
Provable Efficiency in Online RL:
Function Approximation and RLHF

Peng Zhao

School of Artificial Intelligence
Nanjing University

April 29, 2025 @ NUS



2Peng Zhao (Nanjing University)

Outline

• Background

• RL with Function Approximation

• RL with Human Feedback

• Conclusion



3Peng Zhao (Nanjing University)

Outline

• Background

• RL with Function Approximation

• RL with Human Feedback

• Conclusion



4Peng Zhao (Nanjing University)

Reinforcement Learning
• RL has achieved great success in many applications

Games

Automatic Driving

Control

Large Language Models

2024 ACM A.M. Turing Award

ACM A.M. Turing Award honors two researchers 
who led the development of cornerstone AI 
technology. Andrew Barto and Richard Sutton are 
recognized as pioneers of reinforcement learning.
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Reinforcement Learning
• RL offers a principled framework for sequential decision making in 

unknown and interactive environments.

agent environment

Supervised learning
• labeled data passively collected in advance
• minimize the cumulative loss (e.g., ERM)
• learning from examples

Reinforcement Learning
• agent actively interacts with the environment
• learning from feedback (rewards) to improve future 

behavior (doing right action).
• learning by trial-and-error
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Reinforcement Learning
• (Two of) key techniques in this wave of RL success:

(i) RL with function approximation (ii) RL from human feedback
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RL with function approximation

Challenges: Efficiency

29 million of game
40 days of training

13T data
$63M cost of training

200 years of play
44 days of training

14.8T data
$6M cost of training

Goal: statistically and computationally efficient algorithm with provable guarantee.

Li, Z, Zhou. Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation. NeurIPS 2024.

Li, Qian, Z, Zhou. Provably Efficient RLHF Pipeline: A Unified View from Contextual Bandits. Arxiv, 2502.07193.

RL from human feedback
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Online MDPs

to learn as well as the best policy in hindsight

Focus on known reward and unknown transition as learning reward is no harder than transition.

Online Episodic MDPs

agent environment
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Challenge of Large-scale MDPs
q How to design RL algorithm to handle large-scale MDPs？

We discover through 
experience that this state is bad

In tabular methods, we know 
nothing about this state.

We know nothing about 
this state either!

q Tabular MDPs: usually maintain a table to store values for all states (or 
state-action pairs), which scales with state number � and action number �.
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Challenge of Large-scale MDPs
q How to design RL algorithm to handle large-scale MDPs？

We discover through 
experience that this state is bad

In tabular methods, we know 
nothing about this state.

We know nothing about 
this state either!

but in fact Figure 1 and 3 are very similar…
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Function Approximation
q Function approximation: approximate using a parameterized function. 

• Describe states (or state-actions) using feature representations in ℝ�.

• A modern choice: DNN as a feature representer

similar output

parameterize MDP model with a low-dimensional representation 
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Function Approximation
q Linear Function Approximation

• Linear mixture MDPs [Ayoub et al., 2020]:
• Linear / low-rank MDPs [Jin et al., 2020]:
• …

linearity is hard to 
satisfy in practice!
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Function Approximation
q Linear Function Approximation

q General Function Approximation

• Eluder dimension [Russo and Roy, 2013, Jin et al., 2021]

• Decision-Estimation Coefficient (DEC) [Foster et al., 2021]

• Admissible Bellman Characterization (ABC) [Chen et al., 2023]

• …

• Linear mixture MDPs [Ayoub et al., 2020]:
• Linear / low-rank MDPs [Jin et al., 2020]:
• …

linearity is hard to 
satisfy in practice!

Technically, this "linear" 
MDP parametrization 
arises because it can be 
reduced to and solved by 
stochastic linear bandits, 
which is well-understood. 

usually no computationally efficient algorithms provided

computationally efficient 
beyond linearity?
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MNL Function Approximation

MNL mixture MDPs: 

Probability

q A new class: Multinomial Logit (MNL) function approximation [Hwang and Oh, 2023]
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Key Challenge: non-linearity

MNL mixture MDPs: 

� is the minimum slope

Regularity assumption: 

Linear mixture MDPs: 

even two vastly different inputs 
will have much similar outputs
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Main Results
qThe first statistically and computationally efficient algorithm

Algorithm 1: Independent of �−1 in the dominant term;  

Algorithm 2: based on Algorithm1, further achieve efficient time & storage cost.

qThe first lower bound for this problem

Match the results for linear mixture MDPs except for the dependence on �.
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Algorithm: A Pipeline for UCB
• Parameter estimation
• Confidence region construction
• UCB arm selection

(Upper Confidence Bound)
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Parameter Estimation
• Maximum likelihood estimation (MLE)

…
…

…

…

unpleasant dependence on         !

• Estimation error analysis: with probability at least 1 − �, [Hwang and Oh, 2023]
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Parameter Estimation
• Maximum likelihood estimation (MLE)

…
…

…

…

independent of         !

• Estimation error analysis: with probability at least 1 − �, [Li-Zhang-Z-Zhou, 2024]

essentially “variance-aware” local norm
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Confidence Region + UCB selection
• Confidence region construction

Greedy policy:

• UCB arm selection

The first algorithm with optimal regret without dependence on � (in dominating term).
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Computational Challenge
• MLE estimator: Computational and storage cost at episode � is �(�) !

• UCB selection: Feasible domain can be non-convex ! 
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Online Mirror Descent
• OMD is a powerful online learning framework to optimize regret.

More details of OMD can be found in Lecture 6 of 
Advanced Optimization Course 2024 Fall

https://www.pengzhao-ml.com/course/AOpt2024fall/
We here use OMD as a statistical estimation tool!
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OMD as Statistical Estimator
• Replace MLE with Online Mirror Descent (OMD) inspired by [Zhang and Sugiyama, NeurIPS’ 23]

Still no closed-form 
solution!

MLE

“lookahead” local norm to keep historical information

implicit 
OMD

one-pass update by OMD

second-order Taylor expansion 

standard 
OMD
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OMD: Estimation Error

can be solved 
with two steps:

independent of         !

ü Hessian can be analytically calculated

ü inversion can be easily computed by 
rank-1 update, �(�2) complexity 
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Key Analysis

A proper choice of the local norm �� and the surrogate loss ��(�) become highly crucial.

Self-concordance of logistic loss & Second-order approximation & Negative regret in OMD
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Computational Challenge
• MLE estimator: Computational and storage cost at episode � is �(�) !

• UCB selection: Feasible domain can be non-convex ! 
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Efficient Optimistic Value Function

bound the value 
difference by 
second-order 

Taylor expansion

• Replace maximization with closed-form bonus:

Preserve local information effectively!

non-convex
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Algorithm and Regret Bound

�−1-independent regret (in main term) & 
constant computational cost per round

�(�3)

Total: (�3 + �2�2 + �) ⋅ � ⋅ �  

Computational complexity: 

�(�2�2)

�(�2�2)

�(�)
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Lower bound for MNL-MDP
• Lower bound by reducing MNL-MDP as Logistic Bandits.

MNL-MDP Logistic Bandit
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Summary of Online MDPs

q Upper bound side: avoid dependence on �−� = �(��)
• Avoid MLE estimator: OMD  with a suitable local norm
• Avoid non-convex issue in Q: second-order value difference

�−1-independent regret (in main term) & constant computational cost per round

q Lower bound side: reduction to a logistic bandits
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Large Language Models
q Three typical stages of LLM training

•  Pre-Training: Train on large-scale, diverse datasets to learn general capabilities.

•  SFT: fine-tune the model using labeled data to improve ability to follow instructions.

•  RLHF (or preference optimization) : align model towards human preferences or values.
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RLHF for Alignment
• Input: a preference 4-argument tuple

• RLHF wants to use input to improve LLM

i.e., align LLM with human’s preference or value (encoded in the preference data)

• Output: a fine-tuned LLM with better aligned preference

“Here is a joke for you: …”

a’

“Please write a joke for me.”

“Sorry, I can’t.”
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RLHF for Alignment

• A standard pipeline of RLHF

(i) reward model learning (ii) policy optimization (guided by reward model)
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Reward model learning
• How to model the underlying reward based on observed data?

• Maximum Likelihood Estimation (MLE)
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Connection to MNL mixture MDPs

We can apply OMD to improve the computational and sample efficiency!

• Linear reward model assumption
• Transition Model

• MLE

Compared to MNL mixture MDPs

• MLE estimator

Bradley-Terry 
Model 

“non-linearity coefficient”
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Online RLHF
General Framework of Online RLHF

1：New data collection: sample a  tuple (��,  ��,  ��
′), obtain the preference label ��,    

        expand the dataset:  ��+1 =  �� ∪ (��,  ��,  ��
′ ,  ��)

2：Reward Modeling: Train reward model ��+1 based on dataset ��+1

3：Policy Optimization: Update the policy ��+1 using the learned reward model ��+1

Policy Model
��+1(�∣�) 

Reward Model
��+1(�,  �)

reward 
modeling

policy 
optimization

 ��   ��   ��
′  ��

new data

dataset ��
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Online RLHF
General Framework of Online RLHF

1：New data collection: sample a  tuple (��,  ��,  ��
′), obtain the preference label ��,    

        expand the dataset:  ��+1 =  �� ∪ (��,  ��,  ��
′ ,  ��)

2：Reward Modeling: Train reward model ��+1 based on dataset ��+1

3：Policy Optimization: Update the policy ��+1 using the learned reward model ��+1

Reward Modeling: Maximum Likelihood Estimation (MLE)

At iteration �: 
time complexity: �(�log �), 
storage complexity: �(�)
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One-Pass Estimation
• Online Mirror Descent

Define gradient and Hessian:

look-ahead 
local norm

second-order 
approximation

where

constant time and storage complexity, 
independent of �

• Estimation Error analysis:

Enjoy (basically) the same order estimation 
error  guarantee as MLE!
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On-Policy Data Collection
qCase 1: on-policy data collection

exploration bonus

• Policy Optimization:

• Data collection: uniform sampling

“concentratability coefficient” can be 
bounded by self-normalized concentration
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Active Data Collection
qCase 2: active data collection

• Data collection: maximum uncertainty

• Policy Optimization

No need to additional exploration due the  active data collection strategy
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Experiment
• Train Llama-3-8B-Instruct on Ultrafeedback dataset
• Contenders: 

• (1) On-policy (rand) + MLE  (2) Active + MLE   (3) On-policy (rand) + MLE    (4) Active + OMD

Our OMD-based estimator achieves performance comparable to MLE 
while offering significantly better computational efficiency.
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Experiment
• Interesting point: combined with Adam Optimizer

Our OMD-based estimator can be combined with Adam optimizer to further boost the performance.

•  Contenders: 
• (1) MLE + SGD (2) MLE + Adam   (3) OMD + SGD (4) OMD + Adam

Adam itself may have 
already capture some “local” 

second-order information.
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Conclusion

q Multinomial Logit (MNL) Mixture function approximation
• A new logistic model to capture the non-linearity of the transition matrix

• MLE estimator: analysis exploiting local information is vital for statistical efficiency

• OMD estimator: designing special local norm to replace MLE, keep regret optimality 
and meanwhile achieve the “one-pass” computational efficiency

q RL with human feedback
• BT model naturally involves the logistic kind non-linearity

• OMD estimator: used to replace MLE offline estimator, encouraging results Thanks!

q Provable efficiency in online RL
• Online Mirror Descent (OMD) as a statistical estimator with one-pass update
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Long-Fei Li, Yu-Jie Zhang, Peng Zhao, and Zhi-Hua Zhou. Provably Efficient Reinforcement 
Learning with Multinomial Logit Function Approximation. NeurIPS 2024.

Long-Fei Li*, Yu-Yang Qian*, Peng Zhao, and Zhi-Hua Zhou. Provably Efficient RLHF Pipeline: 
A Unified View from Contextual Bandits. ArXiv preprint: 2502.07193, 2025 

Joint work with

Long-Fei Li 
(NJU Noah's Ark Lab) Yu-Yang Qian (NJU) Zhi-Hua Zhou (NJU)Yu-Jie Zhang 

(NJU  U Tokyo)

Thanks!
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