12
Hardcover
\$89.00
\$13.03 shipping

, Dynamic Programmir and Optimal Control, Vol. I, 4th Edition Dimitri Bertsekss ** 16 Hardcover \$89.00

Computation and Richard S. Sutton 478 Hardcover \$80.00

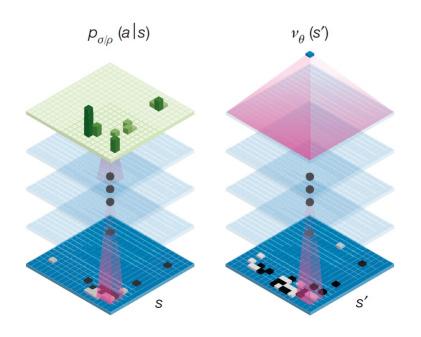
TD to coloct aum

• LinUCB [Abbasi-Yadkori et al., NIPS'11]: first estimate the parameter, then construct UCB to select arm

Linear bandit serves as the most basic structural bandit problem, also acts as the fundamental tool to analyze RL/control theory, particularly about function approximation

Linear bandits for RL Theory

Function Approximation



a technique with huge success (especially by involving DNN), crucially useful for the AlphaGo's success

Provably Efficient Reinforcement Learning with Linear Function Approximation

Chi Jin
University of California, Berkeley
chijin@cs.berkeley.edu

Zhaoran Wang
Northwestern University
zhaoranwang@gmail.com

Zhuoran Yang Princeton University zy6@princeton.edu

Michael I. Jordan University of California, Berkeley jordan@cs.berkeley.edu

COLT 2020

Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound

Lin F. Yang
Princeton University
lin.yang@princeton.edu

Mengdi Wang Princeton University mengdiw@princeton.edu

June 14, 2019

ICML 2020

Function Approximation

□ **Tabular MDPs**: usually maintain a table to store values for all states (or state-action pairs), which scales with state number *S* and action number *A*.

Figure 1

We discover through experience that this state is bad

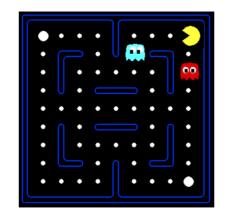


Figure 2

In tabular methods, we know nothing about this state.

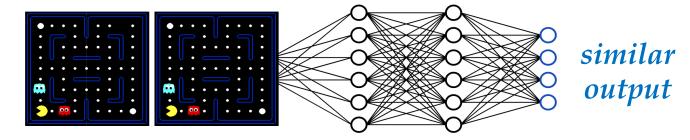
Figure 3

We know **nothing** about this state either!

But this way has a poor scalability in practical scenarios; and there are many structures yet to exploit...

Function Approximation

- □ RL Function approximation: approximate using a parameterized function.
 - To avoid bad dependence on #states *S*, #action *A* in tabular MDPs
 - Describe states (or state-actions) using feature representations in \mathbb{R}^d .
 - A modern choice: DNN as a feature representer



parameterize MDP model with a low-dimensional representation

regret bound should not dependent on S or A, but rather the intrinsic dimension d

Deploying bandits techniques

Linear Mixture MDPs

$$r_h(x,a) = \langle \phi(x,a), \theta_h^* \rangle$$

$$\mathbb{P}_h\left(s'\mid s,a\right) = \left\langle \psi\left(s'\mid s,a\right), \mathbf{w}_h^* \right\rangle$$

- $\phi: \mathcal{S} imes \mathcal{A} \mapsto \mathbb{R}^d$ is known feature map
- $\psi: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}^d$ is known feature map
- $\{\theta_h^*\}_{h=1}^H$ is the unknown reward parameter
- $\{\mathbf{w}_h^*\}_{h=1}^H$ is the unknown transition parameter

• Linear Bandits

- (1) the player first chooses an arm X_t from arm set \mathcal{X} ;
- (2) and then environment reveals a reward $r_t \in \mathbb{R}$.
- Linear modeling assumption: $r_t(x) = x^{\top} \theta_* + \eta_t$

Linear bandits serve as
a foundational tool for
understanding linear
mixture MDPs

Linear Mixture MDPs

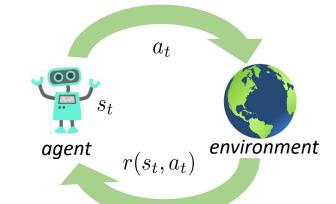
Least square for parameter estimation

Reward estimation

$$\widehat{\boldsymbol{\theta}}_h = \arg\min_{\theta \in \mathbb{R}^d} \left\{ \frac{\lambda_{\theta}}{2} \|\boldsymbol{\theta}\|_2^2 + \sum_{j=1}^{k-1} \left(r_h(s_h, a_h) - \phi(s_h, a_h)^{\top} \boldsymbol{\theta} \right)^2 \right\}$$

Transition estimation

$$\widehat{\mathbf{w}}_{h} = \arg\min_{\mathbf{w} \in \mathbb{R}^{d}} \left\{ \frac{\lambda_{\mathbf{w}}}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{j=1}^{k-1} \left(\langle \psi_{h+1}(s_{h}, a_{h}), \mathbf{w} \rangle - V_{h+1}(s_{h+1}) \right)^{2} \right\}$$



$$V_h^{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{h'=h}^{H} r_{h'} \left(s_{h'}, a_{h'} \right) \mid s_h = s \right]$$

Estimation error

$$\|\widehat{\mathbf{w}}_h - \mathbf{w}_h\|_{\Sigma_h} \le \mathcal{O}\left(\sqrt{d}H(\log(t/\delta))^2\right)$$

Regret bound

$$\operatorname{Regret}_T \leq \widetilde{\mathcal{O}}\left(d\sqrt{H^3K}\right)$$

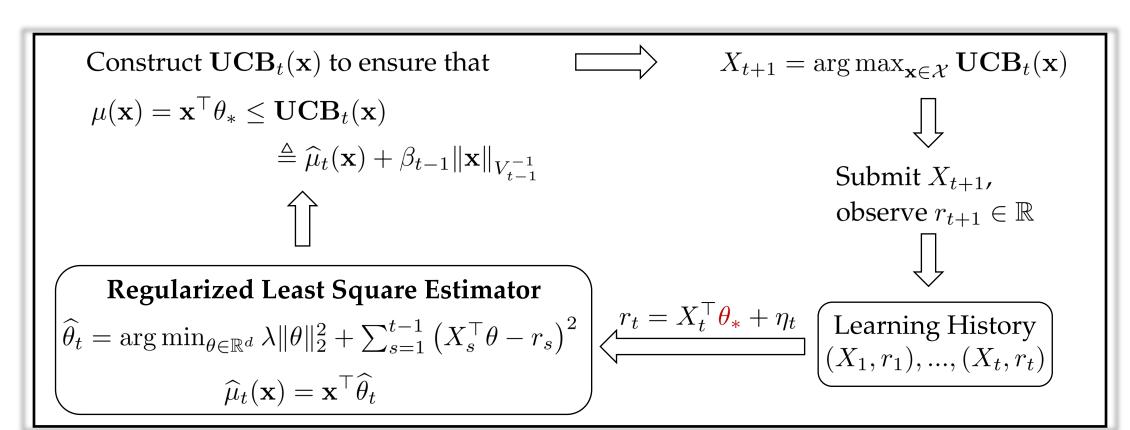
K: the number of epsiodes

H: the length of each epsiode

Get back to linear bandits...

• LinUCB [Abbasi-Yadkori et al., NIPS 2011]

Least-Square parameter estimation + Upper Confidence Bound Selection



LinUCB Algorithm [Abbasi-Yadkori et al., NIPS 2011]

• Regularized least-square Estimator

$$\widehat{\theta}_t = \underset{\theta \in \mathbb{R}^d}{\arg\min} \, \lambda \|\theta\|_2^2 + \sum_{s=1}^{t-1} \left(X_s^{\top} \theta - r_s \right)^2$$

✓ Computational property:

Closed form:
$$\widehat{\theta}_t = V_{t-1}^{-1} b_{t-1}$$

$$V_{t-1} \triangleq \lambda I + \sum_{s=1}^{t-1} X_s X_s^{\top}, b_{t-1} \triangleq \sum_{s=1}^{t-1} r_s X_s$$

✓ Statistical property:

$$\left|\mathbf{x}^{\top}(\widehat{\theta}_{t} - \theta_{*})\right| \leq \beta_{t-1} \|\mathbf{x}\|_{V_{t-1}^{-1}} \qquad \bigcup \qquad \mathbf{UCB} \\ \beta_{t-1} \leq \mathcal{O}\left(\log(t-1)\right) \qquad \qquad R_{T} \leq \widetilde{\mathcal{O}}\left(d\sqrt{T}\right)$$

"one-pass" incremental update

online data item is processed only once, don't need to store it along the time

$$\widehat{\theta}_{t+1} = V_t^{-1} b_t$$
, where $V_t = V_{t-1} + X_t X_t^{\top}$ $b_t = b_{t-1} + r_t X_t^{\top}$

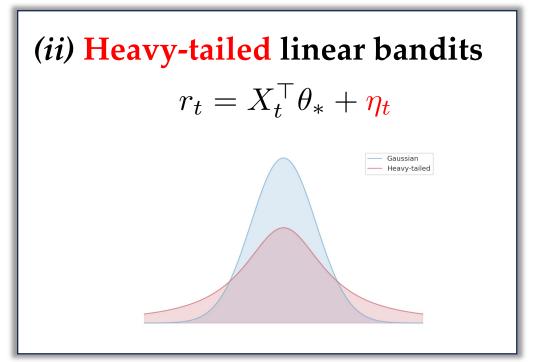
further using rank-1 update, only $O(d^2)$ cost

$$\widehat{\theta}_{t+1} = \widehat{\theta}_t + K_{t+1} (r_{t+1} - X_{t+1}^{\top} \widehat{\theta}_t)$$

$$P_t = P_{t-1} - K_t X_t^{\top} P_{t-1}$$

$$K_t = \frac{P_{t-1} X_t}{1 + X_t^{\top} P_{t-1} X_t}$$

Beyond: More Expressivity



Goal: computationally efficient (better "one-pass") algorithm with optimal regret

- [Wang-Zhang-Z-Zhou, ICML'25] Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update.
- [Zhang-Xu-Z-Sugiyama, NeurIPS'25] Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update.

① GLB: Problem Formulation

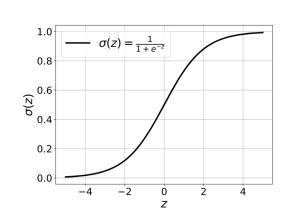
Generalized Linear Bandits

At each round $t = 1, 2, \cdots$

- (1) the player first chooses an arm X_t from arm set \mathcal{X} ;
- (2) and then environment reveals a reward $r_t \in \mathbb{R}$.
- \Box Generalized linear reward function: $r_t = \mu(X_t^{\top}\theta_*) + \eta_t$

Examples: logistic bandit

$$r_t = \begin{cases} 0 \text{ ("not click")} & \text{w.p. } \mu(X_t^{\top} \theta_*) \\ 1 \text{ ("click")} & \text{otherwise} \end{cases} \quad \mu(z) = \frac{1}{1 + \exp(-z)}$$



(1) GLB: Existing Algorithm

- GLM-UCB Algorithm [Filippi et al., NIPS 2010]
 - > *Estimator*: maximum likelihood estimator

$$\widehat{\theta}_t = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\theta\|_2^2 + \sum_{s=1}^{t-1} \ell_s^{\operatorname{GLB}}(\theta), \text{ with } \ell_s^{\operatorname{GLB}}(\theta) = -\log \mathbb{P}_{\theta} \left(r_{s+1} \mid X_s \right)$$

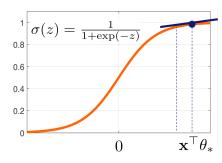
Estimation error:
$$\left| \mu(\mathbf{x}^{\top} \widehat{\theta}_t) - \mu(\mathbf{x}^{\top} \theta_*) \right| \leq \frac{k_{\mu}}{c_{\mu}} \beta_{t-1} \|\mathbf{x}\|_{V_{t-1}^{-1}}$$

> *Arm selection*: upper confidence bound

$$X_t = \operatorname*{arg\,max}_{\mathbf{x} \in \mathcal{X}} \left\{ \mu(\mathbf{x}^{\top} \widehat{\theta}_t) + \beta_{t-1} \|\mathbf{x}\|_{V_{t-1}^{-1}} \right\}$$

Regret bound: REG
$$_T \leq \widetilde{\mathcal{O}}\left(\frac{k_{\mu}}{c_{\mu}}d\sqrt{T}\right)$$
* Note: $c_{\mu} \leq \mu'(z) \leq k_{\mu}, \forall z \in [-S, S]$

The non-linear term k_{μ}/c_{μ} can be as large as $\mathcal{O}(e^S)!$



There are recent works using "warm-up" to remove κ , but is still not one-pass

2 Hvt-LB: Problem Formulation

• Linear reward with sub-Gaussian noise $r_t = X_t^{\top} \theta_* + [\eta_t]$

Assumption 1 (sub-Gaussian noise). The noise η_t is conditionally R-sub-Gaussian for some $R \geq 0$ i.e.

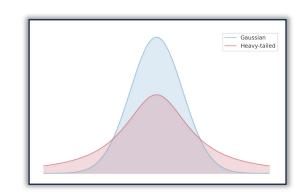
$$\forall \lambda \in \mathbb{R}, \mathbb{E}\left[\exp\left(\lambda \eta_t\right) \mid X_{1:t}, \eta_{1:t-1}\right] \leq \exp\left(\frac{\lambda^2 R^2}{2}\right).$$

In many scenarios, the noise can be heavy-tailed!

Linear bandits with heavy-tailed noise

Assumption 2 (heavy-tailed noise). The noise $\{\eta_t, \mathcal{F}_t\}$ is is martingale difference ($\mathbb{E}[\eta_t \mid \mathcal{F}_{t-1}] = 0$), and satisfies that for some $\varepsilon \in (0, 1], \nu_t > 0$,

$$\mathbb{E}\left[\left|\eta_{t}\right|^{1+\varepsilon} \mid \mathcal{F}_{t-1}\right] \leq \nu_{t}^{1+\varepsilon}.$$



2 Hvt-LB: Existing Algorithm

- HEAVY-OFUL Algorithm [Huang et al., NeurIPS 2023]
 - > *Estimator*: adaptive Huber regression

$$\widehat{\theta}_t = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\theta\|_2^2 + \sum_{s=1}^{t-1} \ell_s^{\operatorname{Hvt}}(\theta)$$

Estimation error:
$$\|\hat{\theta}_{t+1} - \theta_*\|_{V_t} \leq \widetilde{\mathcal{O}}\left(t^{\frac{1-\varepsilon}{2(1+\varepsilon)}}\right)$$

> *Arm selection*: upper confidence bound

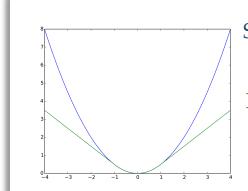
$$X_t = \operatorname*{arg\,max}_{\mathbf{x} \in \mathcal{X}} \left\{ \mathbf{x}^{\top} \widehat{\theta}_t + \beta_{t-1} \| \mathbf{x} \|_{V_{t-1}^{-1}} \right\}$$

Regret bound: REG_T $\leq \widetilde{\mathcal{O}}\left(dT^{\frac{1}{1+\varepsilon}}\right)$

Huber loss is defined using a threshold $\tau_s > 0$,

$$\ell_s^{ ext{Hvt}}(heta) = egin{cases} rac{z_s(heta)^2}{2} & ext{if } |z_s(heta)| \leq oldsymbol{ au_s}, \ au_s|z_s(heta)| - rac{ au_s^2}{2} & ext{if } |z_s(heta)| > oldsymbol{ au_s}, \end{cases}$$

with
$$z_s(\theta) = \frac{r_s - X_s^{\top} \theta}{\sigma_s}$$
.



Squared loss

Huber loss

reduce penalty for large deviation

Efficiency Concerns

• Stochastic LB: least squares (closed-form solution)

$$\widehat{\theta}_t = \underset{\theta \in \mathbb{R}^d}{\arg\min} \frac{\lambda}{2} \|\theta\|_2^2 + \sum_{s=1}^{t-1} \left(X_s^\top \theta - r_s \right)^2$$

one-pass update

$$\widehat{\theta}_{t} = V_{t-1}^{-1} \left(\sum_{s=1}^{t-1} r_{s} X_{s} \right)$$
$$V_{t-1} = \lambda I + \sum_{s=1}^{t-1} X_{s} X_{s}^{\top}$$

• Generalized LB: maximum likelihood estimator

$$\widehat{\theta}_t = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\theta\|_2^2 + \sum_{s=1}^{t-1} \ell_s^{\operatorname{GLB}}(\theta)$$

• **Heavy-tailed LB**: adaptive Huber regression

$$\widehat{\theta}_t = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\theta\|_2^2 + \sum_{s=1}^t \ell_s^{\operatorname{Hvt}}(\theta)$$

inefficiency due to non-quadratic loss

The cost at round *t*

Storage cost: O(t)

Question: Can Generalized/Heavy-tailed LB enjoy one-pass algorithms?

Outline

• Bandits Problem

• One-Pass Bandits

Extensions

Summary

Online Mirror Descent (OMD)

• OMD is a powerful online learning framework to optimize regret.

$$\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg min}} \left\{ \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \mathcal{D}_{\psi}(\mathbf{x}, \mathbf{x}_t) \right\}$$

where $\mathcal{D}_{\psi}(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$ is the Bregman divergence.

We here use OMD as a statistical estimation tool!

- ✓ **GLB**: use OMD and exploit self-concordance property to achieve one-pass estimator with desired statistical error
- ✓ **Hvt-LB**: use OMD and adaptively adjust Huber loss regions to achieve one-pass estimator with desired statistical error

A Summary of OMD Deployment

• Our previous mentioned algorithms can all be covered by OMD.

Algo.	OMD/proximal form	$\psi(\cdot)$	η_t	Regret_T
OGD for convex	$\mathbf{x}_{t+1} = \operatorname*{arg\ min}_{\mathbf{x} \in \mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _2^2$	$\ \mathbf{x}\ _2^2$	$\frac{1}{\sqrt{t}}$	$\mathcal{O}(\sqrt{T})$
OGD for strongly c.	$\mathbf{x}_{t+1} = \operatorname*{arg\ min}_{\mathbf{x} \in \mathcal{X}} \eta_t(\mathbf{x}, \nabla f_t(\mathbf{x}_t)) + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _2^2$	$\ \mathbf{x}\ _2^2$	$\frac{1}{\sigma t}$	$\mathcal{O}(\frac{1}{\sigma}\log T)$
ONS for exp-concave	$\mathbf{x}_{t+1} = \operatorname*{arg\ min}_{\mathbf{x} \in \mathcal{X}} \eta_t(\mathbf{x}, \nabla f_t(\mathbf{x}_t)) + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _{A_t}^2$	$\ \mathbf{x}\ _{A_t}^2$	$\frac{1}{\gamma}$	$\mathcal{O}(\frac{d}{\gamma}\log T)$
Hedge for PEA	$\mathbf{x}_{t+1} = \operatorname*{arg\ min}_{\mathbf{x} \in \Delta_N} \eta_t(\mathbf{x}, \nabla f_t(\mathbf{x}_t)) + \mathbf{KL}(\mathbf{x} \ \mathbf{x}_t)$	$\sum_{i=1}^{N} x_i \log x_i$	$\sqrt{\frac{\ln N}{T}}$	$\mathcal{O}(\sqrt{T\log N})$

Advanced Optimization (Fall 2024) Lecture 6. Online Mirror Descent

More details of OMD can be found in Lecture 6 of Advanced Optimization Course 2024 Fall https://www.pengzhao-ml.com/course/AOpt2024fall/

Online Mirror Descent (OMD)

A general template of OMD estimator:

$$\theta_{t+1} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \left\{ g_t(\theta) + \frac{1}{2\eta} \|\theta - \theta_t\|_{A_t}^2 \right\}$$

where $g_t(\theta)$ is the surrogate loss and A_t is the local norm.

• Analysis: standard regret analysis of OMD with twist yields

Lemma 1. For OMD estimator, we have

$$\frac{1}{2\eta} \|\theta_{t+1} - \theta_*\|_{A_t}^2 \le \langle \nabla g_t(\theta_t), \theta_t - \theta_* \rangle + \frac{1}{2\eta} \|\theta_t - \theta_*\|_{A_t}^2 - \frac{1}{2\eta} \|\theta_{t+1} - \theta_t\|_{A_t}^2$$

A proper choice of the local norm A_t and the surrogate loss $g_t(\theta)$ become highly crucial.

1) Generalized Linear Bandits

• OMD-based estimator: *curvature-aware* local norm design

$$\theta_{t+1} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \widetilde{\ell}_t(\theta) + \frac{1}{2\eta} \|\theta - \theta_t\|_{H_t}^2,$$
$$\widetilde{\ell}_t(\theta) \triangleq \langle \nabla \ell_t(\theta_t), \theta - \theta_t \rangle + \frac{1}{2} \|\theta - \theta_t\|_{\nabla^2 \ell_t(\theta_t)}^2,$$
$$H_t \triangleq \lambda I_d + \sum_{s=1}^{t-1} \nabla^2 \ell_s(\theta_{s+1})$$

Computational Efficiency

$$\zeta_{t+1} = \theta_t - \eta \widetilde{H}_t^{-1} \nabla \ell_t(\theta_t),$$

$$\theta_{t+1} = \underset{\theta \in \Theta}{\operatorname{arg min}} \|\theta - \zeta_{t+1}\|_{\widetilde{H}_t}^2,$$

$$\widetilde{H}_t = H_t + \eta \nabla^2 \ell_t(\theta_t)$$

$$\widetilde{H}_t = H_t + \eta \nabla^2 \ell_t(\theta_t)$$

Technique: self-concordance property, second-order approximation, lookahead regularizer, etc.

Lemma 1 (Estimation Error). Let the regularization parameter $\lambda = 2 \max\{7d\eta R^2, \max\{3\eta RS, 1\}C_{\mu}/g(\tau)\}$ and the stepsize $\eta = 1 + RS$. Then, with probability at least $1 - \delta$, $\forall t > 1$, we have with

$$\|\theta_* - \theta_t\|_{H_t} \le \beta_t(\delta) \triangleq \sqrt{4\lambda S^2 + 2\eta \ln\left(\frac{1}{\delta}\right) + 6d\eta^2 \ln\left(2 + \frac{2C_\mu t}{\lambda g(\tau)}\right)} = \mathcal{O}\left(SR\sqrt{d\left(S^2R + \ln\frac{t}{\delta}\right)}\right).$$

(1) Generalized Linear Bandits

GLM-UCB

MLE
$$\widehat{\theta}_{t+1} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\theta\|_2^2 + \sum_{s=1}^t \ell_s(\theta)$$

Comp. cost per round $\mathcal{O}(t)$

Estimation error $\mathcal{O}\left(\kappa\sqrt{d\log t}\right)$

GLB-OMD

OMD
$$\widehat{\theta}_{t+1} = \operatorname*{arg\,min}_{\theta \in \Theta} \widetilde{\ell}_t(\theta) + \frac{1}{2\eta} \|\theta - \widehat{\theta}_t\|_{H_t}^2$$

Comp. cost per round $\mathcal{O}(1)$

Estimation error $\mathcal{O}\left(\sqrt{d\log t}\right)$

Theorem 2. With probability at least $1 - \delta$, the regret of GLB-OMD with parameter $\eta = 1 + RS$ and $\lambda = 2 \max\{7d\eta R^2, \max\{3\eta RS, 1\}C_{\mu}/g(\tau)\}$ ensures

$$REG_T \lesssim dSR\sqrt{S^2R + \log T}\sqrt{\frac{T\log T}{\kappa_*}} + \kappa d^2S^2R^3\log T(S^2R + \log T),$$

① Generalized Linear Bandits

- Our work improves upon previous works with a novel mixability-based analysis
 - Statistical efficiency: maintain the optimal and instant-dependent regret bound
 - Computational efficiency: reduce the per round time and storage cost

Method	Regret	Time per Round	Memory	Jointly Efficient
GLM-UCB [Filippi et al., 2010]	$\mathcal{O}(\kappa(\log T)^{rac{3}{2}}\sqrt{T})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$	X
GLOC [Jun et al., 2017]	$\mathcal{O}(\kappa \log T \sqrt{T})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	X
OFUGLB [Lee et al., 2024, Liu et al., 2024]	$\mathcal{O}(\log T \sqrt{T/\kappa_*})$	$\mathcal{O}(t)$	$\mathcal{O}(t)$	X
RS-GLinCB [Sawarni et al., 2024]	$\mathcal{O}(\log T \sqrt{T/\kappa_*})$	$\mathcal{O}ig((\log t)^2ig)^\dagger$	$\mathcal{O}(t)$	X
GLB-OMD (Theorem 2 of this paper)	$\mathcal{O}(\log T \sqrt{T/\kappa_*})$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	✓

The first one-pass GLB algorithm with (almost) optimal regret guarantee!

[Zhang-Xu-**Z**-Sugiyama, NeurIPS'25] Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update.

2 Heavy-Tailed Bandits

• OMD-based estimator: curvature-aware local norm design

$$\widehat{\theta}_{t+1} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \left\{ \left\langle \theta, \nabla \ell_t(\widehat{\theta}_t) \right\rangle + \mathcal{D}_{\psi_t}(\theta, \widehat{\theta}_t) \right\}$$

$$\psi_t(\theta) = \frac{1}{2} \|\theta\|_{V_t}^2 \text{ with } V_t \triangleq \lambda I + \frac{1}{\alpha} \sum_{s=1}^t \frac{X_s X_s^\top}{\sigma_s^2}$$

Computational Efficiency

$$\widetilde{\theta}_{t+1} = \widehat{\theta}_t - V_t^{-1} \nabla \ell_t(\widehat{\theta}_t)$$

$$\widehat{\theta}_{t+1} = \underset{\theta \in \Theta}{\operatorname{arg min}} \left\| \theta - \widetilde{\theta}_{t+1} \right\|_{V_t}$$

Technique: adaptively adjust the threshold/renormalized factor in Huber loss, exploit curvature of in/out-liers

Lemma 1 (Estimation error). If σ_t, τ_t, τ_0 are set as where $w_t \triangleq \frac{1}{\sqrt{\alpha}} \left\| \frac{X_t}{\sigma_t} \right\|_{V_{t-1}^{-1}}$ and let the step size $\alpha = 4$, then with probability at least $1 - 4\delta, \forall t \geq 1$, we have

$$\|\widehat{\theta}_{t+1} - \theta_*\|_{V_t} \le \beta_t \triangleq 107 \log \frac{2T^2}{\delta} \tau_0 t^{\frac{1-\varepsilon}{2(1+\varepsilon)}} + \sqrt{\lambda (2+4S^2)}$$

(2) Heavy-Tailed Bandits

HEAVY-OFUL

MLE
$$\widehat{\theta}_{t+1} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \frac{\lambda}{2} \|\theta\|_2^2 + \sum_{s=1}^t \ell_s(\theta)$$

Comp. cost per round $\mathcal{O}(t)$

Estimation error $\widetilde{\mathcal{O}}\left(t^{\frac{1-\epsilon}{2(1+\epsilon)}}\right)$

Hvt-UCB

$$\mathbf{OMD} \ \widehat{\theta}_{t+1} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \left\{ \langle \theta, \nabla \ell_t(\widehat{\theta}_t) \rangle + \frac{1}{2} \|\theta - \widehat{\theta}_t\|_{V_t}^2 \right\} \$$

Comp. cost per round $\mathcal{O}(1)$

Estimation error $\widetilde{\mathcal{O}}\left(t^{\frac{1-\epsilon}{2(1+\epsilon)}}\right)$ one-pass!

Theorem 4. By setting $\sigma_t, \tau_t, \tau_0, \alpha$ as in Lemma 1, and let $\lambda = d, \sigma_{\min} = \frac{1}{\sqrt{T}}, \delta = \frac{1}{8T}$, with probability at least 1 - 1/T, the regret of Hvt-UCB is bounded by

$$\operatorname{REG}_T \leq \widetilde{\mathcal{O}}\left(dT^{\frac{1-\varepsilon}{2(1+\varepsilon)}}\sqrt{\sum_{t=1}^T \nu_t^2 + dT^{\frac{1-\varepsilon}{2(1+\varepsilon)}}}\right).$$

When $\nu_t = \nu$, this can recover to optimal regret bound $\mathrm{REG}_T \leq \widetilde{\mathcal{O}}\left(dT^{\frac{1}{1+\varepsilon}}\right)$

② Heavy-Tailed Bandits

• Our work maintains the regret with only O(1) computational cost.

Method	${f Algorithm}$	Regret	Comp. cost	Remark
MOM	MENU [Shao et al., 2018]	$\widetilde{\mathcal{O}}\left(dT^{\frac{1}{1+\varepsilon}}\right)$	$\mathcal{O}(\log T)$	fixed arm set and
MOM	CRMM [Xue et al., 2023]	$\left(\begin{array}{c} O\left(aT^{-1+\varepsilon}\right) \end{array}\right)$	$\mathcal{O}(1)$	repeated pulling
Truncation	TOFU [Shao et al., 2018]	$\widetilde{\mathcal{O}}\left(dT^{\frac{1}{1+\varepsilon}}\right)$	$\mathcal{O}(t)$	absolute moment
Truncation	CRTM [Xue et al., 2023]	$O\left(aI^{-1+\varepsilon}\right)$	$\mathcal{O}(1)$	$\mathbb{E}[r_t ^{1+\varepsilon} \mid \mathcal{F}_{t-1}] \le u$
Huber	HEAVY-OFUL [Huang et al., 2024]	$\widetilde{\mathcal{O}}\left(dT^{\frac{1-\varepsilon}{2(1+\varepsilon)}}\sqrt{\sum_{t=1}^{T}\nu_{t}^{2}}+dT^{\frac{1-\varepsilon}{2(1+\varepsilon)}}\right)$	$\mathcal{O}(t \log T)$	instance-dependent bound
Huber	Hvt-UCB (Corollary 1)	$\widetilde{\mathcal{O}}\left(dT^{\frac{1}{1+\varepsilon}}\right)$	$\mathcal{O}(1)$	$\mathbb{E}[\eta_t ^{1+\varepsilon} \mid \mathcal{F}_{t-1}] \le \nu^{1+\varepsilon}$
Huber	Hvt-UCB (Theorem 1)	$\widetilde{\mathcal{O}}\left(dT^{\frac{1-\varepsilon}{2(1+\varepsilon)}}\sqrt{\sum_{t=1}^{T}\nu_{t}^{2}}+dT^{\frac{1-\varepsilon}{2(1+\varepsilon)}}\right)$	$\mathcal{O}(1)$	instance-dependent bound

The first one-pass algorithm for heavy-tailed linear bandits with (almost) optimal regret!

[Wang-Zhang-Z-Zhou, ICML'25] Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update.

Outline

• Bandits Problem

• One-Pass Bandits

• RL Implications

Summary

Implication 1. Function Approximation

☐ Linear Function Approximation

- Linear mixture MDPs [Ayoub et al., 2020]: $\mathbb{P}_h(s'|s,a) = \phi(s'|s,a)^{\top}\theta_h^*$
- Linear / low-rank MDPs [Jin et al., 2020]: $\mathbb{P}_h(s'|s,a) = \phi(s,a)^{\top} \mu^*(s'), r_h(s,a) = \phi(s,a)^{\top} \theta_h^*$

•

linearity is hard to satisfy in practice!

☐ General Function Approximation

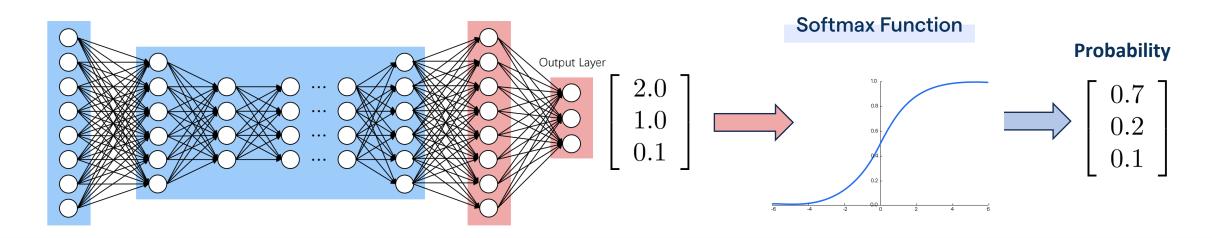
- Eluder dimension [Russo and Roy, 2013, Jin et al., 2021]
- Decision-Estimation Coefficient (DEC) [Foster et al., 2021]
- Admissible Bellman Characterization (ABC) [Chen et al., 2023]
- usually no computationally efficient algorithms provided

Technically, this "linear" MDP parametrization arises because it can be reduced to and solved by stochastic linear bandits, which is well-understood.

computationally efficient beyond linearity?

MNL Function Approximation

☐ A new class: Multinomial Logit (MNL) function approximation [Hwang and Oh, 2023]



MNL mixture MDPs:

$$\mathbb{P}_h(s'\mid s,a) = \frac{\exp\left(\phi\left(s'\mid s,a\right)^{\top}\boldsymbol{\theta}_h^*\right)}{\sum_{\widetilde{s}\in\mathcal{S}_{h,s,a}}\exp\left(\phi(\widetilde{s}\mid s,a\right)^{\top}\boldsymbol{\theta}_h^*\right)} \quad \bullet \quad \{\boldsymbol{\theta}_h^*\}_{h=1}^H \text{ is the unknown transition parameter} \\ \bullet \quad \mathcal{S}_{h,s,a}\triangleq \{s'\in\mathcal{S}\mid \mathbb{P}_h(s'|s,a)\neq 0\} \text{ is reachable states}$$

- $\phi(s'|s,a)$ is the known feature mapping

Deploying bandits techniques

Multinomial Logistic (MNL) Mixture MDP

$$\mathbb{P}_h(s'\mid s,a) = \frac{\exp\left(\phi\left(s'\mid s,a\right)^{\top}\boldsymbol{\theta}_h^*\right)}{\sum_{\widetilde{s}\in\mathcal{S}_{h,s,a}}\exp\left(\phi(\widetilde{s}\mid s,a\right)^{\top}\boldsymbol{\theta}_h^*\right)} \bullet \{\boldsymbol{\theta}_h^*\}_{h=1}^H \text{ is the known feature mapping}$$

- $\phi(s'|s,a)$ is the known feature mapping
- $S_{h,s,a} \triangleq \{s' \in S \mid \mathbb{P}_h(s'|s,a) \neq 0\}$ is reachable states

• Multinomial Logistic Bandit (a special case of generalized linear bandits)

$$r_t = \begin{cases} 0 \text{ ("feedback } y_t = 0") \\ \rho_1 \text{ ("feedback } y_t = 1") \end{cases}$$

$$\text{ pr}[y_t = k \mid \mathbf{x}_t] = \frac{\exp(\mathbf{x}_t^\top \mathbf{w}_k^*)}{1 + \sum_{j=1}^K \exp(\mathbf{x}_t^\top \mathbf{w}_j^*)}$$
 where $\mathbf{w}_k^* \in \mathbb{R}^d$ is the parameter for $y_t = k$

The feedback y_t from environments is generated by the multinomial logit model:

$$\Pr[y_t = k \mid \mathbf{x}_t] = \frac{\exp(\mathbf{x}_t^\top \mathbf{w}_k^*)}{1 + \sum_{j=1}^K \exp(\mathbf{x}_t^\top \mathbf{w}_j^*)}$$

possible feedback

- "buv it now"
- · "add to chart"
- "do nothing"

Key Challenge: non-linearity

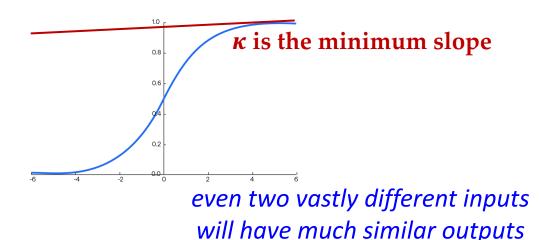
Linear mixture MDPs:

$$\mathbb{P}_h(s'|s,a) = \phi(s'|s,a)^{\top}\theta_h^*$$

MNL mixture MDPs:

$$\mathbb{P}_h(s' \mid s, a) = \frac{\exp\left(\phi\left(s' \mid s, a\right)^{\top} \boldsymbol{\theta}_h^*\right)}{\sum_{\widetilde{s} \in \mathcal{S}_{h,s,a}} \exp\left(\phi(\widetilde{s} \mid s, a)^{\top} \boldsymbol{\theta}_h^*\right)}$$

Softmax Function



Regularity assumption:

$$\inf_{\theta \in \Theta} p_{s,a}^{s'}(\theta) p_{s,a}^{s''}(\theta) \geq \kappa$$

where
$$p_{s,a}^{s'}(\theta) = \frac{\exp(\phi(s'|s,a)^{\top}\theta)}{\sum_{\widetilde{s}\in\mathcal{S}_{s,a}} \exp(\phi(\widetilde{s}|s,a)^{\top}\theta)}$$

Define
$$U = \max_{(h,s,a)} S_{h,s,a} \Rightarrow \kappa \leq 1/U^2$$
.

in the worst case,
$$\kappa^{-1} = \Omega(S^2)$$

MNL Mixture MDPs

OMD for one-pass estimation

$$\widetilde{\theta}_{k+1,h} = \operatorname*{arg\,min}_{\theta \in \Theta} \left\{ \left\langle \nabla \ell_{k,h}(\widetilde{\theta}_{k,h}), \theta - \widetilde{\theta}_{k,h} \right\rangle + \frac{1}{2\eta} \left\| \theta - \widetilde{\theta}_{k,h} \right\|_{\widetilde{\mathcal{H}}_{k,h}}^2 \right\}, \qquad \text{one-pass!}$$
 where $\widetilde{\mathcal{H}}_{k,h} = \eta H_{k,h}(\widetilde{\theta}_{k,h}) + \sum_{i=1}^{k-1} H_{i,h}(\widetilde{\theta}_{i+1,h})$ incoporates additional second-order quantity.

Reference	Model	Upper Bound	Lower Bound
Zhou et al. [2021]	Linear mixture MDP	$\widetilde{\mathcal{O}}(dH^{3/2}\sqrt{K})$	$\Omega(dH^{3/2}\sqrt{K})$
Hwang and Oh [2023]	MNL mixture MDP	$\widetilde{\mathcal{O}}(\kappa^{-1}dH^2\sqrt{K})$	
Our work	MNL mixture MDP	$\widetilde{\mathcal{O}}(dH^2\sqrt{K} + \kappa^{-1}d^2H^2)$	$\Omega(dH\sqrt{K})$

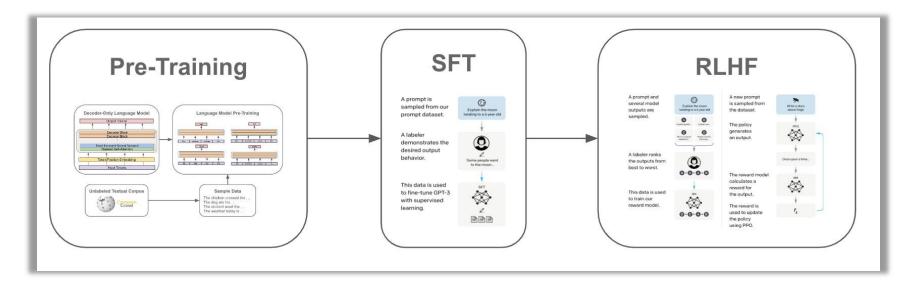
in the worst case, $\kappa^{-1} = \Omega(S^2)$

Match the results for linear mixture MDPs except for the dependence on H.

[Li-Zhang-Z-Zhou, NeurIPS'24] Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation.

Implication 2. RLHF

☐ Three typical stages of LLM training



- Pre-Training: Train on large-scale, diverse datasets to learn general capabilities.
- SFT: fine-tune the model using labeled data to improve ability to follow instructions.
- RLHF (or preference optimization): align model towards human preferences or values.

RLHF Formulation

• **Input:** a 4-argument preference tuple (x, a, a', y)

```
- x: the prompt: "Please write a joke for me."
- a: the first response: "Sorry, I can't."
- a': the second response: "Here is a joke for you: ..."
- y ∈ {0,1}: the label (human's preference): a'
```

• RLHF wants to use input to improve LLM

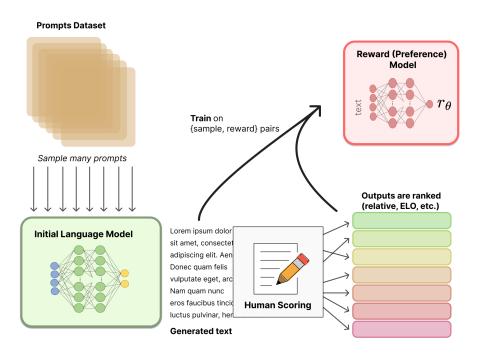
i.e., align LLM with human's preference or value (encoded in the preference data)

• Output: a fine-tuned LLM with better aligned preference

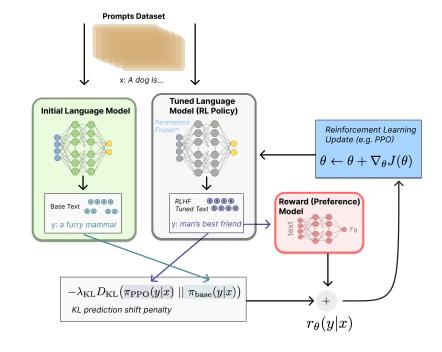
RLHF for Alignment

• A standard pipeline of RLHF: reward modelling + PPO

(i) reward model learning



(ii) policy optimization (guided by reward model)



Reward Model Learning

How to model the underlying reward based on observed data?

Definition 1 (Bradley-Terry Model). Given a context $x \in \mathcal{X}$ and two actions $a, a' \in \mathcal{A}$, the probability of the human preferring action a over action a' is given by

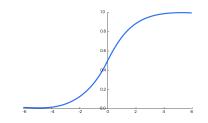
$$\mathbb{P}\left(a \succ a' \mid x\right) = \frac{\exp\left(r\left(x, a\right)\right)}{\exp\left(r\left(x, a\right)\right) + \exp\left(r\left(x, a'\right)\right)}$$

where *r* is the latent function.

Maximum Likelihood Estimation (MLE)

$$\arg\min_{r_{\phi}} \mathcal{L}_{R}\left(r_{\phi}, \mathcal{D}\right) = -\mathbb{E}_{(x, a_{w}, a_{l}) \sim \mathcal{D}} \left[\log \sigma\left(r_{\phi}(x, a_{w}) - r_{\phi}(x, a_{l})\right)\right]$$

$$\sigma(w) = \frac{1}{1 + e^{-w}}$$



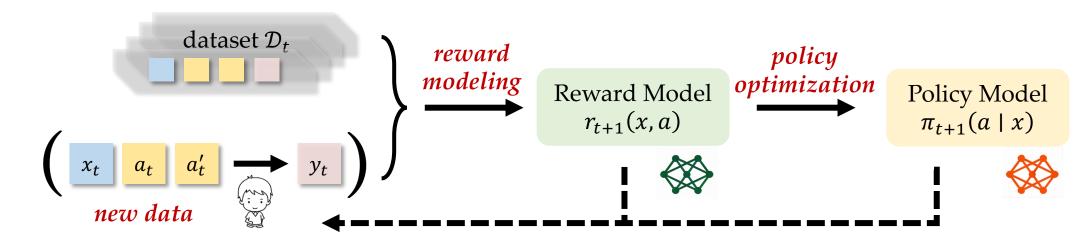
Online RLHF

General Framework of Online RLHF

1: **New data collection**: sample a tuple (x_t, a_t, a_t') , obtain the preference label y_t , expand the dataset: $\mathcal{D}_{t+1} = \mathcal{D}_t \cup (x_t, a_t, a_t', y_t)$

2: **Reward Modeling**: Train reward model r_{t+1} based on dataset \mathcal{D}_{t+1}

3: **Policy Optimization**: Update the policy π_{t+1} using the learned reward model r_{t+1}



Online RLHF

General Framework of Online RLHF

1: New data collection: sample a tuple (x_t, a_t, a_t') , obtain the preference label y_t , expand the dataset: $\mathcal{D}_{t+1} = \mathcal{D}_t \cup (x_t, a_t, a_t', y_t)$

2: **Reward Modeling**: Train reward model r_{t+1} based on dataset \mathcal{D}_{t+1}

3: **Policy Optimization**: Update the policy π_{t+1} using the learned reward model r_{t+1}

Reward Modeling: Maximum Likelihood Estimation (MLE)

Define feature difference:
$$z_t = \phi\left(x_t, a_t\right) - \phi\left(x_t, a_t'\right)$$

$$\widehat{\theta}_{t+1} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \sum_{s=1}^t \ell_s(\theta),$$
where $\ell_t(\theta) = -y_t \log\left(\sigma\left(z_t^{\mathsf{T}}\theta\right)\right) - (1 - y_t) \log\left(1 - \sigma\left(z_t^{\mathsf{T}}\theta\right)\right)$

At iteration t: time complexity: $O(t \log t)$, storage complexity: O(t)

Deploying bandits techniques

Linear reward model assumption

$$r(x,a) = \phi(x,a)^{\top}\theta^*$$
 BT model

$$\mathbb{P}(a \succ a' \mid x) = \frac{\exp\left(\phi(x, a)^{\top} \boldsymbol{\theta}^*\right)}{\exp\left(\phi(x, a)^{\top} \boldsymbol{\theta}^*\right) + \exp\left(\phi(x, a')^{\top} \boldsymbol{\theta}^*\right)}$$

- $\phi(x, a)$ is the known feature mapping
- θ^* is the unknown parameter

Contextual dueling bandits

At each round $t = 1, 2, \cdots$

- (1) the learner first chooses two arms $\mathbf{x}_t, \mathbf{y}_t \in \mathcal{X} \subseteq \mathbb{R}^d$;
- (2) and then environment reveals a preference feedback o_t .

$$\mathbb{P}(o_t = 1) = \mu\left((\mathbf{x}_t - \mathbf{y}_t)^\top \theta_*\right)$$

$$\mu(z) = \frac{1}{1 + \exp(-z)}$$

One-Pass Reward Modeling

OMD for one-pass estimation

Define gradient and Hessian:
$$g_t(\theta) = (\sigma(z_t^\top \theta) - y_t) z_t, \quad H_t(\theta) = \dot{\sigma}(z_t^\top \theta) z_t z_t^\top$$

$$\widetilde{\theta}_{t+1} = \operatorname*{arg\,min}_{\theta \in \Theta} \left\{ \langle g_t(\widetilde{\theta}_t), \theta \rangle + \frac{1}{2\eta} \| \theta - \widetilde{\theta}_t \|_{\widetilde{\mathcal{H}}_t}^2 \right\}, \text{ where } \widetilde{\mathcal{H}}_t = \sum_{i=1}^{t-1} H_i(\widetilde{\theta}_{i+1}) + \frac{\eta H_t(\widetilde{\theta}_t)}{\eta H_t(\widetilde{\theta}_t)} + \lambda I.$$

Constant time and storage complexity, Independent of t

look-ahead local norm

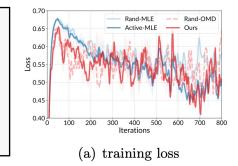
second-order approximation

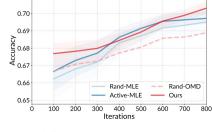
Estimation error

$$\|\theta - \widetilde{\theta}_t\|_{\mathcal{H}_t} \le \mathcal{O}(\sqrt{d}(\log(t/\delta))^2)$$

Regret bound

$$\operatorname{Reg}_T \leq \widetilde{\mathcal{O}}\left(d\sqrt{\frac{T}{\kappa}}\right)$$





(b) evaluation accuracy

[Li*-Qian*-Z-Zhou, NeurIPS'25] Provably Efficient Online RLHF with One-Pass Reward Modeling.

Outline

• Bandits Problem

• One-Pass Bandits

• RL Implications

• Summary

Summary

☐ One-Pass Bandits

- Beyond linear bandits: For non-quadratic loss, MLE doesn't enjoy the one-pass property
- *Generalized linear bandits*: exploit the self-concordance property of the link function
- *Heavy-tailed linear bandits*: adaptively set Huber threshold to adjust curvatures such that outliers fall in the linear region, while normal data remain in the quadratic region

□ OMD Estimator

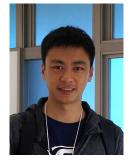
• Online Mirror Descent as a statistical estimator, where the *curvature-aware adaptivity* is crucial for the local norm design; similar to <u>"from SGD to AdaGrad/Adam"</u>

□ RL Implications

- *RL with function approximation*: MNL mixture MDPs (related to GLB)
- *RLHF*: BT model naturally related to logistic bandits, etc.

One-Pass Bandits: Reference

- Yu-Jie Zhang, Sheng-An Xu, Peng Zhao, Masashi Sugiyama. Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update. NeurIPS 2025.
- Long-Fei Li*, Yu-Yang Qian*, Peng Zhao, Zhi-Hua Zhou. Provably Efficient Online RLHF with One-Pass Reward Modeling. NeurIPS 2025.
- Jing Wang, Yu-Jie Zhang, Peng Zhao, and Zhi-Hua Zhou. Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update. ICML 2025.
- Long-Fei Li, Yu-Jie Zhang, Peng Zhao, Zhi-Hua Zhou. Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation. NeurIPS 2024.
 Thanks!



Yu-Jie Zhang (NJU \rightarrow U Tokyo \rightarrow UW)

Jing Wang (NJU)

Long-Fei Li (NJU→ Noah's Ark Lab)

Yu-Yang Qian (NJU)

Sheng-An Xu $(NJU \rightarrow UCB)$