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Online Learning LAVIDA

Learning And Mining from DatA

* In more and more applications, data are coming in an online fashion

autonomous driving intelligence manufacturing base station communicate

* Online learning/optimization

- update the model in an iterated optimization fashion

- try to equip with theoretical guarantees for the online update
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Online Convex Optimization LAIViDA

Learning And Mining from DatA

* View online learning as a game between learner and environment.

Ateachroundt=1,2,...,T:

- the learner submits a decision (model) x; € X C R?
- at the same time, environments decide an online function f; : X — R

- the learner suffers f;(x;) and receives gradient information

Example: Considering online classification, we have

(i) predictive loss ¢ : Y x YR, and |:> fe(x) = L(h(x;,),yt)

(ii) hypothesis function h: X x U V. 14 (XTQ,bt, ye)  for simplicity
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Online Convex Optimization LAIViDA

Learning And Mining from DatA

* Regret: online prediction as good as the best offline model

T
Regr = th(xt mlﬂth
t=1

learner’s excess /055 compared to the best offline model

* Many efforts have been devoted to regret minimization.
1 Online Gradient Descent (OGD)
Xep1 = M [x¢e — 06V fi(x¢)]

IIy[-] denotes Euclidean projection onto feasible domain X'

d Other frameworks include online mirror descent (OMD)
and FOllOW'the'RegUIarized'Leader (FTRL) https://www.nature.com/articles/s41534-017-0043-1
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Online Convex Optimization LAIViDA

Learning And Mining from DatA

* Existing efforts: obtain the minimax optimal regret guarantees

e.g., OGD with step size n, =1/ Vit I , 2
> ) filxe) —}rcrg;(lz:ft(X) < O(VT)

Xe+1 = Ly [x¢ — 7V fr(xy)]

This regret bound is optimal in the worst case --- there exists a hard instance
that no online algorithm can behave better than this regret rate.

: &
* However, in many cases, the i v

environments may not so hard!

Real world [Slides from Dylan Foster, Adaptive
Easy Data Worst-Case § @ . . ,
- Data Online Learning @NIPS’15 workshop]
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https://event.cwi.nl/easydata2015/slides/dylan.pdf
https://event.cwi.nl/easydata2015/slides/dylan.pdf

Beyond Worst-Case Analysis LAlViDA

Learning And Mining from DatA

* Problem-dependent methods aim to achieve more adaptive results:

(i) regret guarantee should be much improved for easy environments;

(i) meanwhile can safeguard the minimax optimal rate in the worst case.

Gradient variation:
- - om)
Ve 2 S sup [V/ulx) = Vfi 1 ()]
— vex : (V) |
which measures cumulative variations in gradients. ° ', o

can be O(1) when functions are stable, and is at most O(T) in the worst case
(under standard assumption)

Peng Zhao (Nanjing University) 6



Why Gradient Variation? LAlViDA

Learning And Mining from DatA

e Consider convex functions, if we achieve an O(+/Vr) regret,

dbecome even O(1) when functions are stable | Gradient variation:

o(r)

T
Ve 23 sup V(%) - Vi ()1

o xeX I o(Vr) |

D Safeguard the O(\/ T) rate 11’1 the WOI‘St case which measures cumulative variations in gradients. °

e More importantly, it has profound connections to other areas.

d Game theory: GV regret is essential for obtaining fast convergence in games.
[Syrgkanis et al., NIPS"15 best paper; Wei & Luo, COLT’18]

d Adaptive Optimization: GV regret can bridge stochastic and adversarial optimization.
[Sachs et al., NeurIPS’22; Chen et al., ICML’23]
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Implications: Game Theory

* Gradient Variation in Games: [Syrgkanis et al., NIPS’15 best paper]

LAVIDA

Learning And Mining from DatA

x-player decision x; = ( 1/2
1/

Two-Player Zero-Sum Games

|

y-player decision y; = (

L1
2727

0)"

Game payoff matrix A4

Rock | Scissors | Paper

Rock | (0,0) | (1,-1) | (-1,1)

Scissors | (—1,1)| (0,0) (-1,1)
Paper |(1,-1)| (—1,1) (0,0)

A good situation for two players is to achieve Nash equilibrium; but its computation is often hard.
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Implications: Game Theory LAIViDA

Learning And Mining from DatA

» Gradient Variation in Games: [Syrgkanis et al., NIPS’15 best paper]

Online Game Protocol

The environments decide a payoff matrix A

Ateachroundt=1,2,...,T:
- z-player submits x; € A, and y-player submits y;: € Ay

- x-player suffers loss x/ Ay, and receives gradient Ay,, and

y-player receives reward x,' Ay; and receives gradient x, A

The online function that z-player receives is fZ(-) = - Ay;.

consider a relaxed gradient feedback (we don’t even require full knowledge of A)
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Implications: Game Theory LAIViDA

Learning And Mining from DatA

* Gradient-variation online learning for fast convergence in games.

Deploying gradient-variation algorithm (e.g., optimistic mirror descent with last-round gradient) attains:

FEOO A gt <143 iy — Ayicile = 30 b = et
T ~ t t—1 t — &t—11|1

ftx—l(x) éXTAYt—l t—9 ~ +—9
gradient variation _negative stability

—~

Deploying gradient-variation algorithm (e.g., optimistic mirror de%last—round gradient) attains:

£ (y ) = Xy | Ay a2
A Regy 1+ Z Ix/ A =% Al% =D llye = yealli
fio1(y) = x4, Ay t=2
gradient variation negative stability

Regret summation is usually related to global metrics in games,
such as Nash equilibrium regret (measuring the quality of approximated solution).
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Implications: Game Theory LAIViDA

Learning And Mining from DatA

* Gradient-variation online learning for fast convergence in games.

Deploying gradient-variation algorithm (e.g., optimistic mirror descent with last-round gradient) attains:

FEOO A gt <143 iy — Ayicile = 30 b = et
T ~ t t—1 t — &t—11|1

ftx—l(x) éXTAYt—l t—9 ~ +—9
gradient variation _negative stability

—~

Deploying gradient-variation algorithm (e.g., optimistic mirror de%last—round gradient) attains:

£ (y ) = Xy | Ay L a2
’ Regp S 1+ Z Ix; A—x,_ A2, - Z ly: — ye1ll?
ft—1(Y) = Xt—lAy t=2 t=2
gradient variation negative stability

—> RegT + Reg? < O(1) which leads to O(%) fast convergence, as opposed to O(%)
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Implications: min-max application

Learning And Mining from DatA

Similar idea is further used for training GAN (Generative Adversarial Networks)

and its theoretical explanations.

ICLR 2018

TRAINING GANS WITH OPTIMISM

Constantinos Daskalakis* Andrew Ilyas*
MIT, EECS MIT, EECS
costis@mit.edu ailyas@mit.edu

Vasilis Syrgkanis™®
Microsoft Research
vasy@microsoft.com

Haoyang Zeng*
MIT, EECS
haoyangz@mit.edu

ABSTRACT

We address the issue of limit cycling behavior in training Generative Adversarial
Networks and propose the use of Optimistic Mirror Decent (OMD) for training
Wasserstein GANs. Recent theoretical results have shown that optimistic mirror
decent (OMD) can enjoy faster regret rates in the context of zero-sum games.
WGANS is exactly a context of solving a zero-sum game with simultaneous no-
regret dynamics. Moreover, we show that optimistic mirror decent addresses the
limit cycling problem in training WGANs. We formally show that in the case of
bi-linear zero-sum games the last iterate of OMD dynamics converges to an equi-
librium, in contrast to GD dynamics which are bound to cycle. We also portray the
huge qualitative difference between GD and OMD dynamics with toy examples,
even when GD is modified with many adaptations proposed in the recent litera-
ture, such as gradient penalty or momentum. We apply OMD WGAN training to
a bioinformatics problem of generating DNA sequences. We observe that mod-
els trained with OMD achieve consistently smaller KL divergence with respect to
the true underlying distribution, than models trained with GD variants. Finally,
we introduce a new algorithm, Optimistic Adam, which is an optimistic variant
of Adam. We apply it to WGAN training on CIFARI10 and observe improved
performance in terms of inception score as compared to Adam.

OpTMISTIC MIRROR DESCENT IN SADDLE-POINT PROBLEMS:
GoING THE EXTRA (GRADIENT) MILE

Panayotis Mertikopoulos

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG
38000 Grenoble, France
panayotis.mertikopoulos@imag. fr
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Institute for Infocomm Research, A*STAR
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ABSTRACT

Owing to their connection with generative adversarial networks (GANs), saddle-
point problems have recently attracted considerable interest in machine learning
and beyond. By necessity, most theoretical guarantees revolve around convex-
concave (or even linear) problems; however, making theoretical inroads towards
efficient GAN training depends crucially on moving beyond this classic framework.
To make piecemeal progress along these lines, we analyze the behavior of mirror
descent (MD) in a class of non-monotone problems whose solutions coincide with
those of a naturally associated variational inequality — a property which we call
coherence. We first show that ordinary, “vanilla” MD converges under a strict
version of this condition, but not otherwise; in particular, it may fail to converge
even in bilinear models with a unique solution. We then show that this deficiency
is mitigated by optimism: by taking an “extra-gradient” step, optimistic mirror
descent (OMD) converges in all coherent problems. Our analysis generalizes and
extends the results of Daskalakis et al. [2018] for optimistic gradient descent (OGD)
in bilinear problems, and makes concrete headway for provable convergence beyond
convex-concave games. We also provide stochastic analogues of these results, and
we validate our analysis by numerical experiments in a wide array of GAN models
(including Gaussian mixture models, and the CelebA and CIFAR-10 datasets).

ICLR 2019
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Implications: Adaptive Optimization LAIVIDA

Learning And Mining from DatA

» Gradient Variation in Stochastic/Adversarial Optimization :
[Sachs et al., NeurIPS'22]

stochastic optimization f ~ D

How is loss function

e f(x) ft generated?

adversarial optimization { f¢ }{_1

» These two fields are previously studied separately.

» Recent works reveal the essential role of gradient variation, which provides
an adaptive interpolation between stochastic and adversarial optimization.

Peng Zhao (Nanjing University) 13



Implications: Adaptive Optimization LAIVIDA

Learning And Mining from DatA

* SEA (Stochastically Extended Adversarial) model sachs et al, Neurips2o)

Setup: at round ¢t € [T], SEA optimizes minygex f(X)

f+ is the randomized function sampled from underlying distribution D,: f; ~ D,

F is the expected function of fi: Fi(-) 2 E ForDy LSt (4]

Two complexity measures:

T
ot &3 max iy, [|V/(0-VE)|?, S LR Zsup IVF(x) = VF 1 ()]

XEX

stochastic variance adversarial change

Peng Zhao (Nanjing University) 14



Implications: Adaptive Optimization LAIVIDA

Learning And Mining from DatA

* SEA (Stochastically Extended Adversarial) model sachs et al, Neurips2o)
Setup: at round ¢t € [T], SEA optimizes minygex f(X)

f+ is the randomized function sampled from underlying distribution D,: f; ~ D,

F is the expected function of fi: Fi(-) 2 E ForDy LSt (4]

—> SEA model can be solved by deploying gradient-variation algorithm over the
randomized function {f;}1_,.

Vfi(x)=Vfi_1(x) = [V [i(x) =V EF{(x)|+[VF(x) =V 1 (X)][+[VEF 1 (%) =V fi—1(x)]

gradient variation stochastic variance adversarial change stochastic variance

For stochastic optimization, o7, = 0?7 and %7 . = 0.

Approximately Vi ~ o7, + 3%

o . . . 2 o 2 o
For adversarial optimization, 7., = 0 and 7., = V7.
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Implications: Online Label Shift

Learning And Mining from DatA

Similar idea was also used for dealing with online label shift adaptation.

NeurlPS 2022

Adapting to Online Label Shift with
Provable Guarantees

Yong Bai'*, Yu-Jie Zhang>'*, Peng Zhao', Masashi Sugiyama®2, Zhi-Hua Zhou'?
! National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2 The University of Tokyo, Chiba, Japan
3 RIKEN AIP, Tokyo, Japan

Abstract

NeurlPS 2023

Online Label Shift: Optimal Dynamic Regret meets
Practical Algorithms

Dheeraj Baby*
UC Santa Barbara
dheeraj@ucsb.edu

Sivaraman Balakrishnan
Carnegie Mellon University
sbalakri@andrew.cmu.edu

Saurabh Garg*

Carnegie Mellon University

sgarg2 @andrew.cmu.edu

Zachary C. Lipton
Carnegie Mellon University
zlipton @andrew.cmu.edu

Tzu-Ching Yen*
Carnegie Mellon University
tzuchiny @andrew.cmu.edu

Yu-Xiang Wang
UC Santa Barbara

yuxiangw @cs.ucsb.edu

The standard supervised learning paradigm works effectively when training data
shares the same distribution as the upcoming testing samples. However, this
stationary assumption is often violated in real-world applications, especially when
testing data appear in an online fashion. In this paper, we formulate and investigate
the problem of online label shift (OLaS): the learner trains an initial model from
the labeled offline data and then deploys it to an unlabeled online environment
where the underlying label distribution changes over time but the label-conditional
density does not. The non-stationarity nature and the lack of supervision make
the problem challenging to be tackled. To address the difficulty, we construct a
new unbiased risk estimator that utilizes the unlabeled data, which exhibits many
benign properties albeit with potential non-convexity. Building upon that, we
propose novel online ensemble algorithms to deal with the non-stationarity of the
environments. Our approach enjoys optimal dynamic regret, indicating that the
performance is competitive with a clairvoyant who knows the online environments
in hindsight and then chooses the best decision for each round. The obtained
dynamic regret bound scales with the intensity and pattern of label distribution
shift, hence exhibiting the adaptivity in the OLaS problem. Extensive experiments
are conducted to validate the effectiveness and support our theoretical findings.

Abstract

This paper focuses on supervised and unsupervised online label shift, where the
class marginals Q(y) varies but the class-conditionals Q(z|y) remain invariant. In
the unsupervised setting, our goal is to adapt a learner, trained on some offline la-
beled data, to changing label distributions given unlabeled online data. In the super-
vised setting, we must both learn a classifier and adapt to the dynamically evolving
class marginals given only labeled online data. We develop novel algorithms that
reduce the adaptation problem to online regression and guarantee optimal dynamic
regret without any prior knowledge of the extent of drift in the label distribution.
Our solution is based on bootstrapping the estimates of online regression oracles
that track the drifting proportions. Experiments across numerous simulated and
real-world online label shift scenarios demonstrate the superior performance of our
proposed approaches, often achieving 1-3% improvement in accuracy while being
sample and computationally efficient. Code is publicly available at this url.

Peng Zhao (Nanjing University)
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Gradient-Variation Online Learning LAViDA

Learning And Mining from DatA

* The importance of problem-dependent adaptivity.

(i) regret guarantee should be much improved for easy environments;
(i) meanwhile can safeguard the minimax optimal rate in the worst case.

Gradient variation:
- - o)
Vp £ Z sup ||V fe(x) = Vi1 (x)|1”
— xex I OVr) |
which measures cumulative variations in gradients. ~ ', o

* Profound connections to other important problems.

(i) Game theory, (ii) Adaptive optimization, etc.

Peng Zhao (Nanjing University) 17



Modern Online Learning

Key requirement: robustness to uncertain environments

* Universal online learning

LAVIDA

Learning And Mining from DatA

O For different function cases, targeting algorithm should be used (which may confuse users);

Function type Algorithm Regret
convex OGD with n, ~ —- O(WT) exp-concave
A-strongly convex OGD with n, = 55 O(5logT)
convex '
a-exp-concave Online Newton Step with o | O(+dlogT)

O Design a single algorithm capable of handling different types of functions, while achieving
the same regret as if they were known.

:> A single algorithm achieves O(v/'T), O(dlogT), and O(logT) regret for
convex/ exp-concave/strongly convex functions, respectively.

Peng Zhao (Nanjing University)
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Modern Online Learning

Key requirement: robustness to uncertain environments

* Universal online learning

LAVIDA

Learning And Mining from DatA

O For different function cases, targeting algorithm should be used (which may confuse users);

Function type Algorithm Regret
convex OGD with n, ~ —- O(WT) exp-concave
A-strongly convex OGD with n, = 55 O(5logT)
convex '
a-exp-concave Online Newton Step with o | O(+dlogT)

O Design a single algorithm capable of handling different types of functions, while achieving
the same regret as if they were known.

GV regret

—

Peng Zhao (Nanjing University)

A single algorithm achieves O(v/Vr), O(dlog V), and O(log V) regret
for convex/ exp-concave/strongly convex functions, respectively.
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Modern Online Learning LAIViDA

Learning And Mining from DatA

Key requirement: robustness to uncertain environments

* Non-stationary online learning

O For many scenarios, the environments exhibit non-stationarity, such as distribution shift.

T T
Re £ . (X;) — min (X cumulative loss of
ST ; / ( ) xeXx ; / ( ) best offline model

d Design a robust algorithm capable of minimizing dynamic regret .
optimal model changes

in non-stationary
environments

D-Regp(uy,...,ur) £ ) fi(xe) — > fe(uy)

Pr =3, |lus — u;_1||, measures the non-stationary level

|:> An algorithm equips with dynamic regret scaling with Pr, such as O(\/T(1 + Pr)).

Peng Zhao (Nanjing University) 20



Modern Online Learning LAIViDA

Learning And Mining from DatA

Key requirement: robustness to uncertain environments

* Non-stationary online learning

O For many scenarios, the environments exhibit non-stationarity, such as distribution shift.

T T
Re £ . (X;) — min (X cumulative loss of
ST ; / ( ) xeXx ; / ( ) best offline model

d Design a robust algorithm capable of minimizing dynamic regret .
optimal model changes

A L L in hon-stationary
D'RegT(ula s llT) — Z ft(Xt) — Z ft(ut) environments
t=1 t=1
GV regret Pr =3, |lus — u;_1||, measures the non-stationary level

|:> An algorithm equips with GV-dynamic regret, such as O(\/Vr(1 + Pr)).

Peng Zhao (Nanjing University) 21



Guiding Questions LAViDA

Learning And Mining from DatA

* Developing gradient-variation regret for modern online learning.

d Universal online learning

:> A single algorithm achieves O(v/Vr), O(dlog V1), and O(log V) regret
for convex/ exp-concave/strongly convex functions, respectively.

J Non-stationary online learning

|:> An algorithm equips with GV-dynamic regret, such as O(1/Vr(1 + Pr)).

We successfully achieved above gradient-variation results and obtained many implications.
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Review: GV regret in simple case LalViDA

Learning And Mining from DatA

* Gentle start: convex functions (not universal), standard regret (not non-stationary)

Optimistic Update: to leverage historical (gradient) information

Optimistic O GD [Chiang et al., COLT’12; Rakhlin & Sridharan, COLT’13]
Xt — HX [Xt — th]

R §t+2 Mix2 ___,O
A~ A~ X S ) e
Xt+1 = [X¢ — 0V fi(xt)] ORI XHW' ' Re+2
~—
AT ; it My T
where {M; € R*};_, is a sequence of optimistic vectors t ‘(;{t M., O
Xt+1

serving as available prediction of future gradients

> > filx) =Y few) O[T+ DIV Filxe) = Ml

regret performance depends on the quality of the optimism M,

Peng Zhao (Nanjing University) 23



Review: GV regret in simple case LalViDA

Learning And Mining from DatA

* A general optimistic bound

T T
> filxe) th <0 \1+Z||Vft(xt)—Mt||§
t=1 =1

choose last-round gradient
as optimistic vector

_ T , My =V fi—1(x¢-1)
Vr = Z |V fe(x¢) = V frm1(xe—1) |5

t=2 (empirical) gradient variation

* By smoothness (of online functions), empirical gradient variation can be upper bounded by

T
D Ik =% and Vp & Z sup ||V fu(x) = Vi1 (x|
t= xeX
algorithmic stability =2 gradient variation
key quantity to handle!
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Review: GV regret in simple case LalVipA

Learning And Mining from DatA

* Surprisingly, many online algorithms enjoy negative terms in regret analysis.
Optimistic OGD

T T
D? 1
Regp <0 Y ||V fi(xe) = Vfior(xe—1)5 + o0 > lxegn — xel3

T T D2 T
1
<20 |V felxe) = Vhima(xe)lls +20 ) IV fimr(xe) = Vifioa(xe-1)ll3 + 2— I Z i1 — %13
t=2 =1

t=2

D2

< 2nVpr + 2nL Z % — x¢_1 H2 -+ o0 "I Z [P (by L-smoothness of online functions)
t=2 U 7L 1 \V
positive terms are cancelled out when step size is small enough (n < 1/L) (73

-

COLT 2012
best student paper

Chiang, et al. Online optimization with gradual variations. COLT 2012.
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Challenge In Modern Online Learning LANbA

Learning And Mining from DatA

* Developing gradient-variation regret for modern online learning.

d Universal online learning

:> A single algorithm achieves O(v/Vr), O(dlog V), and O(log V) regret

for convex/ exp-concave/strongly convex functions, respectively.

J Non-stationary online learning

|:> An algorithm equips with GV-dynamic regret, such as O(\/Vr(1 + Pr)).

Key challenge: robustness to uncertain environments
and adaptivity to gradient variation

Peng Zhao (Nanjing University) 26



Our Framework: Online Ensemble  LANVIDA

Learning And Mining from DatA

* Robustness: combine multiple base models to combat with uncertainty

N
Xt = E Pt i Xt i
i=1

- p, = [pe1,---,pen] " is the meta weight;

- {x¢.i}{_; is the base decisions of the i-th base learners, i € [V].

Universal online learning: dealing with unknown function curvatures

Meta Learner

Base Learners

for convex for exp-concave for strongly convex
function function function

Peng Zhao (Nanjing University) 27



Our Framework: Online Ensemble  LANVIDA

Learning And Mining from DatA

* Robustness: combine multiple base models to combat with uncertainty

N
Xt = E Pt i Xt i
i=1

- p, = [pe1,---,pen] " is the meta weight;

- {x¢.i}{_; is the base decisions of the i-th base learners, i € [V].

Non-stationary online learning: dealing with unknown non-stationarity level

Meta Learner

Base Learners

with with with
step size 14 step size 1, step size Ny

Peng Zhao (Nanjing University) 28



GV in Universal/Non-stationary Regret LAIViDA

Learning And Mining from DatA

* How to handle algorithmic stability in online ensemble structure?

O

N
Xt — Zizl Pt,iXt i

How to ensure stability of
an online ensemble?

Peng Zhao (Nanjing University)

T
Z Ix; — x4
t=2

:> We need to decompose two layers for a refined analysis.

T
REG — Xt) — Xt a*
82U L) [
T T
+ ) felxea) — ity > ft(x)]
t=1 =1 base regret

29



GV in Universal/Non-stationary Regret LAIViDA

Learning And Mining from DatA

* How to handle algorithmic stability in online ensemble structure?

I N
2 2
§ |x¢ — x¢—1]] |:> % — Xt—l”g <2D? Hpt - Pt—1H1 + 2 E :pt,i Xt — Xt—1,i] ;
meta stability weighted combine of base stability

4 base algorithm - -
(consider Optimistic OGD for simplicity) Z fe(x¢4) — migfl Z fr(x)
=1 xSt

P | > T
Xy, = Ll [Xt,i - nivft—l(xt—l,i)] < 1 + 1, Vip — 1 Z X5 — X¢1 'Hi
~Y 'rh 1 i = N — 1,7
X1, = M (X0 — 0V fi(Xe,0)] =

base regret still keeps the negative term

Peng Zhao (Nanjing University) 30



GV in Universal/Non-stationary Regret LAIViDA

Learning And Mining from DatA

* How to handle algorithmic stability in online ensemble structure?

2
2

|Xt,z' - Xt—l,z'|

I N
ZHXt _Xt_le :> ”Xt—xt—l”g §2D2Hpt_pt—1H?+22pt,i
t=2

=1

meta stability weighted combine of base stability

d meta algorithm -
(consider Optimistic Hedge for simplicity) Z fe(xe) — Z (%)

Pt+1,5 X €XP <—5( Zizl 55,7; + mt+1,s)) |:> 1 1t

with meta loss as ¢, ; = fs(x5;), Vs € [t
€ta 10Ss as ts ; fs( 5’@) Vs € H meta regret also keeps the negative term

and meta optimism as my;y1; = fi(X¢;)

Peng Zhao (Nanjing University) 31



GV in Universal/Non-stationary Regret LAIViDA

* How to handle algorithmic stability in online ensemble structure?

T
Z Ix; — %1
t=2

N
:> %t — Xt—l”g < 2D? Hpt _pt—lHi + szt,i

Learning And Mining from DatA

2
2

|Xt,z' - Xt—l,z'|
i=1

meta stability

T T
Z fe(xe) — Z fr(x4,i)
t=1 t=1
T

1 _ 1 2
S—+eVr—=) |lp—pl;

€ €=

meta regret also keeps the negative term

base regret still keeps the negative term

weighted combine of base stability

negative term only for
particular base learner,
insufficient for cancel/atiﬁg

Peng Zhao (Nanjing University)

32



Collaborative Online Ensemble LAlViDA

Learning And Mining from DatA

e Stablization: meta algorithm p;41 ; oc exp (—e(Ly; + my414)) with
e (corrected) meta loss £, € R with Cei = (Vfe(xe), Xe) + N|xes — %1435

e (corrected) meta optimism m, 1 € RY withmy 1, = (Mya1,Xe114)+ X010 — thHg

77 772 77N—1 @ NN
correction: penalizing
tl N unstable base learners
t Zi:l Pt,iXt,q

e Technically, stability term will cancel out by

- 2 .
— S llpe — P Collaborations between meta and base learners:

- imult / loiti
2 T 9 simuiltaneously expioiting
Z ||Xt T Xt—]_ H — o Zt:Q th,i - Xt—l,?:HQ
t=2

T N
T D i—2 iz Pl

¥ negative terms in regret analysis

) : : : :
X¢i— Xe- 143 ¥* correction terms in algorithm design

Peng Zhao (Nanjing University) 33



Results: Non-stationary Online Learning LANbA

Learning And Mining from DatA

* The first non-stationary online algorithm with gradient-variation regret.

Theorem 1 (Z-Zhang-Zhang-Zhou; NeurIPS 2020; JMLR 2024). Under standard assumptions,
our online-ensemble algorithm ensures that

T
Z Jt (Xt
t=1

where Vi = 23;2 Supyey |V fi(x) — V fi_1(x)||? is gradient variation and Pr = Zthz |uy —
U;_1||2 is the path length measuring the non-stationarity.

||M%

H(ug) <O (\/VT 1+PT)+PT>

QO Recovering the existing O(1/T(1 + Pr)) optimal dynamic regret in the worst case such that Vi = O(T).

O Recovering the existing O(/Vr) static regret when u, is fixed such that Pr =0

Peng Zhao (Nanjing University) 34



Results: Universal Online Learning LANbA

Learning And Mining from DatA

* The first universal online algorithm with gradient-variation regret.

Theorem 2 (Yan-Z-Zhou; NeurIPS 2023). Under standard assumptions, our online-ensemble algo-
rithm ensures that

o it achieves O(5 log Vir) regret for A-strongly convex functions;
* it achieves O(g log V1) regret for a-exp-concave functions;

o it achieves O(~/V) regret for convex functions.

Here, Vir = ZL SUpy ey |V fi(x) = V fi—1(x)||? is gradient variation and O(-) omits log Vi factors.

O (Almostly) recovering the existing O(v/T'), O(dlog T), O(log T') optimal universal regret (for convex/
exp-concave/ strongly convex functions) in the worst case such that Vi = O(T).

Q Still exhibits a logarithmic gap for convex functions (we are working on that).
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Implications: Games and Adaptive Opt.LANbA

Learning And Mining from DatA

d Non-stationary Online Learning

* Game theory: time-varying games|Zzhang-Z-Luo-Zhou, ICML/22]
Ateachroundt=1,2,...,T:
- z-player submits x; € A, and y-player submits y; € Ay
- the z-player suffers loss x, A;y; and receives gradient A;y,, and
the y-player receives reward x, A;y; and receives gradient A;x;

> DynNE-Reg; =

T

T
g :r;tTAtyt — min max :UTAty
t=1 = e IS

< O(min{/Vr(1 + Pr), Wr})

* Adaptive Optimization: SEA model|Chen-Zhang-Tu-Z-Zhang, ICML/23 & JMLR'24]

zT:Ft(xt) = éFt(ut) <0 (PT ++/1+ Pr <ﬁ+ \/@»
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Implications: Games and Adaptive Opt.LANbA

Learning And Mining from DatA

d Universal Online Learning

* Game theory: min-max optimization|yan-z-Zhou, NeurIPS23]

Under standard assumptions, for bilinear and strongly convex-concave games,

our algorithm enjoys O(1) regret summation in the honest case, O(VT) and
O(log T') bounds respectively in the dishonest case.

* Adaptive Optimization: SEA model|van-z-Zhou, NeurIPS23]

Under standard assumptions, our algorithm obtains O((c2, +X2 ) log(c? .+
¥2.7)) regret for strongly convex functions, O(dlog(o?. + X%.1)) regret for

exp-concave functions and O(\/c2... + X2...) regret for convex functions.
1T 1T
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Conclusion LAVIDA

Learning And Mining from DatA

J Gradient-variation Online Learning
* Universality: a single algorithm simultaneously optimal for different function families
* Non-stationarity: an algorithm optimizing dynamic regret with changing comparators

* Collaborative online ensemble: online ensemble with optimistic update, exploiting
negative terms in regret analysis and injecting corrections in algorithmic design

 Applications: useful for game theory, adaptive optimization, etc

d Open Problems
* Consider exp-concave and strongly convex functions for non-stationary online learning
« How to enhance universality to more challenging with heterogenous curvature info.?

« Connection to continual learning, beyond the convexity assumption.

Thanks!
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