

SCHOOL OF ARTIFICIAL INTELLIGENCE, NANJING UNIVERSITY

Provable Efficiency in Online RL:

Function Approximation and RLHF

Peng Zhao

School of Artificial Intelligence

Nanjing University

April 29, 2025 @ NUS

Outline

- Background
- RL with Function Approximation
- RL with Human Feedback
- Conclusion

Peng Zhao (Nanjing University)

Outline

• Background

• RL with Function Approximation

• RL with Human Feedback

Conclusion

Reinforcement Learning

• RL has achieved great success in many applications

Games

Automatic Driving

Control

Large Language Models

Reinforcement Learning

• RL offers a principled framework for sequential decision making in *unknown* and *interactive* environments.

Supervised learning

- labeled data passively collected in advance
- minimize the cumulative loss (e.g., ERM)
- learning from examples

Reinforcement Learning

- agent actively interacts with the environment
- learning from feedback (rewards) to improve future behavior (doing right action).
- learning by trial-and-error

Reinforcement Learning

• (Two of) key techniques in this wave of RL success:

(ii) RL from human feedback

Reinforcement Learning from Human Feedback (RLHF)

Challenges: Efficiency

Goal: *statistically* and *computationally* efficient algorithm with provable guarantee.

Li, Z, Zhou. Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation. NeurIPS 2024.
 Li, Qian, Z, Zhou. Provably Efficient RLHF Pipeline: A Unified View from Contextual Bandits. Arxiv, 2502.07193.

Background

- RL with Function Approximation
- RL with Human Feedback

Conclusion

RL and MDPs

Infinite-horizon MDPs

infinite steps

RL and MDPs

RL and MDPs

- S: state space, here we consider finite |S|.
- A: action space, here we consider finite |A|.
- $\mathbb{P}_h : S \times \mathcal{A} \times S \rightarrow [0, 1]$, transition probability.
- $r_h : S \times A \rightarrow [0, 1]$, reward function.

- Stochastic policy: $a \sim \pi(s)$ for $\pi : S \to \Delta(A)$.
- * Planning: given a fully specified MDP.
- * Learning: unknown transition or reward.

Peng Zhao (Nanjing University)

Online MDPs

Online Episodic MDPs

For each episode $k = 1, \ldots, K$:

• For each stage $h = 1, \ldots H$:

 $V_{h}^{\pi}(s) = \mathbb{E}_{\pi} \left| \sum_{l'=1}^{n} r_{h'}(s_{h'}, a_{h'}) \mid s_{h} = s \right|$

 $Q_h^{\pi}(s,a) = r_h(s,a) + \sum_{i} \mathbb{P}_h(s' \mid s,a) V_{h+1}^{\pi}(s')$

- Learner observes state $s_{k,h}$, execucts action $a_{k,h} \sim \pi_{k,h}(\cdot|s_{k,h})$, obtains reward $r_h(s_{k,h}, a_{k,h})$.
- Learner transits to next state $s_{k,h+1} \sim \mathbb{P}_h(\cdot \mid s_{k,h}, a_{k,h})$.

$$\operatorname{Regret}_{K} = \max_{\pi \in \Pi} \sum_{k=1}^{K} V_{k,1}^{\pi}(s_{k,1}) - \sum_{k=1}^{K} V_{k,1}^{\pi_{k}}(s_{k,1})$$

to learn as well as the **best** policy in hindsight

Focus on *known reward* and *unknown transition* as learning reward is no harder than transition.

Challenge of Large-scale MDPs

ALLISON NANLING UNITIN

□ How to design RL algorithm to handle *large-scale* MDPs ?

Figure 1 We discover through

experience that this state is bad

In tabular methods, we know nothing about this state.

Figure 2

We know **nothing** about this state either!

Figure 3

□ **Tabular MDPs**: usually maintain a table to store values for all states (or state-action pairs), which scales with state number *S* and action number *A*.

Challenge of Large-scale MDPs

□ How to design RL algorithm to handle *large-scale* MDPs ?

Theorem (Jin et al., NeurIPS 2018). Without any further structural assumption, the expected regret of any algorithm for episodic MDPs must be at least $\Omega(\sqrt{SAH^3K})$.

but in fact Figure 1 and 3 are very similar...

Function Approximation

□ Function approximation: approximate using a parameterized function.

- Describe states (or state-actions) using feature representations in \mathbb{R}^d .
- A modern choice: DNN as a feature representer

parameterize MDP model with a low-dimensional representation

regret bound should not dependent on S or A, but rather the intrinsic dimension d

Function Approximation

Linear Function Approximation

$\phi(s'|s, a)$ is the known feature map, and $\theta_h^* \in \mathbb{R}^d$ is unknown parmmeter to estimate

• Linear mixture MDPs [Ayoub et al., 2020]: $\mathbb{P}_h(s'|s, a) = \phi(s'|s, a)^\top \theta_h^*$

• Linear / low-rank MDPs [Jin et al., 2020]: $\mathbb{P}_h(s'|s,a) = \phi(s,a)^\top \mu^*(s'), r_h(s,a) = \phi(s,a)^\top \theta_h^*$

linearity is hard to satisfy in practice!

Function Approximation

Linear Function Approximation

- Linear mixture MDPs [Ayoub et al., 2020]: $\mathbb{P}_h(s'|s, a) = \phi(s'|s, a)^\top \theta_h^*$
- Linear / low-rank MDPs [Jin et al., 2020]: $\mathbb{P}_h(s'|s,a) = \phi(s,a)^\top \mu^*(s'), r_h(s,a) = \phi(s,a)^\top \theta_h^*$

linearity is hard to satisfy in practice!

General Function Approximation

- Eluder dimension [Russo and Roy, 2013, Jin et al., 2021]
- Decision-Estimation Coefficient (DEC) [Foster et al., 2021]
- Admissible Bellman Characterization (ABC) [Chen et al., 2023]

usually no computationally efficient algorithms provided

Technically, this "linear" MDP parametrization arises because it can be reduced to and solved by *stochastic linear bandits*, which is well-understood.

computationally efficient beyond linearity?

[•]

MNL Function Approximation

❑ A new class: Multinomial Logit (MNL) function approximation [Hwang and Oh, 2023]

Key Challenge: non-linearity

NANLING UNITUR

Linear mixture MDPs: $\mathbb{P}_h(s'|s,a) =$

$$\mathbb{P}_h(s'|s,a) = \phi(s'|s,a)^\top \theta_h^*$$

MNL mixture MDPs:

$$\mathbb{P}_{h}(s' \mid s, a) = \frac{\exp\left(\phi\left(s' \mid s, a\right)^{\top} \boldsymbol{\theta}_{h}^{*}\right)}{\sum_{\widetilde{s} \in \mathcal{S}_{h,s,a}} \exp\left(\phi\left(\widetilde{s} \mid s, a\right)^{\top} \boldsymbol{\theta}_{h}^{*}\right)}$$

Softmax Function

Regularity assumption:

 $\inf_{\theta \in \Theta} p_{s,a}^{s'}(\theta) p_{s,a}^{s''}(\theta) \ge \kappa$

where
$$p_{s,a}^{s'}(\theta) = \frac{\exp(\phi(s'|s,a)^{\top}\theta)}{\sum_{\tilde{s}\in\mathcal{S}_{s,a}}\exp(\phi(\tilde{s}|s,a)^{\top}\theta)}$$

Define $U = \max_{(h,s,a)} S_{h,s,a} \Rightarrow \kappa \le 1/U^2$. in the worst case, $\kappa^{-1} = \Omega(S^2)$

Main Results

□ The *first* statistically and computationally efficient algorithm

Algorithm 1: Independent of κ^{-1} in the dominant term;

Algorithm 2: based on Algorithm1, further achieve efficient time & storage cost.

□ The *first* lower bound for this problem

Reference	Model	Upper Bound	Lower Bound
Zhou et al. $[2021]$	Linear mixture MDP	$\widetilde{\mathcal{O}}(dH^{3/2}\sqrt{K})$	$\Omega(dH^{3/2}\sqrt{K})$
Hwang and Oh $[2023]$	MNL mixture MDP	$\widetilde{\mathcal{O}}(\kappa^{-1}dH^2\sqrt{K})$	_
Our work	MNL mixture MDP	$\widetilde{\mathcal{O}}(dH^2\sqrt{K}+\kappa^{-1}d^2H^2)$	$\Omega(dH\sqrt{K})$

Match the results for linear mixture MDPs except for the dependence on H.

in the worst case, $\kappa^{-1} = \Omega(S^2)$

Algorithm: A Pipeline for UCB

(Upper Confidence Bound)

- Parameter estimation
- Confidence region construction
- UCB arm selection

 $\mathbb{P}_{h}(s' \mid s, a) = \frac{\exp\left(\phi\left(s' \mid s, a\right)^{\top} \boldsymbol{\theta}_{h}^{*}\right)}{\sum_{\widetilde{s} \in \mathcal{S}_{h,s,a}} \exp\left(\phi\left(\widetilde{s} \mid s, a\right)^{\top} \boldsymbol{\theta}_{h}^{*}\right)}$

Parameter Estimation

• Maximum likelihood estimation (MLE)

$$\widehat{\theta}_{k,h} = \underset{\theta \in \mathbb{R}^d}{\arg\min} \left\{ \sum_{i=1}^{k-1} \sum_{s' \in \mathcal{S}_{i,h}} -y_{i,h}^{s'} \log p_{i,h}^{s'}(\theta) + \frac{\lambda_k}{2} \|\theta\|_2^2 \right\} \triangleq \mathcal{L}_{k,h}(\theta)$$

$$\xrightarrow{\mathfrak{S}_1} \cdots \xrightarrow{\mathfrak{S}_1} \cdots \xrightarrow{\mathfrak{S}_1} \cdots \xrightarrow{\mathfrak{S}_2} \cdots \xrightarrow{\mathfrak{S}_$$

• Estimation error analysis: with probability at least $1 - \delta$, [Hwang and Oh, 2023]

Parameter Estimation

• Maximum likelihood estimation (MLE)

$$\widehat{\theta}_{k,h} = \underset{\theta \in \mathbb{R}^d}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{k-1} \sum_{s' \in \mathcal{S}_{i,h}} -y_{i,h}^{s'} \log p_{i,h}^{s'}(\theta) + \frac{\lambda_k}{2} \|\theta\|_2^2 \right\} \triangleq \mathcal{L}_{k,h}(\theta)$$

$$\xrightarrow{\mathfrak{S}_1} \cdots \xrightarrow{\mathfrak{S}_1} \cdots \xrightarrow{\mathfrak{S}_1} \cdots \xrightarrow{\mathfrak{S}_1} \cdots \xrightarrow{\mathfrak{S}_2} \cdots$$

• Estimation error analysis: with probability at least $1 - \delta$, [Li-Zhang-Z-Zhou, 2024]

$$\begin{aligned} \mathcal{G}_{k,h}(\theta) &= \sum_{i=1}^{k-1} \sum_{s' \in \mathcal{S}_{i,h}} \left(p_{i,h}^{s'}(\theta) - y_{i,h}^{s'} \right) \phi_{i,h}^{s'} + \lambda_k \theta, \\ \mathcal{H}_{k,h}(\theta) &= \sum_{i=1}^{k-1} \sum_{s' \in \mathcal{S}_{i,h}} \dot{p}_{i,h}^{s'}(\theta) \phi_{i,h}^{s'} \left(\phi_{i,h}^{s'} \right)^\top + \lambda_k I \end{aligned}$$

$$\left\| \mathcal{G}_{k,h}(\theta_h^*) - \mathcal{G}_{k,h}(\widehat{\theta}_{k,h}) \right\|_{\mathcal{H}_{k,h}^{-1}(\theta_h^*)} \le \sqrt{d \log(kH/\delta)}$$

independent of κ^{-1} !

essentially "variance-aware" local norm

Confidence Region + UCB selection

Confidence region construction

• UCB arm selection

$$\widehat{Q}_{k,h}(s,a) = \left[r_h(s,a) + \max_{\theta \in \widehat{\mathcal{C}}_{k,h}} \sum_{s' \in \mathcal{S}_{h,s,a}} p_{s,a}^{s'}(\theta) \widehat{V}_{k,h+1}(s') \right]_{[0,H]} \qquad \widehat{V}_{k,h}(s) = \arg\max_{a \in \mathcal{A}} \widehat{Q}_{k,h}(s,a)$$

$$\widehat{\mathcal{C}}_{k,h} = \left\{ \theta \in \Theta \mid \left\| \mathcal{G}_{k,h}(\theta) - \mathcal{G}_{k,h}(\widehat{\theta}_{k,h}) \right\|_{\mathcal{H}_{k,h}^{-1}(\theta)} \leq \widehat{\beta}_k \right\}$$
Greedy policy:
$$a_{k,h} = \arg\max_{a \in \mathcal{A}} \widehat{Q}_{k,h}(s_{k,h},a)$$

Theorem 1. For any $\delta \in (0, 1)$, with probability at least $1 - \delta$, our algorithm ensures: $\operatorname{Regret}_{K} \leq \widetilde{O}\left(dH^{2}\sqrt{K} + \kappa^{-1}d^{2}H^{2}\right)$

The first algorithm with optimal regret without dependence on κ (in dominating term).

Computational Challenge

• MLE estimator: Computational and storage cost at episode k is O(k) !

$$\widehat{\theta}_{k,h} = \underset{\theta \in \mathbb{R}^d}{\operatorname{arg\,min}} \mathcal{L}_{k,h}(\theta) \triangleq \sum_{i=1}^{k-1} \sum_{s' \in \mathcal{S}_{i,h}} -y_{i,h}^{s'} \log p_{i,h}^{s'}(\theta) + \frac{\lambda_k}{2} \|\theta\|_2^2$$

• UCB selection: Feasible domain can be *non-convex* !

$$\widehat{Q}_{k,h}(s,a) = \begin{bmatrix} r_h(s,a) + \max_{\theta \in \widehat{\mathcal{C}}_{k,h}} \sum_{s' \in \mathcal{S}_{h,s,a}} p_{s,a}^{s'}(\theta) \widehat{V}_{k,h+1}(s') \end{bmatrix}_{[0,H]}$$

$$\widehat{\mathcal{C}}_{k,h} = \left\{ \theta \in \Theta \mid \left\| \mathcal{G}_{k,h}(\theta) - \mathcal{G}_{k,h}\left(\widehat{\theta}_{k,h}\right) \right\|_{\mathcal{H}^{-1}_{k,h}(\theta)} \leq \widehat{\beta}_k \right\}$$

Online Mirror Descent

• OMD is a powerful online learning framework to optimize regret.

Ad

$$\mathbf{x}_{t+1} = \underset{\mathbf{x}\in\mathcal{X}}{\operatorname{arg min}} \left\{ \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \mathcal{D}_{\psi}(\mathbf{x}, \mathbf{x}_t) \right\}$$

where $\mathcal{D}_{\psi}(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$ is the Bregman divergence.

$$\widetilde{\theta}_{k+1,h} = \operatorname*{arg\,min}_{\theta \in \Theta} \left\{ \left\langle \nabla \ell_{k,h}(\widetilde{\theta}_{k,h}), \theta - \widetilde{\theta}_{k,h} \right\rangle + \frac{1}{2\eta} \left\| \theta - \widetilde{\theta}_{k,h} \right\|_{\widetilde{\mathcal{H}}_{k,h}}^2 \right\}$$

where $\widetilde{\mathcal{H}}_{k,h} = \eta H_{k,h}(\widetilde{\theta}_{k,h}) + \sum_{i=1}^{k-1} H_{i,h}(\widetilde{\theta}_{i+1,h})$

A Summary of OMD Deployment

• Our previous mentioned algorithms can all be covered by OMD.

	Algo.	OMD/proximal form	$\psi(\cdot)$	η_t	Regret_T			
	OGD for convex	$\mathbf{x}_{t+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \left\ \mathbf{x} - \mathbf{x}_t \right\ _2^2$	$\ \mathbf{x}\ _2^2$	$\frac{1}{\sqrt{t}}$	$\mathcal{O}(\sqrt{T})$			
	OGD for strongly c.	$\mathbf{x}_{t+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \left\ \mathbf{x} - \mathbf{x}_t \right\ _2^2$	$\ \mathbf{x}\ _2^2$	$\frac{1}{\sigma t}$	$\mathcal{O}(\frac{1}{\sigma}\log T)$			
	ONS for exp-concave	$\mathbf{x}_{t+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \left\ \mathbf{x} - \mathbf{x}_t \right\ _{A_t}^2$	$\ \mathbf{x}\ _{A_t}^2$	$\frac{1}{\gamma}$	$\mathcal{O}(\frac{d}{\gamma}\log T)$			
	Hedge for PEA	$\mathbf{x}_{t+1} = \operatorname*{arg min}_{\mathbf{x} \in \Delta_N} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \mathrm{KL}(\mathbf{x} \ \mathbf{x}_t)$	$\sum_{i=1}^{N} x_i \log x_i$	$\sqrt{\frac{\ln N}{T}}$	$\mathcal{O}(\sqrt{T\log N})$			
vanced Optimization (Fall 2024) Lecture 6. Online Mirror Descent 6								

More details of OMD can be found in Lecture 6 of Advanced Optimization Course 2024 Fall <u>https://www.pengzhao-ml.com/course/AOpt2024fall/</u>

We here use OMD as a statistical estimation tool!

OMD as Statistical Estimator

• Replace MLE with Online Mirror Descent (OMD) inspired by [Zhang and Sugiyama, NeurIPS' 23]

$$\begin{split} \textbf{MLE} \qquad & \widehat{\theta}_{k+1,h} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^{d}} \sum_{i=1}^{k} \sum_{s' \in \mathcal{S}_{i,h}} -y_{i,h}^{s'} \log p_{i,h}^{s'}(\theta) + \frac{\lambda_{k}}{2} \|\theta\|_{2}^{2} \\ & \triangleq \ell_{i,h}(\theta) \\ & \underline{\theta}_{k+1,h} = \operatorname*{arg\,min}_{\theta \in \Theta} \left\{ \ell_{k,h}(\theta) + \frac{1}{2\eta} \|\theta - \overline{\theta}_{k,h}\|_{\overline{\mathcal{H}}_{k,h}}^{2} \right\}, \qquad \textbf{Still no closed-form} \\ & \underline{\theta}_{k+1,h} = \operatorname*{arg\,min}_{\theta \in \Theta} \left\{ \ell_{k,h}(\theta) + \frac{1}{2\eta} \|\theta - \overline{\theta}_{k,h}\|_{\overline{\mathcal{H}}_{k,h}}^{2} \right\}, \qquad \textbf{Still no closed-form} \\ & \underline{\theta}_{k+1,h} = \operatorname*{arg\,min}_{\theta \in \Theta} \left\{ \ell_{k,h}(\theta) + \frac{1}{2\eta} \|\theta - \overline{\theta}_{k,h}\|_{\overline{\mathcal{H}}_{k,h}}^{2} \right\}, \qquad \textbf{Still no closed-form} \\ & \underline{\theta}_{k+1,h} = \operatorname*{arg\,min}_{\theta \in \Theta} \left\{ \ell_{k,h}(\theta) + \frac{1}{2\eta} \|\theta - \overline{\theta}_{k,h}\|_{\overline{\mathcal{H}}_{k,h}}^{2} \right\}, \qquad \textbf{Still no closed-form} \\ & \underline{\theta}_{k+1,h} = \operatorname{arg\,min}_{\theta \in \Theta} \left\{ \ell_{k,h}(\theta) = \ell_{k,h}(\theta) + \ell_{k,h}(\theta$$

OMD: Estimation Error

$$\widetilde{\theta}_{k+1,h} = \operatorname*{arg\,min}_{\theta\in\Theta} \left\{ \left\langle \nabla \ell_{k,h}(\widetilde{\theta}_{k,h}), \theta - \widetilde{\theta}_{k,h} \right\rangle + \frac{1}{2\eta} \left\| \theta - \widetilde{\theta}_{k,h} \right\|_{\widetilde{\mathcal{H}}_{k,h}}^2 \right\},\,$$

where $\widetilde{\mathcal{H}}_{k,h} = \eta H_{k,h}(\widetilde{\theta}_{k,h}) + \sum_{i=1}^{k-1} H_{i,h}(\widetilde{\theta}_{i+1,h})$ incoporates additional second-order quantity.

can be solved with two steps:

$$\theta_{k+1,h}' = \theta_{k,h} - \eta \mathcal{H}_{k,h}^{-1} \nabla \ell_{k,h} (\theta_{k,h}),$$

$$\widetilde{\theta}_{k+1,h} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \left\| \theta - \widetilde{\theta}_{k+1,h}' \right\|_{\widetilde{\mathcal{H}}_{k,h}}^{2}$$

- ✓ Hessian can be analytically calculated
- ✓ inversion can be easily computed by rank-1 update, $O(d^2)$ complexity

Lemma (Confidence Set). For any
$$\delta \in (0,1)$$
, set $\eta = \frac{1}{2}\log(1+U) + (B+1)$ and $\lambda = 84\sqrt{2}\eta(B+d)$, define
 $\widetilde{C}_{k,h} = \left\{ \theta \in \Theta \mid \left\| \theta - \widetilde{\theta}_{k,h} \right\|_{\mathcal{H}_{k,h}} \leq \mathcal{O}(\sqrt{d}\log U \log(kH/\delta)) \triangleq \widetilde{\beta}_k \right\}.$
Then, we have $\Pr[\theta_h^* \in \widetilde{C}_{k,h}] \geq 1 - \delta, \forall k \in [K], h \in [H].$ independent of $\kappa^{-1}!$

Key Analysis

A general template of OMD estimator:

$$\theta_{t+1} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \left\{ g_t(\theta) + \frac{1}{2\eta} \|\theta - \theta_t\|_{A_t}^2 \right\}$$

where $g_t(\theta)$ is the surrogate loss and A_t is the local norm.

Lemma 1. For OMD estimator, we have

$$\frac{1}{2\eta} \|\theta_{t+1} - \theta_*\|_{A_t}^2 \le \langle \nabla g_t(\theta_t), \theta_t - \theta_* \rangle + \frac{1}{2\eta} \|\theta_t - \theta_*\|_{A_t}^2 - \frac{1}{2\eta} \|\theta_{t+1} - \theta_t\|_{A_t}^2.$$

A proper choice of the local norm A_t and the surrogate loss $g_t(\theta)$ become highly crucial.

Self-concordance of logistic loss & Second-order approximation & Negative regret in OMD

Computational Challenge

• **MLE estimator**: Computational and storage cost at episode k is O(k) !

$$\widehat{\theta}_{k,h} = \underset{\theta \in \mathbb{R}^d}{\operatorname{arg\,min}} \mathcal{L}_{k,h}(\theta) \triangleq \sum_{i=1}^{k-1} \sum_{s' \in \mathcal{S}_{i,h}} -y_{i,h}^{s'} \log p_{i,h}^{s'}(\theta) + \frac{\lambda_k}{2} \|\theta\|_2^2$$

• UCB selection: Feasible domain can be *non-convex* !

$$\widehat{Q}_{k,h}(s,a) = \begin{bmatrix} r_h(s,a) + \max_{\theta \in \widehat{\mathcal{C}}_{k,h}} \sum_{s' \in \mathcal{S}_{h,s,a}} p_{s,a}^{s'}(\theta) \widehat{V}_{k,h+1}(s') \end{bmatrix}_{[0,H]}$$

$$\widehat{\mathcal{C}}_{k,h} = \left\{ \theta \in \Theta \mid \left\| \mathcal{G}_{k,h}(\theta) - \mathcal{G}_{k,h}\left(\widehat{\theta}_{k,h}\right) \right\|_{\mathcal{H}^{-1}_{k,h}(\theta)} \leq \widehat{\beta}_k \right\}$$

Efficient Optimistic Value Function

$$\widehat{Q}_{k,h}(s,a) = \left[r_h(s,a) + \max_{\theta \in \widehat{\mathcal{C}}_{k,h}} \sum_{s' \in \mathcal{S}_{h,s,a}} p_{s,a}^{s'}(\theta) \widehat{V}_{k,h+1}(s') \right]_{[0,H]}, \quad \widehat{\mathcal{C}}_{k,h} = \left\{ \theta \in \Theta \mid \left\| \mathcal{G}_{k,h}(\theta) - \mathcal{G}_{k,h}\left(\widehat{\theta}_{k,h}\right) \right\|_{\mathcal{H}_{k,h}^{-1}(\theta)} \leq \widehat{\beta}_k \right\}$$
non-convex

• Replace maximization with closed-form bonus:

$$\begin{split} \widetilde{Q}_{k,h}(s,a) &= \left[r_h(s,a) + \sum_{s' \in \mathcal{S}_{h,s,a}} p_{s,a}^{s'}(\widetilde{\theta}_{k,h}) \widetilde{V}_{k,h+1}(s') + \underbrace{\epsilon_{s,a}^{\text{fst}} + \epsilon_{s,a}^{\text{snd}}}_{[0,H]} \right]_{[0,H]} \widetilde{V}_{k,h}(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \widetilde{Q}_{k,h}(s,a) \\ \\ \hline \\ \begin{array}{l} \text{Preserve local information effectively!} \end{array} \\ \\ \begin{array}{l} \text{bound the value} \\ \text{difference by} \\ \text{second-order} \\ \text{Taylor expansion} \end{array} \\ \begin{array}{l} \text{Lemma. For any } V : \mathcal{S} \to [0,H] \text{ and } (h,s,a) \in [H] \times \mathcal{S} \times \mathcal{A}, \text{ it holds} \\ & \left| \sum_{s' \in \mathcal{S}_{h,s,a}} p_{s,a}^{s'}(\widetilde{\theta}_{k,h}) V(s') - \sum_{s' \in \mathcal{S}_{h,s,a}} p_{s,a}^{s'}(\theta_{h}^{*}) V(s') \right| \leq \epsilon_{s,a}^{\text{fst}} + \epsilon_{s,a}^{\text{snd}} \\ \\ \text{where} \\ & \epsilon_{s,a}^{\text{fst}} = H \widetilde{\beta}_{k} \sum_{s' \in \mathcal{S}_{h,s,a}} p_{s,a}^{s'}(\widetilde{\theta}_{k,h}) \left\| \phi_{s,a}^{s'} - \sum_{s'' \in \mathcal{S}_{h,s,a}} p_{s,a}^{s'}(\widetilde{\theta}_{k,h}) \phi_{s,a}^{s''} \right\|_{\mathcal{H}^{-1}_{k,h}}, \\ \epsilon_{s,a}^{\text{snd}} = \frac{5}{2} H \widetilde{\beta}_{k}^{2} \max_{s' \in \mathcal{S}_{h,s,a}} \left\| \phi_{s,a}^{s'} \right\|_{\mathcal{H}^{-1}_{k,h}} \\ \end{array}$$

Algorithm and Regret Bound

Algorithm 2 UCRL-MNL-LL

Input: Step size η , regularization parameter λ , confidence width $\tilde{\beta}_k$, confidence parameter δ .

1: Initialization:
$$\mathcal{H}_{1,h} = \lambda I$$
, $\theta_{1,h} = 0$ for all $h \in [H]$.
2: for $k = 1, \dots, K$ do
3: Compute $\widetilde{Q}_{k,h}(\cdot, \cdot)$ in a backward way as in (11).
4: for $h = 1, \dots, H$ do
5: Observe state $s_{k,h}$, select action $a_{k,h} = \arg \max_{a \in \mathcal{A}} \widetilde{Q}_{k,h}(s_{k,h}, a)$.
6: Update $\widetilde{\mathcal{H}}_{k,h} = \mathcal{H}_{k,h} + \eta \mathcal{H}_{k,h}(\widetilde{\theta}_{k,h})$.
7: Compute $\widetilde{\theta}_{k+1,h} = \arg \min_{\theta \in \Theta} \langle g_{k,h}(\widetilde{\theta}_{k,h}), \theta - \widetilde{\theta}_{k,h} \rangle + \frac{1}{2\eta} \| \theta - \widetilde{\theta}_{k,h} \|_{\widetilde{\mathcal{H}}_{k,h}}$.
8: Update $\mathcal{H}_{k,h} = \mathcal{H}_{k,h} + \mathcal{H}_{k,h}(\widetilde{\theta}_{k+1,h})$.
9: end for
10: end for
 $\mathcal{H}_{k,h} = \mathcal{H}_{k,h} = \mathcal{H}_{k,h} + \mathcal{H}_{k,h}(\widetilde{\theta}_{k+1,h})$.
 $\mathcal{H}_{k,h} = \mathcal{H}_{k,h} + \mathcal{H}_{k,h} + \mathcal{H}_{k,h}(\widetilde{\theta}_{k+1,h})$.
 $\mathcal{H}_{k,h} = \mathcal{H}_{k,h} + \mathcal{H$

Theorem 2. For any $\delta \in (0, 1)$, with probability at least $1 - \delta$, our algorithm ensures:

 $\operatorname{Regret}_{K} \leq \widetilde{\mathcal{O}}\left(dH^{2}\sqrt{K} + \kappa^{-1}d^{2}H^{2}\right) \xrightarrow{\kappa^{-1}-independent\ regret\ (in\ main\ term) \& \underline{constant}\ computational\ cost\ per\ round$

Lower bound for MNL-MDP

• Lower bound by reducing MNL-MDP as Logistic Bandits.

Logistic Bandit Problem

- At each round $k \in [K]$, learner selects an action $a_k \in \mathcal{A} \in \mathbb{R}^d$, receives a reward r_k sampled from Bernoulli distribution with $\mu\left(a_k^{\top}\theta^*\right) = \left(1 + \exp\left(-a_k^{\top}\theta^*\right)\right)^{-1}$.
- Learner aims to minimize: Regret_K^{LB} = max_{a \in A} $\sum_{k=1}^{K} \mu\left(a^{\top}\theta^{*}\right) \sum_{k=1}^{K} \mu\left(a_{k}^{\top}\theta^{*}\right)$.

Theorem 3. The lower bound of MNL MDPs with infinite actions is $\operatorname{Regret}_{K} \geq \Omega(dH\sqrt{K})$.

Note: The follow-up work of [Park et al., AISTATS 2025] improves the lower bound to $\Omega(d H^{3/2}\sqrt{K})$.

Summary of Online MDPs

Upper bound side: avoid dependence on $\kappa^{-1} = \Omega(S^2)$

- Avoid MLE estimator: OMD with a suitable local norm
- Avoid non-convex issue in Q: second-order value difference

Theorem 2. For any $\delta \in (0, 1)$, with probability at least $1 - \delta$, our algorithm ensures:

$$\operatorname{Regret}_{K} \leq \widetilde{\mathcal{O}}\left(dH^{2}\sqrt{K} + \kappa^{-1}d^{2}H^{2}\right)$$

 κ^{-1} -independent regret (in main term) & <u>constant</u> computational cost per round

Lower bound side: reduction to a logistic bandits

Theorem 3. The lower bound of MNL MDPs with infinite actions is $\operatorname{Regret}_{K} \geq \Omega(dH\sqrt{K})$.

Note: The follow-up work of [Park et al., AISTATS 2025] improves the lower bound to $\Omega(d H^{3/2}\sqrt{K})$.

RL Background

• RL with Function Approximation

• RL with Human Feedback

Conclusion

Large Language Models

□ Three typical stages of LLM training

- **Pre-Training**: Train on large-scale, diverse datasets to learn general capabilities.
- **SFT**: fine-tune the model using labeled data to improve ability to follow instructions.
- **RLHF** (*or preference optimization*) : align model towards human preferences or values.

RLHF for Alignment

NANIHAC UNIVERSIT

- **Input:** a preference 4-argument tuple (*x*, *a*, *a'*, *y*)
 - *x*: the prompt:
 - *a*: the first response: "Sorry
 - a': the second response: "Here is a joke for you: ..."
 - $y \in \{0, 1\}$: the label (human's preference): a'
- RLHF wants to use input to improve LLM

i.e., align LLM with human's preference or value (encoded in the preference data)

• Output: a fine-tuned LLM with better aligned preference

37

RLHF for Alignment

• A standard pipeline of RLHF

(i) reward model learning

(ii) policy optimization (guided by reward model)

Reward model learning

• How to model the underlying reward based on observed data?

Definition 1 (Bradley-Terry Model). Given a context $x \in \mathcal{X}$ and two actions $a, a' \in \mathcal{A}$, the probability of the human preferring action a over action a' is given by

$$\mathbb{P}\left(a \succ a' \mid x\right) = \frac{\exp\left(r\left(x,a\right)\right)}{\exp\left(r\left(x,a\right)\right) + \exp\left(r\left(x,a'\right)\right)}$$

where r is the latent function.

• Maximum Likelihood Estimation (MLE)

$$\arg\min_{r_{\phi}} \mathcal{L}_{R}\left(r_{\phi}, \mathcal{D}\right) = -\mathbb{E}_{(x, a_{w}, a_{l}) \sim \mathcal{D}} \left[\log \sigma\left(r_{\phi}(x, a_{w}) - r_{\phi}(x, a_{l})\right)\right]$$

Connection to MNL mixture MDPs

Linear reward model assumption

• MLE estimator

$$r = \underset{r_{\phi}}{\operatorname{arg\,min}} - \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(r_{\phi} \left(x, y_w \right) - r_{\phi} \left(x, y_l \right) \right) \right]$$

$$\kappa = \min_{x \in \mathcal{X}, a, a' \in \mathcal{A}} \min_{\theta \in \Theta} \dot{\sigma} \left(\phi(x, a)^{\top} \theta - \phi(x, a')^{\top} \theta \right)$$

"non-linearity coefficient"

We can apply OMD to improve the computational and sample efficiency!

$$\mathbb{P}\left(a \succ a' \mid x\right) = \frac{\exp\left(\phi(x, a)^{\top} \theta^{*}\right)}{\exp\left(\phi(x, a)^{\top} \theta^{*}\right) + \exp\left(\phi(x, a')^{\top} \theta^{*}\right)}$$

Compared to MNL mixture MDPs
Transition Model

$$\mathbb{P}_{h}(s' \mid s, a) = \frac{\exp\left(\phi\left(s' \mid s, a\right)^{\top} \theta_{h}^{*}\right)}{\sum_{\widetilde{s} \in S_{h,s,a}} \exp\left(\phi\left(\widetilde{s} \mid s, a\right)^{\top} \theta_{h}^{*}\right)}$$
MLE

$$\theta_{k,h} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^{d}} \sum_{i=1}^{k-1} \sum_{s' \in S_{i,h}} -y_{i,h}^{s'} \log p_{i,h}^{s'}(\theta) + \frac{\lambda}{2} \|\theta\|_{2}^{2}$$

Online RLHF

General Framework of Online RLHF

- 1: New data collection: sample a tuple (x_t , a_t , a'_t), obtain the preference label y_t , expand the dataset: $\mathcal{D}_{t+1} = \mathcal{D}_t \cup (x_t, a_t, a'_t, y_t)$
- 2: **Reward Modeling**: Train reward model r_{t+1} based on dataset \mathcal{D}_{t+1}
- 3: **Policy Optimization**: Update the policy π_{t+1} using the learned reward model r_{t+1}

Online RLHF

General Framework of Online RLHF

1: New data collection: sample a tuple (x_t , a_t , a'_t), obtain the preference label y_t , expand the dataset: $\mathcal{D}_{t+1} = \mathcal{D}_t \cup (x_t, a_t, a'_t, y_t)$

2: **Reward Modeling**: Train reward model r_{t+1} based on dataset \mathcal{D}_{t+1}

3: **Policy Optimization**: Update the policy π_{t+1} using the learned reward model r_{t+1}

Reward Modeling: Maximum Likelihood Estimation (MLE)

Define feature difference:
$$z_t = \phi(x_t, a_t) - \phi(x_t, a'_t)$$

$$\widehat{\theta}_{t+1} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \sum_{s=1}^t \ell_s(\theta),$$
where $\ell_t(\theta) = -y_t \log \left(\sigma(z_t^\top \theta)\right) - (1 - y_t) \log \left(1 - \sigma(z_t^\top \theta)\right)$

At iteration t: time complexity: $O(t\log t)$, storage complexity: O(t)

One-Pass Estimation

Online Mirror Descent

Define gradient and Hessian: $g_t(\theta) = \left(\sigma\left(z_t^{\top}\theta\right) - y_t\right)z_t, \quad H_t(\theta) = \dot{\sigma}\left(z_t^{\top}\theta\right)z_tz_t^{\top}$

$$\widetilde{\theta}_{t+1} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \left\{ \langle g_t(\widetilde{\theta}_t), \theta \rangle + \frac{1}{2\eta} \| \theta - \widetilde{\theta}_t \|_{\widetilde{\mathcal{H}}_t}^2 \right\}, \quad \text{where } \widetilde{\mathcal{H}}_t = \sum_{i=1}^{t-1} H_i(\widetilde{\theta}_{i+1}) + \eta H_t(\widetilde{\theta}_t) + \lambda I.$$
constant time and storage complexity,
independent of t
look-ahead
look-ahead
approximation

• Estimation Error analysis:

$$\left\| \theta - \widetilde{\theta}_t \right\|_{\mathcal{H}_t} \le \mathcal{O}\left(\sqrt{d} (\log(t/\delta))^2 \right)$$

Enjoy (basically) the same order estimation error guarantee as MLE!

On-Policy Data Collection

Case 1: on-policy data collection

- Data collection: uniform sampling $x_t \sim \rho$, and $a_t, a'_t \sim \pi_t(\cdot | x_t)$
- Policy Optimization: $\pi_t = \arg \max_{\pi} \widetilde{J}_t(\pi)$,

where
$$\widetilde{J}_t(\pi) = \mathbb{E}_{x \sim \rho, a \sim \pi(\cdot|x)} \left[\phi(x, a)^\top \widetilde{\theta} \right] + \widetilde{\beta}_t \left\| \mathbb{E}_{\mathbf{x} \sim \rho}[x, \pi(x)] \right\|_{\widetilde{\mathcal{H}}_t}$$
 exploration bonus

SubOpt $(\pi_t) = \mathbb{E}_{x \sim \rho} \left[r \left(x, \pi^*(x) \right) - r(x, \pi_t(x)) \right]$ $\leq \widetilde{\mathcal{O}} \left(\sqrt{d} \cdot \left\| \mathbb{E}_{x \sim \rho} \left[\phi \left(x, \pi_t(x) \right) \right] \right\|_{\mathcal{H}_t^{-1}} \right)$

"concentratability coefficient" can be bounded by self-normalized concentration

$$\operatorname{Regret}_{T} = \sum_{t=1}^{T} \left[J\left(\pi^{\star}\right) - J\left(\pi_{t}\right) \right] \leq \widetilde{\mathcal{O}}\left(d\sqrt{\frac{T}{\kappa}} \right)$$

Active Data Collection

Case 2: active data collection

• Data collection: maximum uncertainty

$$(x_t, a_t, a_t') = \underset{x, a, a' \in \mathcal{X} \times \mathcal{A} \times \mathcal{A}}{\operatorname{arg\,max}} \left\{ \|\phi(x, a) - \phi(x, a')\|_{\mathcal{H}_t^{-1}} \right\}$$

• Policy Optimization

$$\pi_T(x) = \arg\max_a \widetilde{r}_T(x,a)$$
 where $\widetilde{r}_T(x,a) = \frac{1}{T} \sum_{t=1}^T \phi(x,a) \widetilde{\theta}_t$

No need to additional exploration due the active data collection strategy

SubOpt
$$(\pi_T) = \mathbb{E}_{x \sim \rho} \left[r\left(x, \pi^*(x)\right) - r(x, \pi_T(x)) \right] \le \widetilde{\mathcal{O}} \left(d\sqrt{\frac{1}{\kappa T}} \right)$$

Experiment

- Train *Llama-3-8B-Instruct* on *Ultrafeedback* dataset
- Contenders:
 - (1) On-policy (rand) + MLE (2) Active + MLE (3) On-policy (rand) + MLE (4) Active + OMD

Our OMD-based estimator achieves performance comparable to MLE while offering significantly better computational efficiency.

Peng Zhao (Nanjing University)

Experiment

- Interesting point: combined with Adam Optimizer
- Contenders:
 - (1) MLE + SGD (2) MLE + Adam (3) OMD + SGD (4) OMD + Adam

Adam itself may have already capture some "local" second-order information.

Our OMD-based estimator can be combined with Adam optimizer to further boost the performance.

- RL Background
- RL with Function Approximation
- RL with Human Feedback
- Conclusion

Conclusion

□ Provable efficiency in online RL

• Online Mirror Descent (OMD) as a statistical estimator with *one-pass* update

□ Multinomial Logit (MNL) Mixture function approximation

- A new logistic model to capture the non-linearity of the transition matrix
- MLE estimator: analysis exploiting local information is vital for statistical efficiency
- OMD estimator: designing special local norm to replace MLE, keep regret optimality and meanwhile achieve the "one-pass" computational efficiency

RL with human feedback

- BT model naturally involves the logistic kind non-linearity
- OMD estimator: used to replace MLE offline estimator, encouraging results Thanks!

Joint work with

Long-Fei Li (NJU→ Noah's Ark Lab)

Yu-Jie Zhang (NJU → U Tokyo)

Yu-Yang Qian (NJU)

Zhi-Hua Zhou (NJU)

- Long-Fei Li, Yu-Jie Zhang, Peng Zhao, and Zhi-Hua Zhou. Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation. NeurIPS 2024.
- Long-Fei Li*, Yu-Yang Qian*, Peng Zhao, and Zhi-Hua Zhou. Provably Efficient RLHF Pipeline: A Unified View from Contextual Bandits. ArXiv preprint: 2502.07193, 2025
 Thanks!

Other References

- Y.-J. Zhang and M. Sugiyama. Online (Multinomial) Logistic Bandit: Improved Regret and Constant Computation Cost. NeurIPS 2023.
- Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved Algorithms for Linear Stochastic Bandits. NIPS 2011.
- L. Faury, M. Abeille, K.-S. Jun, and C. Calauzènes. Jointly Efficient and Optimal Algorithms for Logistic Bandits. AISTATS 2022.
- C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably Efficient Reinforcement Learning with Linear Function Approximation. COLT 2020.
- A. Ayoub, Z. Jia, C. Szepesvári, M. Wang, and L. F. Yang. Model-Based Reinforcement Learning with Value-Targeted Regression. ICML 2020.
- C. Jin, Q. Liu, and S. Miryoosef. Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms. NeurIPS 2021.
- D. J. Foster, A. Rakhlin, A. Sekhari, and K. Sridharan. On the Complexity of Adversarial Decision Making. NeurIPS 2022.
- Z. Chen, C. J. Li, H. Yuan, Q. Gu, and M. Jordan. A General Framework for Sample-Efficient Function Approximation in Reinforcement Learning. ICLR 2023.