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Online Learning
• In more and more applications, data are coming in an online fashion

• Online learning/optimization

- update the model in an iterated optimization fashion
- try to equip with theoretical guarantees for the online update

intelligence manufacturingautonomous driving base station communicate
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Online Convex Optimization
• View online learning as a game between learner and environment.

for simplicity

Example: Considering online classification, we have
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Online Convex Optimization
• Regret: online prediction as good as the best offline model

 Other frameworks include online mirror descent (OMD) 
and Follow-the-Regularized-Leader (FTRL).

 Online Gradient Descent (OGD) 

https://www.nature.com/articles/s41534-017-0043-1

learner’s excess loss compared to the best offline model

• Many efforts have been devoted to regret minimization.
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Online Convex Optimization
• Existing efforts: obtain the minimax optimal regret guarantees

This regret bound is optimal in the worst case --- there exists a hard instance 
that no online algorithm can behave better than this regret rate.

• However, in many cases, the 
environments may not so hard!

[Slides from Dylan Foster, Adaptive 
Online Learning @NIPS’15 workshop]

https://event.cwi.nl/easydata2015/slides/dylan.pdf
https://event.cwi.nl/easydata2015/slides/dylan.pdf


6Peng Zhao (Nanjing University)

Beyond Worst-Case Analysis
• Problem-dependent methods aim to achieve more adaptive results: 

(i) regret guarantee should be much improved for easy environments；
(ii) meanwhile can safeguard the minimax optimal rate in the worst case.

which measures cumulative variations in gradients.

Gradient variation:

can be 𝑂𝑂 1 when functions are stable, and is at most 𝑂𝑂 𝑇𝑇 in the worst case
(under standard assumption) 
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Why Gradient Variation?

 Game theory: GV regret is essential for obtaining fast convergence in games. 
[Syrgkanis et al., NIPS’15 best paper; Wei & Luo, COLT’18]

 Adaptive Optimization: GV regret can bridge stochastic and adversarial optimization.
[Sachs et al., NeurIPS’22; Chen et al., ICML’23]

become 

 safeguard the 
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Implications: Game Theory
• Gradient Variation in Games: 

Two-Player Zero-Sum Games

Rock Scissors Paper
Rock (0,0) (1,−1) (−1,1)

Scissors (−1,1) (0,0) (−1,1)
Paper (1,−1) (−1,1) (0,0)

Game payoff matrix 𝑨𝑨

[Syrgkanis et al., NIPS’15 best paper]

A good situation for two players is to achieve Nash equilibrium; but its computation is often hard.
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Implications: Game Theory
• Gradient Variation in Games: [Syrgkanis et al., NIPS’15 best paper]

Online Game Protocol

consider a relaxed gradient feedback (we don’t even require full knowledge of 𝑨𝑨）
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Implications: Game Theory
• Gradient-variation online learning for fast convergence in games.

Deploying gradient-variation algorithm (e.g., optimistic mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

Deploying gradient-variation algorithm (e.g., optimistic mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

Regret summation is usually related to global metrics in games, 
such as Nash equilibrium regret (measuring the quality of approximated solution).
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Implications: Game Theory
• Gradient-variation online learning for fast convergence in games.

Deploying gradient-variation algorithm (e.g., optimistic mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

Deploying gradient-variation algorithm (e.g., optimistic mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

which leads to             fast convergence, as opposed to              .
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Implications: min-max application
Similar idea is further used for training GAN (Generative Adversarial Networks) 
and its theoretical explanations.

ICLR 2018 ICLR 2019
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Implications: Adaptive Optimization 

How is loss function
𝑓𝑓𝑡𝑡 generated?

stochastic optimization

adversarial optimization

 These two fields are previously studied separately.

• Gradient Variation in Stochastic/Adversarial Optimization :
[Sachs et al., NeurIPS'22]

 Recent works reveal the essential role of gradient variation, which provides 
an adaptive interpolation between stochastic and adversarial optimization.
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• SEA (Stochastically Extended Adversarial) model 

Implications: Adaptive Optimization 
[Sachs et al., NeurIPS'22]

Two complexity measures:

stochastic variance adversarial change
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• SEA (Stochastically Extended Adversarial) model 

Implications: Adaptive Optimization 
[Sachs et al., NeurIPS'22]

stochastic variance stochastic varianceadversarial changegradient variation
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Implications: Online Label Shift
Similar idea was also used for dealing with online label shift adaptation.

NeurIPS 2022 NeurIPS 2023
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Gradient-Variation Online Learning
• The importance of problem-dependent adaptivity.

(i) regret guarantee should be much improved for easy environments；
(ii) meanwhile can safeguard the minimax optimal rate in the worst case.

which measures cumulative variations in gradients.

Gradient variation:

(i) Game theory, (ii) Adaptive optimization, etc.

• Profound connections to other important problems.
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Modern Online Learning
Key requirement: robustness to uncertain environments 

• Universal online learning

 Design a single algorithm capable of handling different types of functions, while achieving 
the same regret as if they were known. 

convex

strongly
convex

exp-concave

 For different function cases, targeting algorithm should be used (which may confuse users);



19Peng Zhao (Nanjing University)

Modern Online Learning
Key requirement: robustness to uncertain environments 

• Universal online learning

 Design a single algorithm capable of handling different types of functions, while achieving 
the same regret as if they were known. 

convex

strongly
convex

exp-concave

 For different function cases, targeting algorithm should be used (which may confuse users);

GV regret
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Modern Online Learning
Key requirement: robustness to uncertain environments 

cumulative loss of 
best offline model

optimal model changes
in non-stationary 

environments

• Non-stationary online learning
 For many scenarios, the environments exhibit non-stationarity, such as distribution shift.

 Design a robust algorithm capable of minimizing dynamic regret

measures the non-stationary level 
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Modern Online Learning
Key requirement: robustness to uncertain environments 

cumulative loss of 
best offline model

optimal model changes
in non-stationary 

environments

• Non-stationary online learning
 For many scenarios, the environments exhibit non-stationarity, such as distribution shift.

GV regret

 Design a robust algorithm capable of minimizing dynamic regret

measures the non-stationary level 
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Guiding Questions
• Developing gradient-variation regret for modern online learning.

 Non-stationary online learning

 Universal online learning

We successfully achieved above gradient-variation results and obtained many implications.
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Review: GV regret in simple case
• Gentle start: convex functions (not universal), standard regret (not non-stationary)

regret performance depends on the quality of the optimism 

Optimistic OGD

serving as available prediction of future gradients

[Chiang et al., COLT’12; Rakhlin & Sridharan, COLT’13]

Optimistic Update: to leverage historical (gradient) information 
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Review: GV regret in simple case
• A general optimistic bound

(empirical) gradient variation

choose last-round gradient 
as optimistic vector

• By smoothness (of online functions), empirical gradient variation can be upper bounded by

algorithmic stability gradient variation

and

key quantity to handle!
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Review: GV regret in simple case
• Surprisingly, many online algorithms enjoy negative terms in regret analysis. 

Optimistic OGD

positive terms are cancelled out when step size is small enough (𝜂𝜂 ≤ 1/𝐿𝐿) 

Chiang, et al. Online optimization with gradual variations. COLT 2012.

(by 𝐿𝐿-smoothness of online functions)
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Challenge In Modern Online Learning
• Developing gradient-variation regret for modern online learning.

 Non-stationary online learning

 Universal online learning

Key challenge: robustness to uncertain environments 
and adaptivity to gradient variation
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• Robustness: combine multiple base models to combat with uncertainty

Our Framework: Online Ensemble

Meta Learner

Base Learners

for convex
function

for exp-concave
function

for strongly convex 
function

Universal online learning: dealing with unknown function curvatures



28Peng Zhao (Nanjing University)

• Robustness: combine multiple base models to combat with uncertainty

Our Framework: Online Ensemble

Meta Learner

Base Learners

with
step size 𝜂𝜂1

with
step size 𝜂𝜂2

with
step size 𝜂𝜂𝑁𝑁

Non-stationary online learning: dealing with unknown non-stationarity level
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• How to handle algorithmic stability in online ensemble structure?

GV in Universal/Non-stationary Regret 

How to ensure stability of 
an online ensemble?

meta regret

base regret

We need to decompose two layers for a refined analysis.



30Peng Zhao (Nanjing University)

• How to handle algorithmic stability in online ensemble structure?

GV in Universal/Non-stationary Regret 

base regret still keeps the negative term

 base algorithm
(consider Optimistic OGD for simplicity)

meta stability weighted combine of base stability
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• How to handle algorithmic stability in online ensemble structure?

GV in Universal/Non-stationary Regret 

meta regret also keeps the negative term

meta algorithm
(consider Optimistic Hedge for simplicity)

meta stability weighted combine of base stability
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• How to handle algorithmic stability in online ensemble structure?

GV in Universal/Non-stationary Regret 

meta stability weighted combine of base stability

meta regret also keeps the negative term base regret still keeps the negative term

negative term only for a 
particular base learner, 

insufficient for cancellation
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Collaborative Online Ensemble

correction: penalizing 
unstable base learners

Collaborations between meta and base learners:
simultaneously exploiting 
 negative terms in regret analysis 
 correction terms in algorithm design
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Results: Non-stationary Online Learning
• The first non-stationary online algorithm with gradient-variation regret.




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Results: Universal Online Learning
• The first universal online algorithm with gradient-variation regret.




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Implications: Games and Adaptive Opt.
 Non-stationary Online Learning

• Game theory: time-varying games[Zhang-Z-Luo-Zhou, ICML’22] 

• Adaptive Optimization: SEA model[Chen-Zhang-Tu-Z-Zhang, ICML’23 & JMLR’24] 
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Implications: Games and Adaptive Opt.
 Universal Online Learning

• Game theory: min-max optimization[Yan-Z-Zhou, NeurIPS’23] 

[Yan-Z-Zhou, NeurIPS’23] • Adaptive Optimization: SEA model
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Conclusion
 Gradient-variation Online Learning

• Universality: a single algorithm simultaneously optimal for different function families
• Non-stationarity: an algorithm optimizing dynamic regret with changing comparators
• Collaborative online ensemble: online ensemble with optimistic update, exploiting 

negative terms in regret analysis and injecting corrections in algorithmic design 
• Applications: useful for game theory, adaptive optimization, etc

 Open Problems
• Consider exp-concave and strongly convex functions for non-stationary online learning
• How to enhance universality to more challenging with heterogenous curvature info.?
• Connection to continual learning, beyond the convexity assumption.

Thanks!
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