Learning And Mining from DatA

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Online Ensemble: A Theoretical Framework for

Non-stationary Online Learning

Peng Zhao
School of Artificial Intelligence
Nanjing University
2025.05.31 @= BB FRIIRAKZE




MRLZKEB K T

2

-

- ZHONGGUO RENMINYINHANG /2
a1 ﬁ' Sy %mm m
w&hu"g' oy ks Gy schoer (]

Peng Zhao (Nanjing University) 2



Outline

* Background

* Online Ensemble

e Case Studies

 Conclusion

Peng Zhao (Nanjing University) 3



Outline

* Background

Peng Zhao (Nanjing University) 4



Machine Learning

* Machine Learning has achieved great success in recent years.
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search engine voice assistant recommendation

ChatGPT

Hi, can you introduce yourself to us?

I'm ChatGPT, an Al language model developed by OpenAl. How can |
help you?

AlphaGo Games automatic driving medical diagnosis large language model

Peng Zhao (Nanjing University) 5



Machine Learning

training data learning algorithm

* The theoretical foundation for ML to work well: L.I.D. assumption
(Independently and Identically Distributed)

model
deployment

testing data
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Machine Learning
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training data learning algorithm

* The theoretical foundation for ML to work well: I.I.D. assumption
(Independently and Identically Distributed)
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model

deployment

testing data in practical scenario
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Open-environment Machine Learning

* Distribution shift: data are usually collected in open environments

* In many applications, data are coming in an online fashion, like a “stream”

continuous
distribution

shift

Peng Zhao (Nanjing University) 8

provably robust methods for
non-stationary online learning




Community Discussions
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Community Discussions

turing lecture

DOI:10.1145/3448250

“Deep Learning for AI”

How can neural networks learn the rich
internal representations required

for difficult tasks such as recognizing
objects or understanding language?

Communication of ACM

| BY YOSHUA BENGIO, YANN LECUN, AND GEOFFREY HINTON

July, 2021. Vol 64. No 7.

Deep
Learning
for Al

TURING LECTURE

Yoshua Bengio, Yann LeCun, and Geoffrey Hinton are recipients
of the 2018 ACM A.M. Turing Award for breakthroughs that have
made deep neural netwarks a critical component of computing

RESEARCH ON ARTIFICIAL neural networks was
motivated by the observation that human intelligence
emerges from highly parallel networks of relatively
simple, non-linear neurons that learn by adjusting
the strengths of their connections. This observation
leads to a central computational question: How is it
possible for networks of this general kind to learn

the complicated internal representations that are
required for difficult tasks such as recognizing

Yann LeCun

Yoshua Bengio

Geoffrey Hinton

58 COMMUNICATIONS OF THEACM | JULY 2021 | VOL B4 | NOD.7

objects or und
Deep learning seeks to answer this
question by using many layers of activ-
ity vectors as representations and
leamning the connection strengths that
give rise to these vectors by following
the stochastic gradient of an objective
function that measures how well the
network is performing. It is very sur-
prising that such a conceptually simple
approach has proved to be so effective
when applied to large training sets us-
ing huge amounts of computation and
it appears that a key ingredient is
depth: shallow networks simply do not
work as well.

We reviewed the basic concepts
and some of the breakthrough
achievements of deep learning several
years ago.” Here we briefly deseribe
the origins of deep leaming; describe
a few of the more recent advances, and
discuss some of the future challenges.
These challenges include learning with
litle or no external supervision, coping
with test examples that come from a
different distribution than the training
examples, and using the deep learning
approach for tasks that humans solve
by using a deliberate sequence of steps
which we attend to consciously—tasks
that Kahneman™ calls system 2 tasks as
opposed to system I tasks like object
recognition or immediate natural lan-
guage understanding, which generally
feel effortless.

From Hand-Coded Symbolic
Expressions to Learned Distributed
Representations

There are two quite different para-
digms for AL Put simply, the logic-in-
spired paradigm views sequential rea-
soning as the essence of intelligence
and aims to implement reasoning in
computers using hand-designed rules
of inference that operate on hand-de-
signed symbolic expressions that for-
malize knowledge. The brain-inspired
paradigm views learning representa-
tions from data as the essence of in-
telligence and aims to implement
learning by hand-designing or evolv-
ing rules for modifying the connec-

What needs to be improved. From
the early days, theoreticians of ma-
chine learning have focused on the iid
assumption, which states that the test
cases are expected to come from the
same distribution as the training ex-
amples. Unfortunately, this is not a re-
alistic assumption in the real world:

just consider the non-stationarities
due to actions of various agents chang-
ing the world, or the gradually expand-
ing mental horizon of a learning agent
which always has more to learn and
discover. As a practical consequence,
the performance of today’s best AI sys-
tems tends to take a hit when they go
from the lab to the field.

Our desire to achieve greater robust-
ness when confronted with changes in
distribution (called out-of-distribution
generalization) is a special case of the

2018 Turing Award Recipients

Peng Zhao (Nanjing University)

more general objective of reducing
sample complexity (the number of ex-
amples needed to generalize well) when
faced with a new task—as in transfer
learning and lifelong learning®—or
simplywith a change in distribution or
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Community Discussions

The Alberta Plan for AI Research

“ Richard S. Sutton, Michael Bowling, and Patrick M. Pilarski
The Alberta Plan for [y of Al “EBERWOITERENT, HEEMERE
Alberta Machine Intelligence Institute N 8SHE
DeepMind Alberta
Mi JRETS £ EU’I b A : SO S I ]
,, History suggests that the road to a firm research consensus is extraordinarily arduous.
AI Re S e arc — Thomas Kuhn, The Structure of Scientific Revolutions

Herein we describe our approach to artificial intelligence (Al) research, which we call the I_, E \|/
Aug 2022 Alberta Plan. The Alberta Plan is pursued within our research groups in Alberta and by %1 J\ g 7N\ %g %JL, ’ 1_ £D% é
J

others who are like minded throughout the world. We welcome all who would join us in this

- BRI, (A FERS
The Alberta Plan is a long-term plan oriented toward basic understanding of computational AN

intelligence. It is a plan for the next 5-10 years. It is not concerned with immediate applica-
tions of what we currently know how to do, but rather with filling in the gaps in our current
understanding. As computational intelligence comes to be understood it will undoubtedly
profoundly affect our economy, our society, and our individual lives. Although all the con-
sequences are difficult to foresee, and every powerful technology contains the potential for paa 3 ”»
abuse, we are convinced that the existence of more far-sighted and complex intelligence will )\Iﬁﬁﬂ *D % BE-L—I_E \ /}?

overall be good for the world.

Following the Alberta Plan, we seek to understand and create long-lived computational agents
that interact with a vastly more complex world and come to predict and control their sensory

The Alberta Plan characterizes the problem of Al as the online maximization of reward via
continual sensing and acting, with limited computation, and potentially in the presence of
other agents. This characterization might seem natural, even obvious, but it is also contrary
to current practice, which is often focused on offline learning, prepared training sets, human

RlCh Sutton assistance, and unlimited computation. The Alberta Plan research vision is both classical and
contrarian, and radical in the sense of going to the root.

2024 Turing Award Recipient
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* Online Ensemble
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Non-stationary Online Learning

* How to achieve theoretical guarantee for non-stationary online learning?

continuous
distribution

shift

provably robust methods for
non-stationary online learning

v' A clear problem formulation (with assumptions)

v' A clear performance measure

v A clear methodology to guide algorithm designs

Peng Zhao (Nanjing University) 13



Formulation: Online Learning

* View online learning as an interaction between learner and environment.

Online Convex Optimization - )
A classifier +/Nt €R
Ateachroundt=1,2...,T A==
1. learner first pI‘OVideS a model w; € W; An instance, feature x, € R%
. . . Predict a label by w{ x, <:
2. and s1mutan‘eously the environment picks Receive the true label y, g
a convex pnline function f; : W — [0, 1]; :
A loss function
3. the learner then suffers loss f;(w;) and fe(w) = max(1 - y,w'x,,0)
observes some information of f;. Suffer f;(w) and update w;
Example: online function f; : W — R is composition of =
(i) loss£:3>><yl—>]Ri,and %# . .
(ii) data item: (xq, yt) e kX x ). = Spam Fﬂterlng
>
= fi(w) = 6w %y, y;) Regular vs Spam *
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Formulation: Online Learning

* View online learning as an interaction between learner and environment.

Online Convex Optimization f +/
. w, € R?
A classifier +
Ateachroundt=1,2---,T A==
1. learner first pI‘OVideS a model w, € W; An instance, feature x, € R%
. . . Predict a label by w{ x, h g
2. and simutaneously the environment picks Receive the true label y,

a convex online function f; : W — [0, 1]; N loes furrion

3. the learner then suffers loss f;(w;) and fe(w) = max(1 - y,w'x,,0)
observes some information of f;. Suffer fy(w¢) and update w;
full information partial information .

-
»

P
&8 68 @B ﬂ-'.- Spam Filtering
=

B g 0000 0000 0000 R 1 S ?
"~ horse racing o multi-armed bandits egtiar vs opam «
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Performance Measure

Regret: online prediction as good as the best offline model

|

Regret.» = w:) — min w) | cumulative loss of the
ety th( t) — th( ):
|

P :wEW i best offline model
Dynamic Regret optimal model changes
in hon-stationary
T T environments
D-Regret(uy, -+ ,ur) £ > fi(wy) = > fr(uy),
t=1 t=1
where uy,...,ur € W is a sequence of changing comparators that can be arbitary chosen.

Example: in online supervised learning

T T
. D-Regret = fr(wy) — ft(W*(F))
o fi(w) = 0(wW;x¢, yt), with (x¢, ;) ~ D, (unknown) ; ; t

(£)

o [y(w) £ E (x, ys)~D; 0w xe,y)] = E[f(w)] i.e,u; = W: € argming, .y Fi (W)

Peng Zhao (Nanjing University) 16



Challenge

T T
D-Regret(uy, -+ ,ur) = »  fi(wy) — Y fi(u)
t=1 t=1

Key difficulty: the uncertainty due to unknown environmental changes.

ations and Algorithms
i

Basic idea: Ensemble Method

* Protocol: combine multiple base [}.ccicamer1
learners to achieve robustness \
base-learner 2

* Advantage: achieve more robust T combiner | output L
results under uncertain or even : / :
. . Zhi-Hua Zhou. Ensemble Methods:
Changmg environments base-learner N Foundations and Algorithms, 2nd
edition, 2025.

Peng Zhao (Nanjing University) 17



E&EERL (Online Ensemble)

Key Components

(1) base learner: an online learner to cope with a certain amount of non-stationarity
(2) schedule: a set of parameters for initiating base learners that encourage diversity

(3) meta learner: an expert-tracking learner that can combine base learners’ decisions

/ surrogate correction\
J - J - -
vl B Ml B [O2 1O
v — v — =T=
v — v — =T =
step size covering specification
schedule meta learner

Peng Zhao (Nanjing University) 18



Deploying Online Ensemble

According to the feedback information of online learning, we have

 Full-information online learning [NeurlPS'20; ICML'22; NerlPS'22; NerlPS'23; JIMLR24; ICML’25]

the learner can obtain the gradient information of the online function

4 Partial-information online learningjaistast2o; imMLr'21; coLT22; AISATST'23; ICML'24]

the learner can obtain the function value only, without the gradient information

 Decision-dependent online learning icmv2z; imir23; Neurlps'23; AISATST 24; Neurips'24]

the historical decision may affect the current functions (including gradient and value)

Based on the unified "online ensemble” framework,
we can obtain optimal (or best-known) dynamic regret

Peng Zhao (Nanjing University) 19



A theoretical support for many practices

HENWHRSRE ISSN 1000-1239/CN 11-1777/TP
Journal of Computer Research and Development 42(MT) . 222~227, 2005
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Rescearch on the Application of Ensemble Léarning Algorithms to Incremental
Learning

Wen Yimin''?, Yang Yang', and Lii Baoliang’
1( Department of Computer Science and Engineering , Shanghai Jiaotong University, Shanghai 200030)
2(Hunan Industry Polyteclinic , Changsha 410007)
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A theoretical support for many practices

A Survey on Ensemble Learning for Data Stream Classification

HEITOR MURILO GOMES, JEAN PAUL BARDDAL, and FABRICIO ENEMBRECK,

Ponticia Universidade Catdlica do Parana
ALBERT BIFET, Institut Mines-Télécom, Télécom ParizTech, Université Paris-Saclay

OL algorithms

Ensemble-based methods are among the most widely used techniques for data stream classification. Their
popularity is attributable to their good performance in comparison to strong single learners while being
relatively easy to deploy in real-world applications. Ensemble algorithms are especially useful for data
stream learning as they can be integrated with drift detection algorithms and incorporate dynamic updates,
such as selective removal or addition of classifiers. This work proposes a taxonomy for data stream ensemble
learning as derived from reviewing over 60 algorithms. Important aspects such as combination, diversity,
and dynamic updates, are thoroughly discussed. Additional contributions include a listing of popular open-
source tools and a discussion about current data stream research challenges and how they relate to ensemble
learning (big data streams, concept evolution, feature drifts, temporal dependencies, and others).

New theory
(non-stationary)

OL theory

(stationary)

CCS Concepts: ® Computing methodologies - Ensemble methods; Online learning settings; Super-
vised learning by classification;

Additional Key Words and Phrases: Ensemble learning, supervised learning, data stream classification

ACM Reference Format:

Heitor Murilo Gomes, Jean Paul Barddal, Fabricio Enembreck, and Albert Bifet. 2017. A survey on ensemble
learning for data stream classification. ACM Comput. Surv. 50, 2, Article 23 (March 2017), 36 pages.

DOTI: http:/dx.doi.org/10.1145/3054925

Gomes, Heitor Murilo, et al. "A survey on ensemble learning for data stream classification."
ACM Computing Surveys (CSUR) 50.2 (2017): 1-36.
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Outline

e Case Studies
 Online Label Shift

 Online Covariate Shift

Peng Zhao (Nanjing University)

22



Two Case Studies

We will showcase that properly deploying online ensemble can
etfectively resolve several important online learning problems.

labeled data initial model wo dataatt =1 dataatt = 2 dataatt =3 \
oono . . o~ - learning
— [=]=]=| e N RGN P t models
A i ¥ : A \
— )\ — —
@m= :\ |” W]' '\ r” 2 '\___ 1~ W3
= S o~ o, o~ s~ 2 unlabeled
. data

, o ) ] T rounds

Offline Initialization Stage \_ Online Adaptation Stage

[ Label Shift: piain(y) # Prest(y); but Pain (X|Y) = Prest(X[y)
U Covariate Shift: pirajn(X) # Drest(X); but Perain (V%) = Prest (¥[X)

Peng Zhao (Nanjing University) 23



Problem Setup: Two-stage model

* Online distribution shift adaptation: a two-stage modeling

labeled data initial model wo /data att =1 dataatt = 2 dataatt =3 N
ooo o w learning
,--.’_\"’—\\ f_"’_."‘-,"‘\- ,’-"’ L \‘\
— [=]=]"] y y y \l_w _(1 ]‘_ models
= r AW L2 M
[[I]E L S e s~ ? unlabeled
i i data

. o _ ] T rounds

Offline Initialization Stage \_ Online Adaptation Stage

@ Initialization: train an initial model with offline training data

@ Online adaptation: adapt to sequential distribution shift with unlabeled test data stream.

Peng Zhao (Nanjing University) 24



Problem Setup: Initialization Stage

labeled data initial model wo /data att =1 dataatt =2 dataatt = 3 \
goo PP P I W learning
— [=]=]=] ,4” '\1 " ’4,’ \1_ w -:1’ \,‘_ w models
g — ; AW 3 % 2 ; > 3
[[']E \_\k oy L x,”,' Rl ? unlabeled
7 il N data
_ o . ] T rounds
Offline Initialization Stage \_ Online Adaptation Stage

* Fixed distribution D,
* Sufficient labeled data S,

@ Initialization: train an initial model with offline training data

Peng Zhao (Nanjing University) 25



Problem Setup: Adaptation Stage

labeled data initial model wo /data att =1 dataatt =2 dataatt = 3 \
goo PP P I W learning
— [=]=]=] ,4” '\1 " ’4,’ \1_ w -:1’ \,‘_ w models
E — ; AW 3 % 2 ; > 3
[[I]E \_\k oy L x,”,' Rl ? unlabeled
7 il N data
_ o . ] T rounds
Offline Initialization Stage \_ Online Adaptation Stage

@ # w submit the model
: w; e W

learner underlying distribution D, changes over time - @

underlying distribution D; changes over time

environment

g # * observe the unlabeled data {xn}i\l]”=1

 update the model w;,; for the time t + 1

learner

@ Online adaptation: adapt to sequential distribution shift with unlabeled test data stream.

Peng Zhao (Nanjing University) 26



Connection to offline setting

labeled data initial model wq / \

dataatt =1 dataatt = 2 dataatt =3
oono . P W learning
— [=[=]=] 2T amiiia, A models
i : i = 2 -
E?ﬂF { S Al 2 T W3
= \“‘~—k et Sy et B ? unlabeled
) dat
. o : . . T rounds o
Offline Initialization Stage \_ sequentially changing environments Y,
‘ an “online” version
Domain Adaptation
4 00 previous works focus on the
o0 /B “one-step” adaptation
0 N
Q. .
e B whereas now we consider a
— > . . continuous one
training data fixed test environments

Peng Zhao (Nanjing University) 27



Performance Measure

labeled data initial model wo /data att =1 dataatt = 2 dataatt = 3 \
ooo . o S W learning
— [=]=]=] RN R N s s models
/‘l ? 1 ,-‘l 1\ ’l ]\

% = . AW N W2 W3

[[I]E e e s, et ? unlabeled
7 B N data

_ o . ] T rounds

Offline Initialization Stage \_ Online Adaptation Stage

First, to measure the cumulative risk of the online models {w;}{_,,

T T
Z Ry(wy) = Z E (x.)~p, L(W, X, )],
t=1

t=1

where /(-,-) is a certain loss function and risk R:(w.) measures the averaged error
of the model w; over the distribution D;

Peng Zhao (Nanjing University) 28



Performance Measure

labeled data initial model wo /data att =1 dataatt =2 dataatt = 3 \
goo PP P I W learning
— [=]=]=] ,4” '\1 " ’4,' \1_ w -:1’ \,‘_ w models
E — N AW 1 % 2 ; > 3
[[']E \_\k oy L x,”,' Rl ? unlabeled
7 il N data
_ o . ] T rounds
Offline Initialization Stage \_ Online Adaptation Stage

Goal: minimize the dynamic regret defined over the expected risk,

T T
D-Regret = Z Ry(wy) — Z Ri(wy)
=1l

t=1

where w; € arg min, ., R:(w) is the Bayes optimal classifer within the model class W.

Peng Zhao (Nanjing University) 29



Case 1: Online Label Shift

e [Label Shift Condition

» Label-conditional input density is unchanged Do(x|y) = Di(x|y)
* Change happens on the label distribution Dy (y) # Do(y)
0.6 - 0.6 :
time 0 m= Do (y = +1[x) time ¢t i— Dy(y = +1[x)
“Doly = —1x) i Di(y = —1|x)
0.4 i optimal
. | classifier
optimal :
classifier 0.2 /\
e L | | N
2 a4 99T S50 2 2

Label shift changes the optimal boundary!

Peng Zhao (Nanjing University) 30



Deploying Online Ensemble to OLS

* Challenge 1: Lack of Supervision

There is NO label information available in the online adaptation stage.

- establish an unbiased risk estimator R,(w) to evaluate the
quality of the model with Sy and S;

Ry (W) = Z?-lEEXNDO(Xy:k’) [f(WTX, k)ﬂ%t@ = k)} (label shift condition)

-~
. »10)
[ =R} (w)
So = {xn, yn}gil ~ Dy risk for each class - label distribution at time t
oon = .
— |=]=]s] ~ 1 = Black-box label _
EA » Ry(w) = W Z Cwixn k) || s . shift estimator De(y = k)
— 0 xn €S A \
dI= m @
— \-\—\__/“

Accessible with the offline labeled data S,. Estimated with the S, and unlabeled data S; at time t.
Peng Zhao (Nanjing University) 31



Deploying Online Ensemble to OLS

* Challenge 1: Lack of Supervision

There is NO label information available in the online adaptation stage.

- establish an unbiased risk estimator R,(w) to evaluate the
quality of the model with Sy and S;

Ry (W) = Z?-lEEXNDO(Xy:k’) [f(WTX, k)ﬂ%t@ = k)} (label shift condition)

J/

N

;=R (w)

Estimator R,(w)=E, Riw) D,(y=4k) 1S unbiased.
E[Re(w)] = Ri(w),

which guarantees that we can use R.(w) to evaluate the model

Peng Zhao (Nanjing University) 32



Deploying Online Ensemble to OLS

» Based on the feedback model R, (w), we can update the model

OGD update: w.; =1l |:Wt — VR, (Wt)}

Online Gradient Descent (OGD)

Wit1 = arg ming, -y,

<V}A2t(wt),w — W)

"loss" on new data

_|_

1

lw — w13

distance to
previous model

The step size n controls the “amount” of previous information used

https://www.nature.com/articles/s41534-017-0043-1

Peng Zhao (Nanjing University)
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Deploying Online Ensemble to OLS

» Based on the feedback model R, (w), we can update the model

Online Gradient Descent (OGD)

| - nRE
Wiy — arg mlnw€W<VRt(Wt)7W — Wt> -+ _HW - WtHg

(5&&35‘1'?'“{:!l

distance to

1} n
loss” on new data previous model

. “ 77 . . .
The step size 1 controls the “amount” of previous information used https://www.nature.com/articles/s41534-017-0043-1

* Observation: choice of the step size 1 matters a lot!

v' Slow change: small size to keep close to previous model | () xnown shift intensity of environments!

v' Fast change: large step size to focus on the new data more Update model fast or slowly?

Peng Zhao (Nanjing University) 34



Deploying Online Ensemble to OLS

» Based on the feedback model R, (w), we can update the model

OGD update: w; =1l [Wt—l — VR, (Wt—l)]

1 T
<C’)<77T—|— —I-\/VT ),
Ui n

where V/ = Zthg lm,, — w,, |l measures the intensity of the label distribution shift.

Theorem 1. UOGD update in above with step size 7 enjoys

T

ZRt Wt Z Wt)

E |D-Regret,|

1 2 1 1
I::> minimax optimal O (VT? T§> when setting an optimal step size n* = O(1T~3V,?)

Peng Zhao (Nanjing University) 35



Deploying Online Ensemble to OLS

Unknown shift intensity of environments!

* Challenge 2: Unknown shift intensity Vindlrs il ot o el
pdate model fast or slowly:

base-algorithm &

online ensemble framework

771 7]2 o .TIN— 77
gL

- meta-algorithm &

Multiple OGDs learning with different step sizes

Wil = Hwew [Wt,i — nivjét (Wt,i)] .

Combining base-algorithms by an adaptive weight p,

N
|:> Wi = Zpt,i * Wy =1
i=1 Dt.i X €xXp <EZRS(W3,7;>>

s=1

Peng Zhao (Nanjing University) 36



Deploying Online Ensemble to OLS

Unknown shift intensity of environments!

* Challenge 2: Unknown shift intensity Vindlrs il ot o el
pdate model fast or slowly:

base-algorithm &

online ensemble framework

@ @ @ @ Multiple OGDs learning with different step sizes
2 ”.”N” wWit1i = Hwew {Wt,q; —1; V Ry (Wt,i)} :
o

meta-algorithm &

N Combining base-algorithms by an adaptive weight p,
|:> Wi = Zpt,i "Wt -1
i=1 Pti X €Xp (GZRS(WS’Z))
s=1

* By a careful setting of the candidate step sizes, we can ensure that there exists a base-
learner that is trained with a near-optimal step size
* Our meta-algorithm can identify the best base-learner with a low cost.

Peng Zhao (Nanjing University) 37



Theoretical Guarantee

* Our algorithm for online label shift enjoys an optimal dynamic regret.

Theorem 2. Set the step size pool as

T'o :
H=1mn = 27l e [N ,
{” oo L el ]}

where N = 1 + [ log,(1 + 27')] is the number of base-learners. ATLAS ensures that

)

O(log T') base-learners

wnN

E [D-Regret,| < O (VT%T

for non-degenerated cases of Vi > O(T~2).

Peng Zhao (Nanjing University) 38



Experiments

* [llustration 1: meta-algorithm can adaptively track the suitable step sizes.

Step Size (n): MO0.1 W0.2 W0.4 0.8 1.6 3.2 64 128

1.04 1.0 1.0+

nt

0.8 @ 0.8

nment
m

B
0.6+ 20.6- £20.6-
3 8

e o o =
> @ m o

S04 Z 0.4 Z 0.4
£
To.2 0.2 £oz
o . BN = o M | .
007750 10! 102 107 0-0-70 10t 10?10 0-077 g0 10" I R R 00700 10! S12 0 10?

Iterations Iterations Iterations Iterations

ight
ight As:

Weight Assignment
o
o

(a) Linear shift (b) Bernoulli shift (c) Square shift (d) Sine shift

Figure 1: Weight assigned of the ATLAS algorithm for each step size along the learning process. Different
colors are used to indicate different step sizes.

* Illustration 2: ATLAS-ADA with hint functions improve over vanilla ATLAS.

Table 2: Average error (%) for ATLAS-ADA with four hint functions under different sample sizes. The best one
is emphasized in bold. Besides, e indicates a better result than vanilla ATLAS without hint (None).

Shift Sample Size: 1 Sample Size: 10 Sample Size: 100
Type None Win Peri Fwd OKM  None Win Peri Fwd OKM  None Win Peri Fwd  OKM
628 #5890 599 e60I] 53501 561 547 543 553 1542 1 544  544T o5381 540 545

M 1021 4026 £029 £0310 £031 11004 1004 £003 £005 3:005 10002 £003] £0021 £0.02 +003
S 6.03 583 527 5881 5071 450 460 385 [PIMTOIOT T 427 468 “e3. 07 ¢335] 346

™ £023 +£024 +£020 +0230+035 1002 £0.02 £004 |£002 [£003 £002 £0.02 =003 £0.03] =0.04
Sin 690 658 659 6431 05251 612 0509 o583 o578 Je586 575 578 553 e5.48] 558

+£022 +022 =025 0261 022 : +0.07 +£006 +£0.05 J1£0.05 1004 £001 £000 +£0.00f £0.0101 £0.00
Ber 555 542 543 5631 «4.69 I 4.39 4.45 443 1366 1373 4.04 4.29 4261 3191 345
+0.09 +011 =£009 =£0.16 Li()_ll‘ +0.10 =008 =+0.10 I;tgl_()_':t 0.06 =007 £006 =£0.06 I_j:_()ﬁu +0.11
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Experiments

B contenders

M our algorithms

Table 3: Average error (%) of different algorithms on various real-world datasets. We report the mean and
standard deviation over five runs. The best algorithms are emphasized in bold. “e” indicates the algorithms that
are significantly inferior to ATLAS-ADA by the paired ¢-test at a 5% significance level. Here AT-ADA represents
ATLAS-ADA (with OKM). The online sample size is set as N: = 10.

Lin Squ

FIX FTH FTFWH ROGD UOGD ATLAS AT-ADA TFIX FTH FTFWH ROGD UOGD ATLAS AT-ADA

ArXiv ¢ 30.28 «28.18 2574 «23.09 21.04 «22.10 21.28 3035 e206.72 ¢28.05 e2444 2196 21.36 20.80
+0.07  +£0.28 +0.21 +0.20  £0.11 +0.09 +0.09 +0.06 +0.39 +0.20 +0.17 +0.07 +0.06 +0.06

FuroSAT ° 14.06 e11.16 e 078 1256 704 o 7.19 7.13 e 1415 1022 ¢1026 e 891 e 730 e 697 6.81
+0.09  +0.11 +0.12  £3.16  F0.11 +0.10 +0.11 +0.11 +0.08 +0.06 +0.05 +0.07 +0.08 +0.06

MNIST * 1.79 e 1.38 e 120 e 125 1.06 1.06 1L.06 o 179 e 126 e 128 e 132 e 113 e 1.04 1.01
+0.02  +£0.03 +0.02  +0.02  40.02 +0.02 +0.02 +0.04 +0.03 +0.04 +0.04  £0.03 +0.02 +0.04

Fashion ° 11.86 o 847 7.84 8.18 795 e 8.36 8.04 1192 e 824 e 835 e 863 e 842 e 8.05 7.73
+0.04  +£0.07 +0.06  +0.07  +0.08 +0.07 +0.08 +0.09 +0.09 +0.07 +0.07 +0.04 +0.07 +0.05

CIFARI0 ° 2077 e17.36 1577 1845 15.54 1577 1562 «20.77 e16.67 ©1672 1740 1629 1518 14.84
’ +0.12  +0.14 +0.12 047  £0.15 +0.11 +0.14 +0.08 +0.12 +0.12 +0.11 +0.09 +0.07 £0.05
CINIC10 ° 33.98 e28.85 2687 3254 26.21 «206.66 26.38 3399 27.99 ¢28.08 2858 27.00 2594 25.56

+0.22 £0.10 +0.13 £259  £0.15 +0.19 +0.16  =0.16  £0.09 +0.08 =0.09 £0.14 +0.13 +0.12

Our method can automatically adapt to continuous label shif+t

* Nearly stationary case (Lin): comparable with method using all previous data

- Highly Non-stationary case (Squ): our algorithm achieves overperforms all contenders
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Experiments

e Sussex-Huawei Locomotion Dataset

35
__30
o\? )
= 25
o
L 201
&
© 15
S
Y o < 107, FTH UOGD
D 3 ] FTFWH = ATLAS
| ROGD ——  ATLAS-ADA
) -- Subway 0 . i i ; ; ; ;
| 0O 1000 2000 3000 4000 5000 6000 7000
L : Iterations
510N /
<L Our methods outperform other algorithms.

0.0 05 E 10 E
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Case 2: Online Covariate Shift

* Covariate Shift Condition

* The input-conditional output density is unchanged:
Do(y [ x) = Di(y | x)

* Change happens on the input distribution D;(x) # Dy(x)

2.5
2.0 2

o timeO
timet

1.5

1.0

label y

0.5
0.0

-0.5

_190.5 0.0 0.5 1.0 1.5 2.0 2.5

feature x
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Importance Weighting

* Learn with unlabeled data by importance weighting

Ry(w) = ey [((w ' x, ) -}
-

D, is the offline data distribution :(x) = 5:C3 is the importance weight

* Can we directly apply the method for online label shift?

Step 1: establish an unbiased risk estimator Step 2: learn with R, (w) by online ensemble

R\t(w) = Zgil[ﬁ(WTmen) - P (X)) » nz nN_1 nN
p_1

where 7 is an importance estimator

No, the importance estimator 7; is hard to be unbiased in general

Peng Zhao (Nanjing University)
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Importance Weighting

* Just train the model by importance-weighted empirical risk
minimization (IWERM):

Wy = argmin, .y R (W),

where Ri(w) =32, [6(w xn,yn) - 7+(x,)] is the empirical risk.

* The quality of the importance estimator ¥ matters

Proposition 2. IW works effectively once the time-varying density ratio

I ! : : : :
can be accurately estimated! importance weight estimation error

- (2 Ry(wy) — ;Rt<wr)> < 5BxBe\/ zln((ﬁ?/ 5>+2§{Z B0l <X>—7“t<X>”}

t=1

Goal

Peng Zhao (Nanjing University)
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Online Density Ratio Estimation

labeled data initial model wo /data att =1 dataatt = 2 dataatt =3 \
So = {Xn. yn}n2s ~ Do . . R _I learning
T {,- il N 4,r-~’ ‘ “‘. ’{"‘ ‘\“ models
— .wx:..;g‘l,‘. "“\; S ! — ,,f"I ‘\“\_; ,-—"J unlabeled
dl= - e = dote
S1={xn}pt; ~ Dy Sy = {x )02 ~ Dy S3 ={xn}n2y ~Ds
Offline Initialization Stage . i
g \ Online Adaptation Stage T roundSy

* How to estimate the time-varying density ratio?

D, (X) is accessible with

= unlabeled online data
Do(x)

e (X)

* learn with single-round data » |S¢| could be very small: high variance!
* learn with all previous data {S;}:_, mp Distribution shift: high bias!

We should learn with "right amount” of historical datal
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Online Density Ratio Estimation

:f't,l

B @ [ | S | B | S el el . . .

Base-algorithm B; (2)

Update the parameter with data on different time intervals
Orr1, = HS“ [gm — ’YAt_,ilvat(é\t?i)] :

where L;(0) is the loss function only established on S; and S,,.

Meta-algorithm E

Aggregate the base-algorithms model by wei 0, = D ek pt,iét,z’-
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Overall Algorithms

Y
>

Time t=1 t=2 =3 t=4 t=5 t=6.¢t=7 t=8 (=9

B. @ 1 I T / -Ee” 1l

B: @ 1 I ///?é*"‘ 1L

o |

NE zl gt =2 Pe.i gt,i .
Importance-weighted (IW) ERM
online estimation of time- varying density ratio Wy = arg ming, oy R (w),

Classifier w; ‘

Theorem. Use the logistic regression-based density ratio estimation model.
With probability at least 1 — §, running IWERM with the estimated density

ratio function 7¢(x) yields similar bound as the label shift case

% (ZRt(Wt) _ZRt(wj)) < [(5(]\%_% + max {T_%VT%JT_% )J

Goal

where Vi = 7 |Dy(x) — Dy_1(x)|); is the variation of input densities
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Experiments

FIX OLRE KMM, uLISE KLIELDANN
0.45 : . . ‘ .
FIXED IW-uLSIF
IW-KMM -—€*—()LPUE )»
0.4, IW-KLIEP —g— Accous _

Average Error (%)

0-25 1 L 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900

Time

Figure 4.5: Average error on Yearbook dataset with ‘@‘ .& Dél ‘a 6 é e @

real-life covariate shift

Average images of high school students for each decade of the 20th century.

T rounds online data S;
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Online Label Shift vs Covariate Shift

* Same algorithmic principle: the online ensemble framework

* Different instantiations
* online label shift: ensembling base learners with different step sizes

@ @ - @ @ base-algorithm &

1 2 M- N

: ! : Multiple OGDs learning with different step sizes
P

Witl,: = IIW [Wt,i i ;j\zt (Wt,i)} .
W, = g Dti - Wi
. t P tyi b

* online covariate shift: ensembling base learners with different time intervals

> ,
P base-algorithm@

Update parameter with data on different time intervals

Ori1,0 = Hé“ [67:52 - ’)’AZ'}VE%(@;J)] )

where L;(8) is the loss function only established on S, and S,.
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More extensions: New Class
* We investigate New class in Online Label Shift (N-OLS):

P %, &(é’a o Q,o . TO* : Known viruses

(o2 S i |

5; f ":New virus

o X O 0 ﬁi"*

'\ 7\
/ —/ >

Jan. Mar. May.

Example: a disease diagnosis task

> label distribution changes; » new class data appear;

These above two challenges may take place simultaneously.
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Problem Formulation

. O L] . - . . r L . w
crown dasses Offline Initialization Online Adaptation » 0@ o
nown classes new class || unlabeled data
t=0 = t=2 t=3
O J, ‘ O \( A D ' 'O \( ,—l, O {} \( see
. O Wy ) L O 3 W, . y W3 d G _/I_ w3 )
. l"\ e < ,{:}.-_" AT
< o T round
{xi,yi}i21 ~ Do . {xi}i2y ~D1 A (x}2, ~Do gum = {x:}2 ~Dsall )

Two challenges take place simultaneously, with only unlabeled data.
> label distribution changes;

» new class data appear.
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Unbiased Risk Estimator

Ry(w) = 6: 32, [y ]; RO (W) + Es, [e(wine)] = 6: 3% [y, ]; Bg [£(w;ne)].

» Estimating Proportion for Known Classes Data Hy,:

S _ C_ 1 - = ST §k
Ky, = Cg vy, .," O o l\ + 3 / ,|  distribution
LB Wo > IA'] of known classes
ne @)
{X‘i}i:?l ~ Dy

Black Box Shift Estimator (BBSE)

 Estimating Proportion for New Classes Data 0y

r
u 1 1 1 'l -
¢ = argminq () -+ Ll ( og(4 og(4 ) NN ,’ \J 4

N\
cel0,1] ap(c)  gp(c) Swin 250 p 12 \‘_/ A\ R @) E A -
distribution of reweighted distribution distribution of
~ unlabeled data of known classes the new class
—> 0 = qu(0)/4(?)
t = Qu dp Sliding-window Mixture Proportion Estimation

Leverage online unlabeled and offline labeled data to estimate distribution.
Peng Zh



Deploying Online Ensemble

Next: explore online ensemble to robustly update the model;
* Maintain multiple learning rates;
* Combine multiple models with various learning rates in a weighted fashion.

base learners: % nw

meta learner: our novel
risk estimator

* Each base learner excel in handling different shift intensities: wi = Iy [Wi — 777; (ng)}

« A is employed to obtain the final model: W¢ = Zi\le pi W
Very few (logarithmic order) base learners is needed to achieve robustness.
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Theoretical Guarantee

The performance measure is the dynamic regret:

T T
D-Regret, = Z Ry(wy) — Z Ri(wy)
=1

t=1

i.e., difference between cumulative expected risk of predictive models {wt}thl and {W;F}tT:l.

Theorem 1. Suppose the loss function is convex w.r.t. any model w € W, and confusion

matrix Cy is invertible. Set the step size pool as H = {n; = v (”;H)T 2071 | 4 e [N]},

where N =1+ |1 log,(1 + 27')| is the number of base-learners. Our method ensures that

E [Reg‘%} <0 (V;/ 3T2/3)

where Vi = Z’f:z |De(y) — Di—1(y) ||, measures the intensity of label shift.
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Experiments

Two real-world applications: human locomotion & satellite image

TABLE II: Average error (%) of different algorithms on the real- » jz ;\525' Tue —— Estimated
world applications of SHL [14] and fMoW [15] datasets. The @ g+ S0 5%
performance metrics reported include both the mean accuracy and| | £ Ses: §1s-
the standard deviation of different algorithms over five separate runs., @ g, 2] = ol
g FIX KNNENS g 551 FIX KNNENS ©
FIX FIFWH ASL SENC-F KNNENS SelfN PULSE HANOL 210 e pdree 250 i pert S s
SHI, 4732 4321 4078 4022 4123 4125 3819  36.81 SENCF  —— HANOL it SENCF  — HANOL 2 ,
+1.05 £1.67 142 £1.55 +1.81 +£1.12  £1.61 +1.32 % 100 200 300 400 500 600 700 405 200 400 600 800 1000 % 100 200 300 400 500 600 700
MMow 7315 6938 6954 68387 6923 7037 6632  63.16 Iterations tterations tterations
£330 £264 £213 4334 +181 4284 +271 4301 (a) accuracy curve on SHL (b) accuracy curve on fMoW (c) new class estimation on SHL
64
o Validate the effici
FANoL alidate the efficiency:
62
o
S 611
>
U 60
o
3 SENC-F L] L] L[] L[]
3 59 +AL5+ Albeit with a slight compromise on
< 58 KNNENS
57, efficiency (owing to ensemble),
56 FTFWH

S T o i 160 180 350 %o our method attains the best performance.
Efficiency (item/s)
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Conclusion

* Online Ensemble: an effective theoretical framework (base learners;
meta learners; schedule) to handle uncertainty in online environments

* Non-stationary online learning: online ensemble for dynamic regret

* build on online convex optimization, optimal dynamic regret guarantees
* Online Label Shift, Online Covariate Shift, New Classes

* other results: online RL, online control, game theory, etc.
* Beyond non-stationarity: a general framework to handle uncertainty.

* Many todo: efficiency? continual learning? Unlearning? ...

Thanks!
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