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Bandits: Interactive Learning

Exploration-Exploitation tradeoff

• Exploitation: pull the best arm so far
• Exploration: try other arms that may be better

❑ Multi-armed bandits: a simplest formulation for bandit problems 

The goal is to minimize the regret :

i.e., difference between the cumulative reward of the best arm and that obtained by the bandit algorithm
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Bandits: Interactive Learning
• Bandit is “single-step” decision version of Reinforcement Learning

Reinforcement learning:
• Sequential decision making

• With state transition

Bandits: 
• Single-step decision making

• No state transition

environmentagent

action at

reward r(st, at)

st+1 ← st

state transition

Sutton & Barto. Reinforcement Learning, second edition: 
An Introduction. MIT Press, 2018.
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Linear Bandits: Context Matters
❑ Linear Bandits:

- each arm is with a feature (context) vector x

Example: book recommendation
• Each arm is a book with side information; 
• Arm set could be very large or even infinite.

• LinUCB                       : first estimate the parameter, then construct UCB to select arm [Abbasi-Yadkori et al., NIPS’11]

• Regret measure: 

Linear bandit serves as the most basic structural bandit problem, also acts as the 
fundamental tool to analyze RL/control theory, particularly about function approximation
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Linear bandits for RL Theory

COLT 2020

ICML 2020

Function Approximation

a technique with huge success 
(especially by involving DNN) , crucially 

useful for the AlphaGo’s success
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Function Approximation
q Tabular MDPs: usually maintain a table to store values for all states (or 

state-action pairs), which scales with state number 𝑆 and action number 𝐴.

We discover through 
experience that this state is bad

In tabular methods, we know 
nothing about this state.

We know nothing about 
this state either!

But this way has a poor scalability in practical scenarios; and there are many structures yet to exploit…
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Function Approximation
q RL Function approximation: approximate using a parameterized function. 

• To avoid bad dependence on #states 𝑆, #action 𝐴 in tabular MDPs

• Describe states (or state-actions) using feature representations in ℝ!.

• A modern choice: DNN as a feature representer

similar 
output

parameterize MDP model with a low-dimensional representation 
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Deploying bandits techniques
• Linear Mixture MDPs

• φ : S →A "→ Rd is known feature map

• ψ : S →A→ S → Rd is known feature map

• {θ∗

h}
H
h=1

is the unknown reward parameter

• {w∗

h
}H
h=1

is the unknown transition parameter

• Linear Bandits

• Linear modeling assumption:

(1) the player first chooses an arm Xt from arm set X ;

(2) and then environment reveals a reward rt ∈ R.

Linear bandits serve as 

a foundational tool for 
understanding linear 

mixture MDPs
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Linear Mixture MDPs

Reward estimation

Transition estimation

θ̂h = arg min
θ∈Rd





λθ

2
‖θ‖22 +

k−1∑

j=1

(
rh(sh, ah)− φ(sh, ah)

#θ
)2





Regret boundEstimation error

‖ŵh −wh‖Σh
≤ O

(√
dH(log(t/δ))2

)
RegretT ≤ Õ

(
d
√
H3K

)

ŵh = arg min
w∈Rd





λw

2
‖w‖22 +

k−1∑

j=1

(〈ψh+1(sh, ah),w〉 − Vh+1(sh+1))
2






• Least square for parameter estimation

K: the number of epsiodes

H : the length of each epsiode

agent environment
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Get back to linear bandits…
• LinUCB [Abbasi-Yadkori et al., NIPS 2011]

Learning History
Regularized Least Square Estimator

Least-Square parameter estimation + Upper Confidence Bound Selection
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LinUCB Algorithm
• Regularized least-square Estimator

ü Statistical property: 

βt−1 ≤ O (log(t− 1))

UCB 

further using rank-1 update, only 𝑂 𝑑! cost 

[Abbasi-Yadkori et al., NIPS 2011]

“one-pass” incremental update
online data item is processed only once, 

don’t need to store it along the time

ü Computational property: 
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Beyond: More Expressivity

(i) Generalized linear bandits (ii) Heavy-tailed linear bandits
rt = µ(X!

t
θ∗) + ηt

[Wang-Zhang-Z-Zhou, ICML’25] Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update.
[Zhang-Xu-Z-Sugiyama, NeurIPS’25] Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update.

Goal: computationally efficient (better “one-pass”) algorithm with optimal regret

rt = X!
t
θ∗ + ηt

Linear Non-linear 
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① GLB: Problem Formulation

❑ Generalized linear reward function:

Examples: logistic bandit

At each round t = 1, 2, · · ·

(1) the player first chooses an arm Xt from arm set X ;

(2) and then environment reveals a reward rt ∈ R.

Generalized Linear Bandits
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① GLB: Existing Algorithm
• GLM-UCB Algorithm [Filippi et al., NIPS 2010]

Ø Estimator: maximum likelihood estimator 

!
GLB
s (θ) = − logPθ (rs+1 | Xs)

Estimation error:

There are recent works using “warm-up” 
to remove 𝜅, but is still not one-pass

REGT ≤ Õ
(
kµ

cµ
d
√
T

)
Regret bound: 

Ø Arm selection: upper confidence bound

Xt = argmax
x∈X

{
µ(x"θ̂t) + βt−1‖x‖V −1

t−1

}
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② Hvt-LB: Problem Formulation
• Linear reward with sub-Gaussian noise rt = X!

t
θ∗ + ηt

In many scenarios, 
the noise can be 

heavy-tailed !

• Linear bandits with heavy-tailed noise
Assumption 2 (heavy-tailed noise). The noise {ηt,Ft} is is martingale
difference (E [ηt | Ft−1] = 0), and satisfies that for some ε ∈ (0, 1], νt > 0,

E

[

|ηt|
1+ε

∣

∣

∣
Ft−1

]

≤ ν
1+ε

t .
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② Hvt-LB: Existing Algorithm
• HEAVY-OFUL Algorithm [Huang et al., NeurIPS 2023]

Ø Estimator: adaptive Huber regression

θ̂t = argmin
θ∈Θ

λ

2
‖θ‖22 +

t−1∑

s=1

#
Hvt
s (θ)

Squared loss

Huber loss

reduce penalty for 
large deviation 

Estimation error:
∥∥∥θ̂t+1 − θ∗

∥∥∥
Vt

≤ Õ
(
t

1−ε

2(1+ε)

)

Ø Arm selection: upper confidence bound

Xt = argmax
x∈X

{
x
"θ̂t + βt−1‖x‖V −1

t−1

}

Regret bound: 
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Efficiency Concerns

• Heavy-tailed LB: adaptive Huber regression

θ̂t = argmin
θ∈Θ

λ

2
‖θ‖22 +

t∑

s=1

#
Hvt
s (θ)

Question: Can Generalized/Heavy-tailed LB enjoy one-pass algorithms?

• Stochastic LB: least squares (closed-form solution)

Computational cost: O(t log T )

Storage cost: O(t)

The cost at round t

• Generalized LB: maximum likelihood estimator

θ̂t = argmin
θ∈Rd

λ

2
‖θ‖22 +

t−1∑

s=1

(
X

#
s θ − rs

)2

one-pass update

θ̂t = argmin
θ∈Θ

λ

2
‖θ‖22 +

t−1∑

s=1

#
GLB
s (θ)

θ̂t = V
−1

t−1

(∑
t−1

s=1
rsXs

)

Vt−1 = λI +
∑

t−1

s=1
XsX

"
s

inefficiency due to non-quadratic loss

infeasible!
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Online Mirror Descent (OMD)
• OMD is a powerful online learning framework to optimize regret.

More details of OMD can be found in Lecture 6 of 
Advanced Optimization Course 2024 Fall

https://www.pengzhao-ml.com/course/AOpt2024fall/

We here use OMD as a statistical estimation tool!

ü GLB: use OMD and exploit self-concordance property to
achieve one-pass estimator with desired statistical error

ü Hvt-LB: use OMD and adaptively adjust Huber loss regions
to achieve one-pass estimator with desired statistical error

https://www.pengzhao-ml.com/course/AOpt2024fall/
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Online Mirror Descent (OMD)

Lemma 1. For OMD estimator, we have

1

2η
‖θt+1 − θ∗‖

2

At
≤ 〈∇gt (θt) , θt − θ∗〉+

1

2η
‖θt − θ∗‖

2

At
−

1

2η
‖θt+1 − θt‖

2

At

• Analysis: standard regret analysis of OMD with twist yields
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① Generalized Linear Bandits
• OMD-based estimator: curvature-aware local norm design 

θt+1 = argmin
θ∈Θ

"̃t(θ) +
1

2η
‖θ − θt‖

2
Ht

, Computational Efficiency

Technique: self-concordance property, second-order approximation, lookahead regularizer, etc. 
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① Generalized Linear Bandits

MLE θ̂t+1 = argmin
θ∈Θ

λ

2
‖θ‖22 +

t∑

s=1

#s(θ) OMD

GLB-OMDGLM-UCB

Comp. cost per round O(t) Comp. cost per round O(1)

Theorem 2. With probability at least 1− δ, the regret of GLB-OMD with parameter η = 1+RS
and λ = 2max{7dηR2,max{3ηRS, 1}Cµ/g(τ)} ensures

REGT ! dSR
√

S2R+ log T

√

T log T

κ∗

+ κd2S2R3 log T (S2R+ log T ),

one-pass!
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① Generalized Linear Bandits
• Our work improves upon previous works with a novel mixability-based analysis

• Statistical efficiency: maintain the optimal and instant-dependent regret bound

• Computational efficiency: reduce the per round time and storage cost

The first one-pass GLB algorithm with (almost) optimal regret guarantee!

[Zhang-Xu-Z-Sugiyama, NeurIPS’25] Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update.
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② Heavy-Tailed Bandits
• OMD-based estimator: curvature-aware local norm design 

ψt(θ) =
1

2
‖θ‖2

Vt
with Vt ! λI + 1

α

∑t

s=1

XsX
!

s

σ2
s

Computational Efficiency

θ̃t+1 = θ̂t − V
−1
t ∇"t(θ̂t)

θ̂t+1 = argmin
θ∈Θ

∥∥∥θ − θ̃t+1

∥∥∥
Vt

Technique: adaptively adjust the threshold/renormalized factor in Huber loss, exploit curvature of in/out-liers
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② Heavy-Tailed Bandits

MLE θ̂t+1 = argmin
θ∈Θ

λ

2
‖θ‖22 +

t∑

s=1

#s(θ) OMD

Hvt-UCBHEAVY-OFUL

Comp. cost per round O(t)

Estimation error Õ

(
t

1−ε

2(1+ε)

)
Comp. cost per round O(1)

Estimation error Õ

(
t

1−ε

2(1+ε)

)

Theorem 4. By setting σt, τt, τ0,α as in Lemma 1, and let λ = d,σmin = 1
√

T
, δ =

1

8T
, with probability at least 1− 1/T , the regret of Hvt-UCB is bounded by

REGT ≤ Õ



dT
1−ε

2(1+ε)

√√√√
T∑

t=1

ν2t + dT
1−ε

2(1+ε)



 .

When νt = ν, this can

recover to optimal regret

bound REGT ≤ Õ
(
dT

1
1+ε

)

one-pass!
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② Heavy-Tailed Bandits
• Our work maintains the regret with only 𝑂 1 computational cost.

The first one-pass algorithm for heavy-tailed linear bandits with (almost) optimal regret!

[Wang-Zhang-Z-Zhou, ICML’25] Heavy-Tailed Linear Bandits: Huber Regression with One-Pass Update.
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Implication 1. Function Approximation
q Linear Function Approximation

q General Function Approximation

• Eluder dimension [Russo and Roy, 2013, Jin et al., 2021]

• Decision-Estimation Coefficient (DEC) [Foster et al., 2021]

• Admissible Bellman Characterization (ABC) [Chen et al., 2023]

• …

• Linear mixture MDPs [Ayoub et al., 2020]:
• Linear / low-rank MDPs [Jin et al., 2020]:
• …

linearity is hard to 
satisfy in practice!

Technically, this "linear" 
MDP parametrization 
arises because it can be 
reduced to and solved by 
stochastic linear bandits, 
which is well-understood. 

usually no computationally efficient algorithms provided

computationally efficient
beyond linearity?
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MNL Function Approximation

MNL mixture MDPs: 

Probability

q A new class: Multinomial Logit (MNL) function approximation [Hwang and Oh, 2023]
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Deploying bandits techniques
• Multinomial Logistic (MNL) Mixture MDP

• Multinomial Logistic Bandit (a special case of generalized linear bandits)
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Key Challenge: non-linearity

MNL mixture MDPs: 

𝜿 is the minimum slope

Regularity assumption: 

Linear mixture MDPs: 

even two vastly different inputs 
will have much similar outputs
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MNL Mixture MDPs
• OMD for one-pass estimation

θ̃k+1,h = argmin
θ∈Θ

{〈
∇"k,h(θ̃k,h), θ − θ̃k,h

〉
+ 1

2η

∥∥θ − θ̃k,h
∥∥2
H̃k,h

}
,

where H̃k,h = ηHk,h(θ̃k,h) +
∑k−1

i=1
Hi,h(θ̃i+1,h) incoporates additional second-order quantity.

Match the results for linear mixture MDPs except for the dependence on 𝐻.

[Li-Zhang-Z-Zhou, NeurIPS’24] Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation.

one-pass!



35Peng Zhao (Nanjing University)

Implication 2. RLHF
q Three typical stages of LLM training

• Pre-Training: Train on large-scale, diverse datasets to learn general capabilities.

•  SFT: fine-tune the model using labeled data to improve ability to follow instructions.

• RLHF (or preference optimization) : align model towards human preferences or values.
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RLHF Formulation
• Input: a 4-argument preference tuple

• RLHF wants to use input to improve LLM

i.e., align LLM with human’s preference or value (encoded in the preference data)

• Output: a fine-tuned LLM with better aligned preference

“Here is a joke for you: …”

a’

“Please write a joke for me.”

“Sorry, I can’t.”



37Peng Zhao (Nanjing University)

RLHF for Alignment
• A standard pipeline of RLHF: reward modelling + PPO

(i) reward model learning (ii) policy optimization (guided by reward model)
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Reward Model Learning
• How to model the underlying reward based on observed data?

• Maximum Likelihood Estimation (MLE)
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Online RLHF
General Framework of Online RLHF

1：New data collection: sample a  tuple (𝑥!, 𝑎!, 𝑎!"), obtain the preference label 𝑦!,    
expand the dataset:  𝒟!#$ = 𝒟! ∪ (𝑥!, 𝑎!, 𝑎!" , 𝑦!)

2：Reward Modeling: Train reward model 𝑟!#$ based on dataset 𝒟!#$

3：Policy Optimization: Update the policy 𝜋!#$ using the learned reward model 𝑟!#$

Policy Model
𝜋"#$ 𝑎 ∣ 𝑥  

Reward Model
𝑟"#$ 𝑥, 𝑎

reward 
modeling

policy 
optimization

𝑥! 𝑎! 𝑎!" 𝑦!

new data

dataset 𝒟"
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Online RLHF
General Framework of Online RLHF

1：New data collection: sample a  tuple (𝑥!, 𝑎!, 𝑎!"), obtain the preference label 𝑦!,    
expand the dataset:  𝒟!#$ = 𝒟! ∪ (𝑥!, 𝑎!, 𝑎!" , 𝑦!)

2：Reward Modeling: Train reward model 𝑟!#$ based on dataset 𝒟!#$

3：Policy Optimization: Update the policy 𝜋!#$ using the learned reward model 𝑟!#$

Reward Modeling: Maximum Likelihood Estimation (MLE)

At iteration 𝑡: 
time complexity: 𝑂 𝑡 log 𝑡 , 

storage complexity: 𝑂(𝑡)
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Deploying bandits techniques
• Linear reward model assumption

• Contextual dueling bandits

At each round t = 1, 2, · · ·

(1) the learner first chooses two arms xt,yt ∈ X ⊆ Rd;

(2) and then environment reveals a preference feedback ot.

P (ot = 1) = µ
(

(xt − yt)
!
θ∗

)

µ(z) =
1

1 + exp(−z)

P (a ! a′ | x) =
exp

(

φ(x, a)"θ∗
)

exp (φ(x, a)"θ∗) + exp (φ(x, a′)"θ∗)
BT model
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One-Pass Reward Modeling

Regret bound

• OMD for one-pass estimation

θ̃t+1 = argmin
θ∈Θ

{
〈gt(θ̃t), θ〉+

1
2η

∥∥θ − θ̃t
∥∥2
H̃t

}
,

Constant time and storage complexity,
Independent of t

look-ahead
local norm

second-order
approximation

Estimation error

Define gradient and Hessian:

[Li*-Qian*-Z-Zhou, NeurIPS’25] Provably Efficient Online RLHF with One-Pass Reward Modeling.

one-pass!
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Summary
❑ One-Pass Bandits 

• Beyond linear bandits: For non-quadratic loss, MLE doesn’t enjoy the one-pass property

• Generalized linear bandits: exploit the self-concordance property of the link function

• Heavy-tailed linear bandits: adaptively set Huber threshold to adjust curvatures such that 
outliers fall in the linear region, while normal data remain in the quadratic region

❑ OMD Estimator
• Online Mirror Descent as a statistical estimator, where the curvature-aware adaptivity is crucial 

for the local norm design; similar to “from SGD to AdaGrad/Adam”

❑ RL Implications
• RL with function approximation: MNL mixture MDPs (related to GLB)

• RLHF: BT model naturally related to logistic bandits, etc.
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Yu-Jie Zhang, Sheng-An Xu, Peng Zhao, Masashi Sugiyama. Generalized Linear Bandits:
Almost Optimal Regret with One-Pass Update. NeurIPS 2025.
Long-Fei Li*, Yu-Yang Qian*, Peng Zhao, Zhi-Hua Zhou. Provably Efficient Online RLHF
with One-Pass Reward Modeling. NeurIPS 2025.
Jing Wang, Yu-Jie Zhang, Peng Zhao, and Zhi-Hua Zhou. Heavy-Tailed Linear Bandits:
Huber Regression with One-Pass Update. ICML 2025.
Long-Fei Li, Yu-Jie Zhang, Peng Zhao, Zhi-Hua Zhou. Provably Efficient Reinforcement
Learning with Multinomial Logit Function Approximation. NeurIPS 2024.

One-Pass Bandits: Reference

Thanks!

Yu-Jie Zhang 
(NJU à U Tokyo à UW)

Jing Wang
(NJU)

Sheng-An Xu
(NJU à UCB)

Long-Fei Li 
(NJUà Noah's Ark Lab)

Yu-Yang Qian 
(NJU)


	Bandits Problem
	One-Pass Bandits
	RL Implications
	Summary

